Precision 8-Ch/Dual 4-Ch Low Voltage Analog Multiplexers

DESCRIPTION

The DG9408, DG9409 uses BiCMOS wafer fabrication technology that allows the DG9408, DG9409 to operate on single and dual supplies. Single supply voltage ranges from 3 V to 12 V while dual supply operation is recommended with $\pm 3 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$.
The DG9408 is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address $\left(A_{0}, A_{1}, A_{2}\right)$. The DG9409 is a dual 4-channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address $\left(A_{0}, A_{1}\right)$. Break-before-make switching action to protect against momentary crosstalk between adjacent channels.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations. The DG9408, DG9409 are offered in a QFN package that has a nickel-palladiumgold device terminations and is represented by the lead (Pb)-free "-E4" suffix. The nickel-palladium-gold device terminations meet all the JEDEC standards for reflow and MSL ratings.

FEATURES

- 2.7 V to 12 V single supply or $\pm 3 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ dual supply operation

- Low on-resistance - $\mathrm{R}_{\mathrm{ON}}: 3.9 \Omega$ typ.
- Fast switching: $\mathrm{t}_{\mathrm{ON}}-42 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}-24 \mathrm{~ns}$
- Break-before-make guaranteed
- Low leakage
- TTL, CMOS, LV logic (3 V) compatible
- 2000 V ESD protection (HBM)
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- High accuracy
- Single and dual power rail capacity
- Wide operating voltage range
- Simple logic interface

APPLICATIONS

- Data acquisition systems
- Battery operated equipment
- Portable test equipment
- Sample and hold circuits
- Communication systems
- SDSL, DSLAM
- Audio and video signal routing

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLES AND ORDERING INFORMATION

TRUTH TABLE DG9408				
$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\overline{\mathbf{E N}}$	On Switch
X	X	X	1	None
0	0	0	0	1
0	0	1	0	2
0	1	0	0	3
0	1	1	0	4
1	0	0	0	5
1	0	1	0	6
1	1	0	0	7
1	1	1	0	8

TRUTH TABLE DG9409			
$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\overline{\mathbf{E N}}$	On Switch
X	X	1	None
0	0	0	1
0	1	0	2
1	0	0	3
1	1	0	4

X = Don't care

For low and high voltage levels for V_{AX} and V_{EN} consult "Digital Control" Parameters for Specific $\mathrm{V}+$ operation. See Specifications Tables for:

Single Supply 12 V
Dual Supply V+=5V, V- =-5V
Single Supply 5 V
Single Supply 3 V

ORDERING INFORMATION		
Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$16-\mathrm{pin} \mathrm{QFN}(4 \mathrm{~mm} \times 4 \mathrm{~mm})$ (Variation 1$)$	DG9408DN-T1-E4
		DG9409DN-T1-E4

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
Parameter		Limit	Unit
Voltage Referenced V+ to V-		14	V
GND		7	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		(V-) - 0.3 to ($\mathrm{V}+$) +0.3	
Current (Any Terminal Except S or D)		30	mA
Continuous Current, S or D Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10$ \% Duty Cycle max.)		100	
		200	
Package Solder Reflow Conditions ${ }^{\text {d }}$	16-pin (4 x 4 mm) QFN	240	${ }^{\circ} \mathrm{C}$
Storage Temperature		- 65 to 150	
Power Dissipation (Package) ${ }^{\mathrm{b}}$, $\left(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\right)$	16-pin ($4 \times 4 \mathrm{~mm}$) QFN ${ }^{\text {c }}$	1880	mW

Notes:

