

MJW18020

NPN Silicon Power Transistors High Voltage Planar

The MJW18020 planar High Voltage Power Transistor is specifically Designed for motor control applications, high power supplies and UPS's for which the high reproducibility of DC and Switching parameters minimizes the dead time in bridge configurations.

Features

- High and Excellent Gain Linearity
- Fast and Very Tight Switching Times Parameters t_{si} and t_{fi}
- Very Stable Leakage Current due to the Planar Structure
- High Reliability
- Pb-Free Package is Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	V_{CEO}	450	Vdc
Collector-Emitter Breakdown Voltage	V_{CES}	1000	Vdc
Collector-Base Voltage	V_{CBO}	1000	Vdc
Emitter-Base Voltage	V_{EBO}	9.0	Vdc
Collector Current – Continuous – Peak (Note 1)	I_C	30 45	Adc
Base Current – Continuous – Peak (Note 1)	I_B	6.0 10	Adc
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ Derate Above 25°C	P_D	250 2.0	W W/ $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-65 to +150	$^\circ\text{C}$

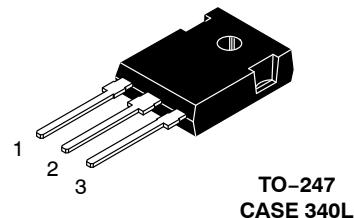
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.5	$^\circ\text{C}/\text{W}$
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	50	$^\circ\text{C}/\text{W}$
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	T_L	275	$^\circ\text{C}$

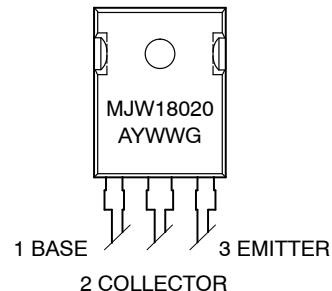
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width = 5 μs , Duty Cycle $\leq 10\%$.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


ON Semiconductor®

<http://onsemi.com>


30 AMPERES

1000 VOLTS BV_{CES}

450 VOLTS BV_{CEO} , 250 WATTS

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
MJW18020	TO-247	30 Units/Rail
MJW18020G	TO-247 (Pb-Free)	30 Units/Rail

