

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA1208

Low-Power, Eight-Port, High-Speed Isolation Switch

Features

- Low On Capacitance: 6 pF Typical
- Low On Resistance: 15Ω Typical
- Low Power Consumption: 1 A Maximum
- $10 \mu \mathrm{~A}$ Maximum ICct over an Expanded Voltage Range ($\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}$)
- Wide -3 dB Bandwidth: $>400 \mathrm{MHz}$
- Packaged in Space-Saving 20-Lead MLP ($2.5 \times 4.5 \mathrm{~mm}$)
- 7.5 kV ESD Rating; >16 kV Power/GND ESD Rating
- Low Coff Capacitance: 2.5 pF Typical

Applications

- DIMM DDR Memory

Description

The FSA1208 is a low-power, eight-port, high-speed switch. This part is configured as a single-pole, singlethrow switch and is optimized for isolating a highspeed source, such as a DDR memory bus. The FSA1208 features an extremely low on capacitance (C_{on}) of 6 pF Superior channel-to-channel crosstalk minimizes interference.

The FSA1208 contains special circuitry on the A \& B pins that allows the device to withstand an over-voltage condition. This device is also designed to minimize current consumption even when the control voltage applied to the /OE pin is lower than the supply voltage (V_{cc}). Applications include port isolation and switching in DDR memory modules, portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA1208BQX	F1208	-40 to $+85^{\circ} \mathrm{C}$	$20-L e a d$, Quad, Molded Leadless Package (MLP), $2.5 \times 4.5 \mathrm{~mm}$

Figure 1. Analog Symbol

Pin Configurations

Figure 2. Pin Assignments for MLP (Top Through View)

Pin Definitions

Pin \#	Name	Description
20	IOE	Switch Enable
$2-9$	A1-A8	A Side of Bus
$12-19$	B8-B1	B Side of Bus
11	NC	No Connection
1	VCC	Power
10	GND	Ground

Truth Table

/OE	Function
HIGH	Disconnect
LOW	A1-A8=B1-B8

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{CC}	Supply Voltage		-0.50	+5.25	V
$\mathrm{V}_{\text {CNTRL }}$	DC Input Voltage (/OE) ${ }^{(1)}$		-0.50	V_{CC}	V
$\mathrm{V}_{\text {sw }}$	DC Switch I/O Voltage ${ }^{(1)}$		-0.50	5.25	V
$\mathrm{I}_{\text {K }}$	DC Input Diode Current		-50		mA
lout	DC Output Current			50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JEDEC: JESD22-A114	All Pins		7.5	kV
		I/O to GND		8	
		Power to GND		16	
	Charged Device Model, JEDEC: JESD22-C101			2	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	2.3	4.3	V
$\mathrm{~V}_{\mathrm{CNTRL}}{ }^{(2)}$	Control Input Voltage (S, /OE)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch I/O Voltage	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Note:
2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
VIK	Clamp Diode Voltage	$\mathrm{l}_{\mathrm{N}=-18 \mathrm{~mA}}$	2.5			-1.2	V
$\mathrm{V}_{\text {IH }}$	Input Voltage High		2.3 to 3.6	1.3			V
			4.3	1.7			V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low		2.3 to 3.6			0.5	V
			4.3			0.7	V
I_{N}	Control Input Leakage	$\mathrm{V}_{\mathrm{SW}}=0$ to V_{cc}	4.3	-1		1	$\mu \mathrm{A}$
loz	Off State Leakage	$0 \leq \mathrm{A}, \mathrm{B} \leq 3.6 \mathrm{~V}$	4.3	-2		2	$\mu \mathrm{A}$
Ron	Switch On Resistance ${ }^{(3)}$	$V_{\mathrm{sw}}=0 \mathrm{~V} \text {, } \mathrm{lon}_{\mathrm{N}}=-10 \mathrm{~mA}$ Figure 3	2.5		7		Ω
		$\mathrm{V}_{\mathrm{SW}}=1.8 \mathrm{~V}, \mathrm{l}_{\mathrm{ON}}=-10 \mathrm{~mA}$ Figure 3	2.5		15		Ω
Icc	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {cC }}$, $\mathrm{l}_{\text {OUT }}=0$	4.3			1	$\mu \mathrm{A}$
Iсct	Increase in I_{Cc} Current Per Control Voltage and V_{Cc}	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$	2.7			10	$\mu \mathrm{A}$

Note:
3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (A or B ports).