a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads soldered or welded to PC board.
c. Derate $23.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Manual soldering with soldering iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS (Single Supply 12 V)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V} \text { or } 2.4 \mathrm{~V}^{f} \end{gathered}$		Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {d }}$	Max. ${ }^{\text {c }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {Analog }}$				Full	0		12	V
On-Resistance	R_{ON}	$\mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2 \mathrm{~V} \text { or } 9 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}$ sequence each switch on		Room		4	$\begin{gathered} 7 \\ 7.5 \end{gathered}$	Ω	
$\mathrm{R}_{\text {ON }}$ Match Between Channels ${ }^{9}$	$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2 \mathrm{~V}$ or $9 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}$		Room			3.6		
On-Resistance Flatness ${ }^{\text {i }}$	R_{ON} Flatness			Room			8		
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{\text {EN }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=11 \mathrm{~V}$ or $1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}$ or 11 V		$\begin{aligned} & \text { Room } \\ & \text { Full } \\ & \hline \end{aligned}$	$\begin{gathered} -2 \\ -15 \\ \hline \end{gathered}$		$\begin{gathered} 2 \\ 15 \end{gathered}$	nA	
	$I_{\text {(off) }}$			$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} \hline-2 \\ -15 \\ \hline \end{gathered}$		$\begin{gathered} \hline 2 \\ 15 \end{gathered}$		
Channel On Leakage Current		$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 11 V		Room Full	$\begin{gathered} -2 \\ -15 \end{gathered}$		$\begin{gathered} 2 \\ 15 \end{gathered}$		
Digital Control									
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$			Full	2.4			V	
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.8		
Input Current	I_{N}	$\mathrm{V}_{\mathrm{AX}}=\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$ or 0.8		Full	-1		1	$\mu \mathrm{A}$	
Dynamic Characteristics									
Transition Time	${ }^{\text {t }}$ trans	$\begin{gathered} \mathrm{V}_{\mathrm{S} 1}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=0 \mathrm{~V},(\mathrm{DG9408}) \\ \mathrm{V}_{\mathrm{S} 1 \mathrm{~b}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 4 \mathrm{~b}}=0 \mathrm{~V},(\text { (DG9409) } \\ \text { see fig. } 2 \end{gathered}$		Room Full		42	$\begin{aligned} & 71 \\ & 75 \end{aligned}$	ns	
Break-Before-Make Time	$t_{\text {BBM }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}_{(\text {all) }}}=\mathrm{V}_{\mathrm{DA}}=5 \mathrm{~V} \\ \text { see fig. } 4 \end{gathered}$		Room Full	2	24			
Enable Turn-On Time	ton(EN)	$\begin{gathered} \mathrm{V}_{\mathrm{AX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1}=5 \mathrm{~V}(\mathrm{DG} 9408) \\ \mathrm{V}_{\mathrm{AX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1 \mathrm{~b}}=5 \mathrm{~V} \text { (DG9409) } \\ \text { see fig. } 3 \end{gathered}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		42	$\begin{aligned} & 70 \\ & 75 \\ & \hline \end{aligned}$		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF(EN) }}$			Room Full		24	$\begin{aligned} & 44 \\ & 46 \end{aligned}$		
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$		Room		29		pC	
Off Isolatione ${ }^{\text {e }}$ h	OIRR	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		Room		-80		dB	
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$			Room		-85			
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=2.4 \mathrm{~V}$	DG9408	Room		21		pF	
			DG9409	Room		23			
Drain Off Capacitance ${ }^{\text {e }}$	$C_{\text {(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{EN}}}=2.4 \mathrm{~V}$	DG9408	Room		211			
			DG9409	Room		112			
Drain On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	DG9408	Room		238			
			DG9409	Room		137			
Power Supplies									
Power Supply Current	$\stackrel{ }{+}$	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or V_{+}		Room			1	$\mu \mathrm{A}$	