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

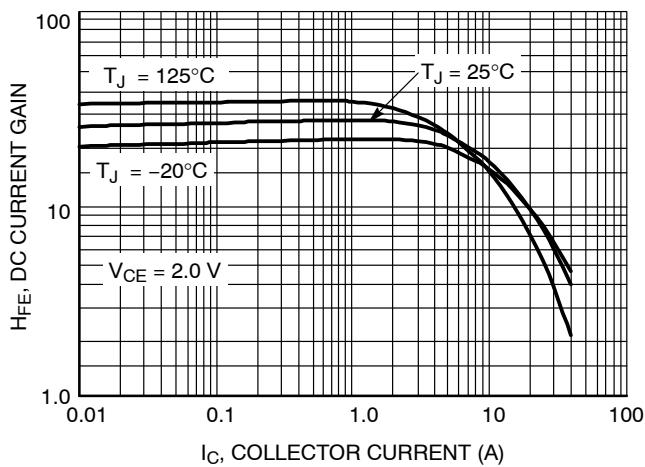
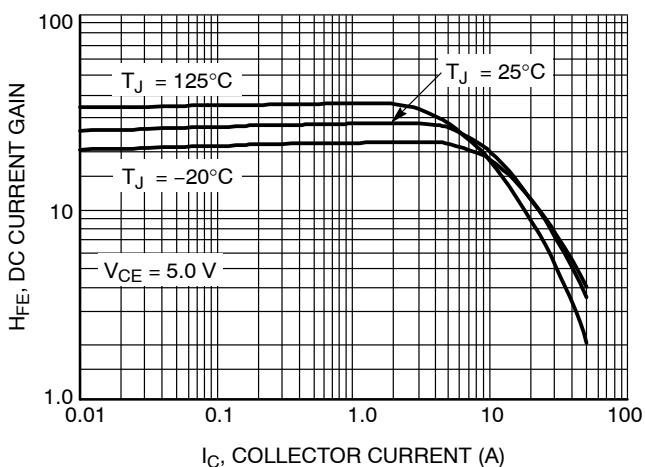
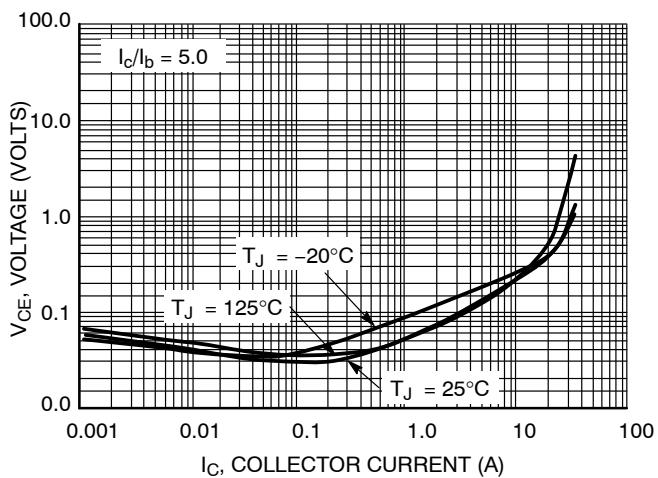
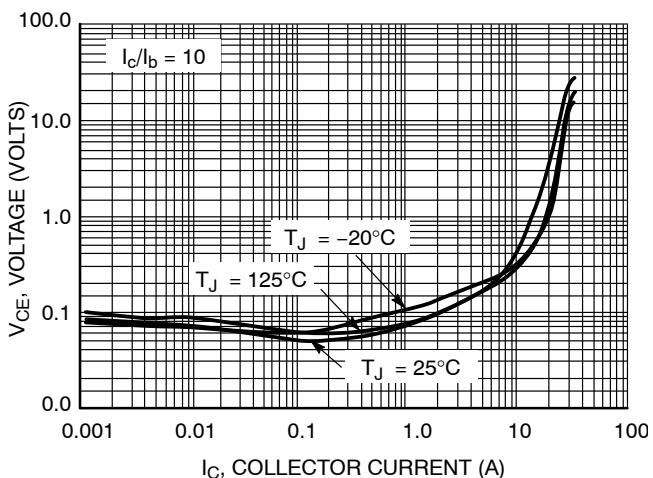
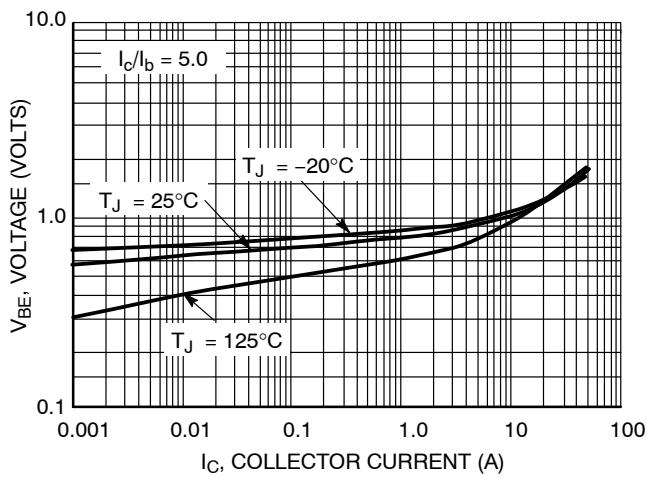
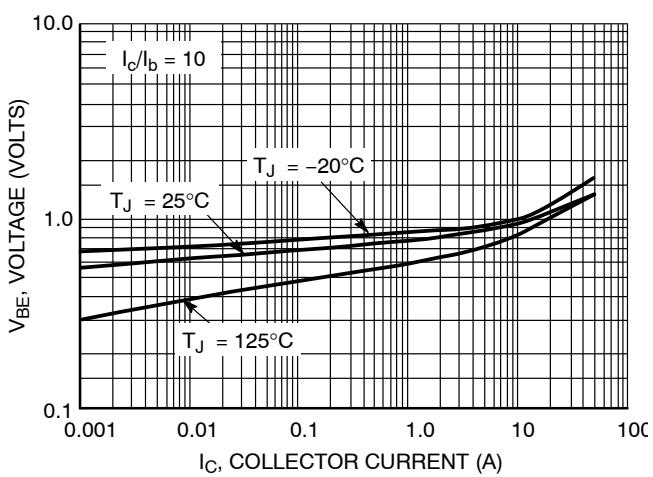
Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage ($I_C = 100 \text{ mA}$, $I_B = 0$)	$V_{CEO(\text{sus})}$	450	—	—	Vdc
Collector Cutoff Current ($V_{CE} = \text{Rated } V_{CEO}$, $I_B = 0$)	I_{CEO}	—	—	100	μA
Collector Cutoff Current ($V_{CE} = \text{Rated } V_{CES}$, $V_{EB} = 0$) ($T_C = 125^\circ\text{C}$)	I_{CES}	—	—	100 500	μA
Emitter Cutoff Current ($V_{CE} = 9 \text{ Vdc}$, $I_C = 0$)	I_{EBO}	—	—	100	μA