AC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
ton	Turn-On Time, /OE to Output	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{Sw}}=1.8 \mathrm{~V} \\ & \text { Figure 4, Figure } 5 \end{aligned}$	2.3 to 3.6		15	34	ns
$t_{\text {uff }}$	Turn-Off Time, /OE to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{Sw}}=1.8 \mathrm{~V} \\ & \text { Figure 4, Figure } 5 \\ & \hline \end{aligned}$	2.3 to 3.6		12	25	ns
$\mathrm{t}_{\text {ad }}$	Propagation Delay ${ }^{(4)}$	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$ Figure 4, Figure 6	3.3		0.35		ns
$\mathrm{O}_{\text {IRR }}$	Off Isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=400 \mathrm{MHz}$ Figure 11	2.3 to 3.6		-40		dB
Xtalk	Non-Adjacent Channel Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{MHz}$ Figure 12	2.3 to 3.6		-40		dB
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ Figure 10	2.3 to 3.6		1000		MHz
		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ Figure 10			750		MHz

Note

4. Guaranteed by characterization.

High-Speed-Related AC Electrical Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
tsk(0)	Channel-to-Channel Skew ${ }^{(5)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.3		40	80	ps
tsk(P)	Skew of Opposite Transitions of the Same Output ${ }^{(5)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.3		15	40	ps
tsk(PKG)	Package-to-Package Skew ${ }^{(5)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.3		60	100	ps

Note:
5. Guaranteed by characterization.

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$			Units
			Min.	Typ.	Max.	
$\mathrm{Clin}^{\text {I }}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{cc}}=0.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		2.0		pF
Con	D+/D- On Capacitance	$\mathrm{V}_{\mathrm{Cc}}=2.5 \mathrm{~V}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ Figure 9		6.0		
Coff	D1n, D2n Off Capacitance	V_{Cc} and $/ \mathrm{OE}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ Figure 8		2.5		

Test Diagrams

Figure 3. On Resistance

R_{L}, R_{S}, and C_{L} are functions of the application environment (see AC tables for specific values). C_{L} includes test fixture and stray capacitance.

Figure 4. AC Test Circuit Load

Figure 6. Propagation Delay
($\mathrm{try}_{\mathrm{r}} \mathrm{t}_{\mathrm{o}}$ - 500ps)

Figure 8. Channel Off Capacitance

Figure 5. Turn-On / Turn-Off Waveforms

Figure 7. Intra-Pair Skew Test tSK(P)

Figure 9. Channel On Capacitance

Test Diagrams (Continued)

 environment (see AC Tables for specific values).

Figure 10. Bandwidth

Figure 11. Channel Off Isolation

Figure 12. Non-Adjacent Channel-to-Channel Crosstalk

Physical Dimensions

Figure 13. 20-Lead, Molded Leadless Package (MLP)

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {® }}$	5 SYSTEM ${ }_{\text {c }}$
Attitude Engine ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$		\checkmark GENERAL ${ }^{\text {® }}$
Awinda ${ }^{\text {® }}$	Global Power Resource ${ }^{\text {SM }}$	⑨	TinyBoost ${ }^{\text {® }}$
AX-CAP ${ }^{\text {® }}$	GreenBridge ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	TinyBuck ${ }^{\text {® }}$
BitSiC ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	PowerXS ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {m }}$
Build it ${ }^{\text {Now }}{ }^{\text {TM }}$	Green FPS ${ }^{\text {Tm }}$ e-Series ${ }^{\text {m }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
CorePLUS ${ }^{\text {TM }}$	Gmax ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	TINYOPTO ${ }^{\text {TM }}$
CorePOWER ${ }^{\text {TM }}$	$\mathrm{GTO}^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {m }}$	IntelliMAX ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {TM }}$
CTL ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	Making Small Speakers Sound Louder	(${ }^{\text {TM }}$	TranSiC ${ }^{\text {cm }}$
DEUXPEED ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	Saving our world $1 \mathrm{mWM} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
Dual Cool ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{mWW} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {® }}$
EcosPARK ${ }^{\text {® }}$	MICROCOUPLER ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
EfficientMax ${ }^{\text {TM }}$	MicroFET ${ }^{\text {m/ }}$	SmartMax ${ }^{\text {TM }}$	M
ESBC ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	SMART STARTTM ${ }^{\text {S }}$ Solutions for Your Success ${ }^{\text {TM }}$	SerDes*
$5^{(8)}$	MicroPak2 ${ }^{\text {TM }}$	Solutions for Your Success ${ }^{\text {TM }}$	UHC ${ }^{\text {(3) }}$
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	Ultra FRFET ${ }^{\text {m }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {® }}$	UniFETTM
FACTQuiet Series ${ }^{\text {TM }}$	MotionGrid ${ }_{\text {MTi }}$	SuperSOT ${ }^{\text {mm}}$-3	VCX VisualMax TM
FACT ${ }_{\text {FAST }}$ ® ${ }^{\text {® }}$	MTI ${ }^{\text {M }}$	SuperSOT ${ }^{\text {TM-6 }}$ -	VisualMax ${ }^{\text {TM }}$ VoltagePlus
FastvCore ${ }^{\text {TM }}$	MVN ${ }^{\text {® }}$	SupersMOS ${ }^{\text {® }}$	XS ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	mWSaver ${ }^{\text {® }}$	SyncFET ${ }^{\text {m }}$	Xsens ${ }^{\text {™ }}$
FPS ${ }^{\text {TM }}$	OptoHiT ${ }^{\text {m }}$ OPTOLOGI®	Sync-Lock ${ }^{\text {TM }}$	仙童 ${ }^{\text {TM }}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP:IMWW. FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, wnw.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time with out notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
FSA1208BQX

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