SPECIFICATIONS (Dual Supply $\mathrm{V}+=5 \mathrm{~V}$, V- = - 5 V)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \pm 10 \% \\ \mathrm{~V}_{\mathrm{A}}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0.8 \mathrm{~V} \text { or } 2 \mathrm{~V}^{\mathrm{f}} \end{gathered}$		Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {d }}$	Max. ${ }^{\text {c }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	- 5		5	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA} \\ \text { sequence each switch on } \end{gathered}$		Room Full		5	$\begin{gathered} \hline 8 \\ 8.5 \end{gathered}$	Ω	
$\mathrm{R}_{\text {ON }}$ Match Between Channels ${ }^{9}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}$		Room			3.6		
On-Resistance Flatness ${ }^{\text {i }}$	$\xrightarrow{\mathrm{R}_{\mathrm{ON}}} \underset{\text { Flatness }}{ }$			Room			8.2		
Switch Off Leakage Current ${ }^{\text {a }}$	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{gathered}$		$\begin{gathered} \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	$\begin{gathered} \hline-2 \\ -15 \\ \hline \end{gathered}$		$\begin{gathered} 2 \\ 15 \\ \hline \end{gathered}$	nA	
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$			Room Full	$\begin{gathered} \hline-2 \\ -15 \end{gathered}$		$\begin{gathered} \hline 2 \\ 15 \end{gathered}$		
Channel On Leakage Current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\overline{\mathrm{EN}}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{gathered}$		Room Full	$\begin{gathered} -2 \\ -15 \end{gathered}$		$\begin{gathered} 2 \\ 15 \end{gathered}$		
Digital Control									
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$			Full	2			V	
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.8		
Input Current ${ }^{\text {a }}$	I_{N}	$\mathrm{V}_{\mathrm{AX}}=\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}$ or 0.8		Full	-1		1	$\mu \mathrm{A}$	
Dynamic Characteristics									
Transition Time ${ }^{\text {e }}$	${ }^{\text {t trans }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S} 1}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=-3.5 \mathrm{~V}, \text { (DG9408) } \\ \mathrm{V}_{\mathrm{S} 1 \mathrm{~b}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 4 \mathrm{~b}}=-3.5 \mathrm{~V} \text {, (DG9409) } \\ \text { see fig. } 2 \end{gathered}$		Room Full		68	$\begin{aligned} & 89 \\ & 94 \end{aligned}$	ns	
Break-Before-Make Time ${ }^{\text {e }}$	$t_{\text {BBM }}$	$\mathrm{V}_{\mathrm{S}(\mathrm{all})}=\mathrm{V}_{\mathrm{DA}}=3.5 \mathrm{~V}$ see fig. 4		Room Full	1	16			
Enable Turn-On Time ${ }^{\text {e }}$	$\mathrm{t}_{\mathrm{ON}(\mathrm{EN})}$	$\begin{gathered} \mathrm{V}_{\mathrm{AX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1}=3.5 \mathrm{~V}(\mathrm{DG} 9408) \\ \mathrm{V}_{\mathrm{AX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1 \mathrm{~b}}=3.5 \mathrm{~V}(\mathrm{DG9409}) \\ \text { see fig. } 3 \end{gathered}$		Room Full		68	$\begin{aligned} & 88 \\ & 94 \end{aligned}$		
Enable Turn-Off Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {OFF (EN) }}$			$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$		58	$\begin{aligned} & 78 \\ & 81 \end{aligned}$		
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}$	DG9408	Room		23		pF	
			DG9409	Room		23			
Drain Off Capacitance ${ }^{\text {e }}$	$C_{\text {(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}$	DG9408	Room		223			
			DG9409	Room		113			
Drain On Capacitance ${ }^{\text {e }}$	$C_{\text {(on) }}$	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$	DG9408	Room		246			
			DG9409	Room		137			
Power Supplies									
Power Supply Current	I+	$\mathrm{V}_{\overline{\mathrm{EN}}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or V_{+}		Room			1	$\mu \mathrm{A}$	
	I-			Room	-1				

SPECIFICATIONS (Single Supply 5 V)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\begin{gathered} \mathrm{V}_{+}=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0.8 \mathrm{~V} \text { or } 2 \mathrm{~V}^{\mathrm{f}} \end{gathered}$		Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {d }}$	Max. ${ }^{\text {c }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	0		5	V
On-Resistance	R_{ON}	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}$ or $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$ or 3.5	$=50 \mathrm{~mA}$	Room Full		7	$\begin{gathered} 10.5 \\ 11 \end{gathered}$		
$\mathrm{R}_{\text {ON }}$ Match Between Channels ${ }^{9}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V}$ or $3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}$		Room			3.6	Ω	
On-Resistance Flatness ${ }^{\text {i }}$	R_{ON} Flatness			Room			9		
Switch Off Leakage Current ${ }^{\text {a }}$	$I_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4 \mathrm{~V} \text { or } 1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	$\begin{gathered} -2 \\ -15 \\ \hline \end{gathered}$		$\begin{gathered} \hline 2 \\ 15 \end{gathered}$	nA	
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$			Room Full	$\begin{gathered} -2 \\ -15 \end{gathered}$		$\begin{gathered} \hline 2 \\ 15 \end{gathered}$		
Channel On Leakage Current ${ }^{\text {a }}$	$I_{\text {(on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$ or 4 V , sequence each switch on		Room Full	$\begin{gathered} -2 \\ -15 \end{gathered}$		$\begin{gathered} 2 \\ 15 \end{gathered}$		
Digital Control									
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$	$\mathrm{V}+=5 \mathrm{~V}$		Full	2			V	
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.8		
Input Current ${ }^{\text {a }}$	IN	$\mathrm{V}_{\mathrm{AX}}=\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}$ or 0.8		Full	-1		1	$\mu \mathrm{A}$	
Dynamic Characteristics									
Transition Time ${ }^{\text {e }}$	${ }^{\text {t }}$ trans	$\begin{gathered} \mathrm{V}_{\mathrm{S} 1}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=0 \mathrm{~V},(\mathrm{DG} 9408) \\ \mathrm{V}_{\mathrm{S} 1 \mathrm{~b}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 4 \mathrm{~b}}=0 \mathrm{~V},(\mathrm{DG9409}) \\ \text { see fig. } 2 \end{gathered}$		Room Full		73	$\begin{gathered} 94 \\ 104 \end{gathered}$	ns	
Break-Before-Make Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {OPEN }}$	$\mathrm{V}_{\mathrm{S}(\mathrm{all})}=\mathrm{V}_{\mathrm{DA}}=3.5 \mathrm{~V}$ see fig. 4		Room Full	2	29			
Enable Turn-On Time ${ }^{\text {e }}$	${ }^{\text {ton(EN) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{AX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1}=3.5 \mathrm{~V}(\mathrm{DG} 9408) \\ \mathrm{V}_{\mathrm{AX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1 \mathrm{~b}}=3.5 \mathrm{~V}(\mathrm{DG9409}) \\ \text { see fig. } 3 \end{gathered}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		74	$\begin{gathered} 94 \\ 104 \\ \hline \end{gathered}$		
Enable Turn-Off Time ${ }^{\text {e }}$	$t_{\text {OFF (EN) }}$			Room Full		38	$\begin{aligned} & \hline 57 \\ & 61 \end{aligned}$		
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$		Room		20		pC	
Off Isolation ${ }^{\text {e }} \mathrm{h}$	OIRR	$R_{L}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz}$		Room		-81		dB	
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$			Room		-85			
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {(off) }}$	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$	DG9408	Room		22		pF	
			DG9409	Room		24			
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}$	DG9408	Room		223			
			DG9409	Room		113			
Drain On Capacitance ${ }^{\text {e }}$	$C_{\text {D(on) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$	DG9408	Room		244			
			DG9409	Room		143			
Power Supplies									
Power Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or $\mathrm{V}+$		Room			1	$\mu \mathrm{A}$	