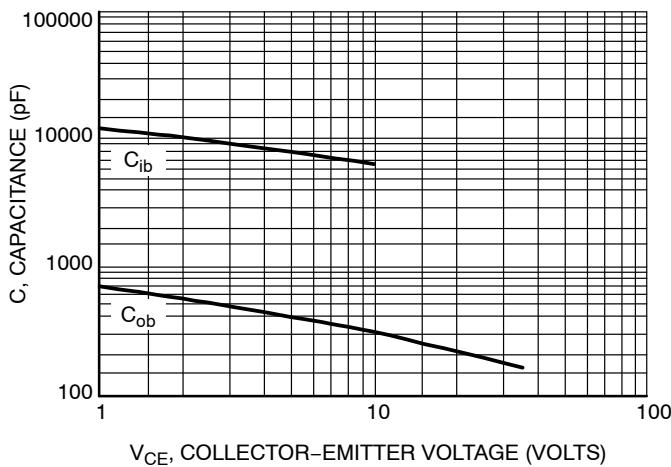
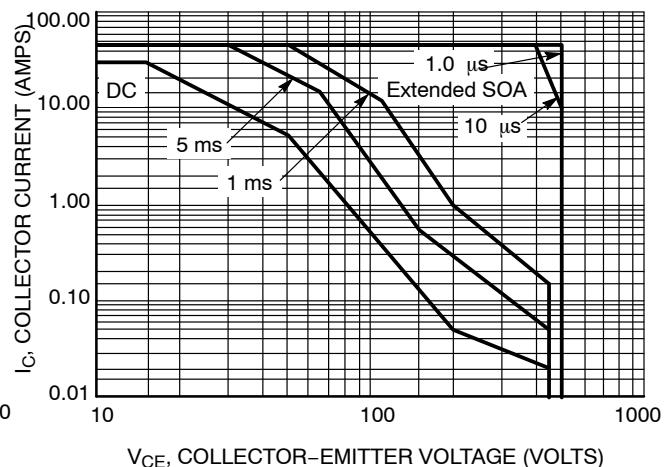
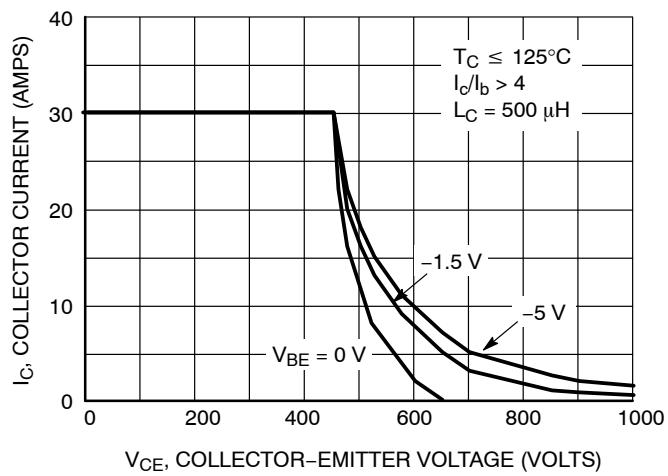
ON CHARACTERISTICS

DC Current Gain ($I_C = 3 \text{ Adc}$, $V_{CE} = 5 \text{ Vdc}$) ($T_C = 125^\circ\text{C}$) ($I_C = 10 \text{ Adc}$, $V_{CE} = 2 \text{ Vdc}$) ($T_C = 125^\circ\text{C}$) ($I_C = 20 \text{ Adc}$, $V_{CE} = 2 \text{ Vdc}$) ($T_C = 125^\circ\text{C}$) ($I_C = 10 \text{ mA}$, $V_{CE} = 5 \text{ Vdc}$)	h_{FE}	14 — 8 5 5.5 4 14	30 16 14 9 7 25	34 — — — — — —	
Base-Emitter Saturation Voltage ($I_C = 10 \text{ Adc}$, $I_B = 2 \text{ Adc}$) ($I_C = 20 \text{ Adc}$, $I_B = 4 \text{ Adc}$)	$V_{BE(\text{sat})}$	—	0.97 1.15	1.25 1.5	Vdc
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ Adc}$, $I_B = 2 \text{ Adc}$) ($T_C = 125^\circ\text{C}$) ($I_C = 20 \text{ Adc}$, $I_B = 4 \text{ Adc}$) ($T_C = 125^\circ\text{C}$)	$V_{CE(\text{sat})}$	— — — —	0.2 0.3 0.5 0.9	0.6 — 1.5 2.0	Vdc

