G3VM-61BR/ER

MOS FET Relays

New Analog-switching MOS FET Relays Featuring a High Capacity of 2.5 A.

- Switches minute analog signals.
- \bullet Low ON-resistance of 0.1 Ω max.

Application Examples

• Test & Measurement equipment

Continuous load current of 2.5 A.

RoHS compliant

E

Note: The actual product is marked differently from the image shown here.

Terminal Arrangement/Internal Connections

Note: The actual product is marked differently from the image shown here.

■ List of Models

Security equipment

Deekege ture	Contact form	Terminals	Load voltage	Model	Minimum package quantity	
Package type	Contact Ionni		(peak value) *	Model	Number per tube	Number per tape and reel
	1a (SPST-NO)	PCB Terminals		G3VM-61BR	50	
DIP6		Surface-mounting Terminals	60 V	G3VM-61ER	50 -	-
				G3VM-61ER(TR)	-	1,500

* The AC peak and DC value are given for the load voltage.

■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rating	Unit	Measurement conditions	
Input	LED forward current	lF	30	mA		
	LED forward current reduction rate	$\Delta IF/^{\circ}C$	-0.3	mA/°C	Ta ≥ 25°C	
	LED reverse voltage	VR	5	V		
	Connection temperature	TJ	125	°C		
Output	Load voltage (AC peak/DC)	VOFF	60	V		
	Continuous load current (AC peak/DC)	lo	2500	mA		
	ON current reduction rate	∆lo/°C	-22	mA/°C	Ta ≥ 40°C	
	Connection temperature	TJ	125	°C		
Dielectric strength between I/O (See note 1.)		VI-0	2500	Vrms	AC for 1 min	Note: 1. The dielectric strength between the input an
Ambient operating temperature		Та	-20 to +85	°C	With no icing or condensation	output was checked by applying voltage
Ambient storage temperature		Tstg	-40 to +125	°C	With no icing or condensation	between all pins as a group on the LED side
Soldering temperature		-	260	°C	10 s	all pins as a group on the light-receiving side

Electrical Characteristics (Ta = 25°C)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions	
	LED forward voltage	VF	1.18	1.33	1.48	V	IF = 10 mA	
Input	Reverse current	IR	-	-	10	μA	VR = 5 V	٢
dul	Capacity between terminals	Ст	-	70	-	pF	V = 0, f = 1 MHz	
	Trigger LED forward current	IFT	-	1.0	3	mA	lo = 1 A	1
utpu c	Maximum resistance with output ON		-	0.065	0.1	Ω	$I_F = 10 \text{ mA}, I_0 = 2 \text{ A}, t = 10 \text{ ms}$	
	Current leakage when the relay is open	ILEAK	-	1.0	10	nA	Voff = 60 V	
	Capacity between terminals	COFF	-	400	600	pF	V = 0, f = 1 MHz	
Capacity between I/O terminals		CI-0	-	0.8	-	pF	f = 1 MHz, Vs = 0 V	
Insulation resistance between I/O terminals		Rı-o	1000	-	-	MΩ	VI-0 = 500 VDC, RoH $\leq 60\%$	
Turn-ON time		ton	-	1.0	1.5	ms	$I_F = 10 \text{ mA}, \text{ RL} = 200 \Omega,$	1
Turn-OFF time		toff	-	0.2	0.4	ms	VDD = 20 V(See note 2.)	

G3VM-61BR/ER

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	Vdd	-	-	48	V
Operating LED forward current	lF	10	-	20	mA
Continuous load current (AC peak/DC)	lo	-	-	2500	mA
Ambient operating temperature	Та	25	-	60	°C

Engineering Data

LED forward current vs. Ambient temperature

Continuous load current vs. Ambient temperature

LED forward current vs. LED forward voltage

Continuous load current vs. On-state voltage

On-state resistance vs. Ambient temperature

Trigger LED forward current vs. Ambient temperature

Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

■ Safety Precautions

• Refer to "Common Precautions" for all G3VM models.

2

■ Appearance

DIP (Dual Inline Package)

Note: The actual product is marked differently from the image shown here.

Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.
Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperty. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.

Note: Do not use this document to operate the Unit.

OMRON Corporation ELECTRONIC AND MECHANICAL COMPONENTS COMPANY Contact

Contact: www.omron.com/ecb

Cat. No. K175-E1-01 0412(0412)(O)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron:

G3VM-61BR G3VM-61ER G3VM-61ER(TR)