Vishay Siliconix

SPECIFICATIONS (Single Supply 3 V)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}_{+}=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\overline{\mathrm{EN}}}=0.4 \mathrm{~V} \text { or } 1.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$		Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {d }}$	Max. ${ }^{\text {c }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	0		3	V
On-Resistance	R_{ON}	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.5 \mathrm{~V}$ or 2.2 V	5 mA	Room Full		12	$\begin{aligned} & 25.5 \\ & 26.5 \end{aligned}$		
$\mathrm{R}_{\text {ON }}$ Match Between Channels ${ }^{9}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.5 \mathrm{~V}$ or $2.2 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=5 \mathrm{~mA}$		Room			3.6	Ω	
On-Resistance Flatness ${ }^{\text {i }}$	R_{ON} Flatness			Room			13		
Switch Off Leakage Current ${ }^{\text {a }}$	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} \text { or } 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \text { or } 2 \mathrm{~V} \end{gathered}$		Room Full	$\begin{gathered} \hline-2 \\ -15 \end{gathered}$		$\begin{gathered} \hline 2 \\ 15 \end{gathered}$	nA	
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$			Room Full	$\begin{gathered} -2 \\ -15 \end{gathered}$		$\begin{gathered} 2 \\ 15 \end{gathered}$		
Channel On Leakage Current ${ }^{\text {a }}$	$I_{\text {(on) }}$	$\mathrm{V}_{+}=3.3 \mathrm{~V}$ $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$ or 2 V , sequence each switch on		Room Full	$\begin{gathered} -2 \\ -15 \\ \hline \end{gathered}$		$\begin{gathered} 2 \\ 15 \end{gathered}$		
Digital Control									
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$			Full	1.8			V	
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.4		
Input Current ${ }^{\text {a }}$	I_{N}	$\mathrm{V}_{\mathrm{AX}}=\mathrm{V}_{\text {EN }}=1.8 \mathrm{~V}$ or 0.4 V		Full	-1		1	$\mu \mathrm{A}$	
Dynamic Characteristics									
Transition Time	${ }^{\text {trRANS }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S} 1}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=0 \mathrm{~V},(\mathrm{DG} 9408) \\ \mathrm{V}_{\mathrm{S} 1 \mathrm{~b}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 4 \mathrm{~b}}=0 \mathrm{~V},(\mathrm{DG9409}) \\ \text { see fig. } 2 \end{gathered}$		Room Full		140	$\begin{aligned} & 165 \\ & 182 \end{aligned}$	ns	
Break-Before-Make Time	$t_{\text {BBM }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S} \text { (all) }}=\mathrm{V}_{\mathrm{DA}}=1.5 \mathrm{~V} \\ \text { see fig. } 4 \end{gathered}$		Room Full	2	63			
Enable Turn-On Time	$\mathrm{t}_{\text {ON(}}(\underline{\mathrm{EN}})$	$\begin{gathered} \mathrm{V}_{\mathrm{AX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1}=1.5 \mathrm{~V}(\mathrm{DG} 9408) \\ \mathrm{V}_{\mathrm{AX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1 \mathrm{~b}}=1.5 \mathrm{~V}(\mathrm{DG9409}) \\ \text { see fig. } 3 \end{gathered}$		$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$		140	$\begin{aligned} & \hline 162 \\ & 178 \\ & \hline \end{aligned}$		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF(EN) }}$			Room Full		76	$\begin{gathered} 97 \\ 104 \end{gathered}$		
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$		Room		7		pCdB	
Off Isolatione ${ }^{\text {e }}$ h	OIRR	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		Room		-81			
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$			Room		-85			
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=1.8 \mathrm{~V}$	DG9408	Room		23		pF	
			DG9409	Room		25			
Drain Off Capacitance ${ }^{\text {e }}$	$C_{D \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{EN}}}=1.8 \mathrm{~V}$	DG9408	Room		230			
			DG9409	Room		120			
Drain On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$	DG9408	Room		256			
			DG9409	Room		147			
Power Supplies									
Power Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or V_{+}		Room			1	$\mu \mathrm{A}$	