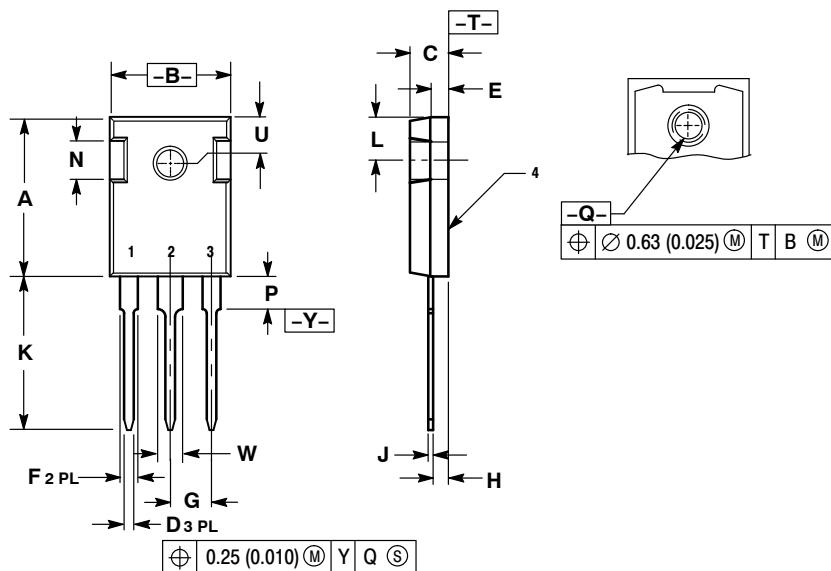
DYNAMIC CHARACTERISTICS

Current Gain Bandwidth Product ($I_C = 1 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$, $f_{\text{test}} = 1 \text{ MHz}$)	f_T	—	13	—	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f_{\text{test}} = 1 \text{ MHz}$)	C_{ob}	—	300	500	pF
Input Capacitance ($V_{EB} = 8.0$)	C_{ib}	—	7000	9000	pF







SWITCHING CHARACTERISTICS: Resistive Load (D.C. = 10%, Pulse Width = 70 μs)




Turn-On Time	($I_C = 10 \text{ Adc}$, $I_{B1} = I_{B2} = 2 \text{ Adc}$, $V_{cc} = 125 \text{ V}$)	t_{On}	—	540	750	ns
Storage Time		t_s	—	4.75	6	μs
Fall Time		t_f	—	380	500	ns
Turn-Off Time		t_{Off}	—	5.2	6.5	μs
Turn-On Time	($I_C = 20 \text{ Adc}$, $I_{B1} = I_{B2} = 4 \text{ Adc}$, $V_{cc} = 125 \text{ V}$)	t_{On}	—	965	1200	ns
Storage Time		t_s	—	2.9	3.5	μs
Fall Time		t_f	—	350	500	ns
Turn-Off Time		t_{Off}	—	3.25	4	μs

SWITCHING CHARACTERISTICS: Inductive Load ($V_{\text{clamp}} = 300 \text{ V}$, $V_{cc} = 15 \text{ V}$, $L = 200 \mu\text{H}$)


Fall Time	($I_C = 10 \text{ Adc}$, $I_{B1} = I_{B2} = 2 \text{ Adc}$)	t_{fi}	—	142	250	ns
Storage Time		t_{si}	—	4.75	6	μs
Crossover Time		t_c	—	320	500	ns
Fall Time	($I_C = 20 \text{ Adc}$, $I_{B1} = I_{B2} = 4 \text{ Adc}$)	t_{fi}	—	350	500	ns
Storage Time		t_{si}	—	3.0	3.5	μs
Crossover Time		t_c	—	500	750	ns

TYPICAL CHARACTERISTICS

Figure 1. DC Current Gain, $V_{CE} = 2.0\text{ V}$ Figure 2. DC Current Gain, $V_{CE} = 5.0\text{ V}$ Figure 3. Typical Collector-Emitter Saturation Voltage, $I_C/I_B = 5.0$ Figure 4. Typical Collector-Emitter Saturation Voltage, $I_C/I_B = 10$ Figure 5. Typical Base-Emitter Saturation Voltage, $I_C/I_B = 5.0$ Figure 6. Typical Base-Emitter Saturation Voltage, $I_C/I_B = 10$

TYPICAL CHARACTERISTICS**Figure 7. Typical Capacitance****Figure 8. Forward Bias Safe Operating Area****Figure 9. Reverse Bias Safe Operating Area**

PACKAGE DIMENSIONS

TO-247
CASE 340L-02
ISSUE E

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	20.32	21.08	0.800	0.830
B	15.75	16.26	0.620	0.640
C	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45	BSC	0.215	BSC
H	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
K	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
P	---	4.50	---	0.177
Q	3.55	3.65	0.140	0.144
U	6.15	BSC	0.242	BSC
W	2.87	3.12	0.113	0.123

ON Semiconductor and **ON** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#):

[MJW18020](#)