Notes:

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
b. Room $=25^{\circ} \mathrm{C}$, full = as determined by the operating temperature suffix.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
g. $\Delta R_{\text {DON }}=R_{\text {DON }} \operatorname{Max}-R_{\text {DON }}$ Min.
h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.
i. $R_{\text {DON }}$ flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

$R_{\text {ON }}$ vs. $\mathbf{V}_{\text {COM }}$ and Single Supply Voltage

\mathbf{R}_{ON} vs. Analog Voltage and Temperature

Leakage Current vs. Analog Voltage

\mathbf{R}_{ON} vs. Analog Voltage and Temperature

Supply Current vs. Temperature

Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Switching Time vs. Temperature and Single Supply Voltage

Leakage Current vs. Temperature

Insertion Loss, Off Isolation and Crosstalk vs. Frequency (DG9408)

Transition Time vs. Temperature and Single Supply Voltage

Switching Threshold vs. Supply Voltage

Insertion Loss, Off Isolation and Crosstalk vs. Frequency (DG9409)

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Supply Current vs. Input Switching Frequency

SCHEMATIC DIAGRAM (Typical Channel)

Figure 1.

TEST CIRCUITS

Return to Specifications:
Single Supply 12 V
Dual Supply V+ = $5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$
Single Supply 5 V
Single Supply 3 V

Figure 2. Transition Time

Figure 3. Enable Switching Time

TEST CIRCUITS

Return to Specifications:
Single Supply 12 V
Dual Supply V+=5V, V- =-5V
Single Supply 5 V
Single Supply 3 V
Figure 4. Break-Before-Make Interval

$\Delta \mathrm{V}_{\mathrm{O}}$ is the measured voltage due to charge transfer error Q, when the channel turns off

$$
\mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}
$$

Figure 5. Charge Injection

Figure 6. Off Isolation

TEST CIRCUITS

Figure 7. Crosstalk

Figure 8. Insertion Loss

Figure 9. Source Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71870.

QFN 4x4-16L Case Outline

TIP VIEW

BDTTOM VIEW

SIDE VIEW

DIM	VARIATION 1						VARIATION 2					
	MILLIMETERS ${ }^{(1)}$			INCHES			MILLIMETERS ${ }^{(1)}$			INCHES		
	MIN.	NOM.	MAX.									
A	0.75	0.85	0.95	0.029	0.033	0.037	0.75	0.85	0.95	0.029	0.033	0.037
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002
A3	0.20 ref.			0.008 ref.			0.20 ref.			0.008 ref.		
b	0.25	0.30	0.35	0.010	0.012	0.014	0.25	0.30	0.35	0.010	0.012	0.014
D	4.00 BSC			0.157 BSC			4.00 BSC			0.157 BSC		
D2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106
e	0.65 BSC			0.026 BSC			0.65 BSC			0.026 BSC		
E	4.00 BSC			0.157 BSC			4.00 BSC			0.157 BSC		
E2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106
K	0.20 min .			0.008 min .			0.20 min .			0.008 min .		
L	0.5	0.6	0.7	0.020	0.024	0.028	0.3	0.4	0.5	0.012	0.016	0.020
$\mathrm{N}^{(3)}$	16			16			16			16		
Nd(3)	4			4			4			4		
$\mathrm{Ne}^{(3)}$	4			4			4			4		

Notes

(1) Use millimeters as the primary measurement.
(2) Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
${ }^{(3)} \mathrm{N}$ is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
(5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
(6) Package warpage max. 0.05 mm .

```
ECN: S13-0893-Rev. B, 22-Apr-13
DWG: }589
```


Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

