

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA3200－Two－Port，High－Speed USB2．0 Switch with Mobile High－Definition Link（MHL ${ }^{\text {M }}$ ）

Features

－Low On Capacitance： 2.7 pF／ 3.1 pF MHL／USB （Typical）
－Low Power Consumption： $30 \mu \mathrm{~A}$ Maximum
－Supports MHL Rev． 2.0
－MHL Data Rate： 4.68 Gbps
－$V_{B u s}$ Powers Device with No $V_{C C}$
－Packaged in 16－Lead UMLP（ $1.8 \times 2.6 \mathrm{~mm}$ ）
－Over－Voltage Tolerance（OVT）on all USB Ports Up to 5.25 V without External Components

Applications

－Cell Phones and Digital Cameras

Description

The FSA3200 is a bi－directional，low－power，two－port， high－speed，USB2．0 and video data switch．Configured as a double－pole，double－throw（DPDT）switch for data and a single－pole，double－throw（SPDT）switch for ID；it is optimized for switching between high－or full－speed USB and Mobile Digital Video sources（MDV），including supporting the MHL ${ }^{\text {TM }}$ Rev． 2.0 specification．
The FSA3200 contains special circuitry on the switch I／O pins，for applications where the V_{CC} supply is powered off $\left(\mathrm{V}_{\mathrm{cc}}=0\right)$ ，that allows the device to withstand an over－voltage condition．This switch is designed to minimize current consumption even when the control voltage applied to the control pins is lower than the supply voltage（ V_{CC} ）．This feature is especially valuable to mobile applications，such as cell phones，allowing direct interface with the general－purpose I／Os of the baseband processor．Other applications include switching and connector sharing in portable cell phones， digital cameras，and notebook computers．

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA3200UMX	GB	-40 to $+85^{\circ} \mathrm{C}$	16 －Lead，Ultrathin Molded Leadless Package $($ UMLP $), 1.8 \times 2.6 \mathrm{~mm}$

Figure 1．Analog Symbol
All trademarks are the property of their respective owners．

Switch Power Operation

In normal operation, the FSA3200 is powered from the $V_{\text {CC }}$ pin, which typically is derived from a regulated power management device. In special circumstances, such as production test or system firmware upgrade, the device can be powered from the $\mathrm{V}_{\text {Bus }}$ pin. In this mode of operation, a valid $V_{\text {Bus }}$ voltage is present (per USB2.0 specification) and $\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}$, typically due to a no-battery condition. With the SELn pins strapped LOW (via external resistor), the FSA3200 closes the USB path, enabling the initial programming of the system directly from the USB connector. Once the system has normal
operating supply power with V_{CC} present, the $\mathrm{V}_{\mathrm{BUS}}$ supply is not utilized and normal switch operation commences. Optionally, the Power Select Override (PSO) pin can be set HIGH to force the device to be powered from $V_{\text {Bus }}$.

The $\mathrm{V}_{\mathrm{Bus}}$ / V_{CC} detection capability is not intended to be an accurate determination of the voltages present, rather a state condition detection to determine which supply should be used. These state determinations rely on the voltage conditions as described in the Electrical Characterization tables below.

Figure 2. Simplified Logic of Switch Power Selection Circuit

Table 1. Switch Power Selection Truth Table

$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\text {Bus }}$	PSO $^{(1)}$	Switch Power Source
0	0	0	No switch power, switch paths high-Z
0	1	0	$\mathrm{~V}_{\text {BUS }}$
1	0	0	$\mathrm{~V}_{\mathrm{CC}}$
1	1	0	$\mathrm{~V}_{\mathrm{CC}}$
0	0	1	No switch power, switch paths high-Z
0	1	1	$\mathrm{~V}_{\text {Bus }}$
1	0	1	$\mathrm{~V}_{\mathrm{CC}}{ }^{(2)}$
1	1	1	$\mathrm{~V}_{\text {BUS }}$

Notes:

1. Control inputs should never be left floating or unconnected. If the PSO function is used, a weak pull-up resistor ($3 \mathrm{M} \Omega$) should be used to minimize static current draw. If the PSO function is not used, tie directly to GND.
2. PSO control is overridden with no V_{Bu} and the power selection is switched to V_{Cc}.

Table 2. Data Switch Select Truth Table

SEL1 ${ }^{(3)}$	SEL2 ${ }^{(3)}$	Function
0	0	D+/D- connected to USB+/USB-, ID ${ }_{\text {co }}$ connected to ID ${ }_{\text {USB }}$
0	1	D+/D- connected to USB+/USB-, ID ${ }_{\text {Com }}$ connected to ID ${ }_{\text {MDV }}$
1	0	
1	1	D+/D- connected to MDV+/MDV-, $\mathrm{ID}_{\text {сом }}$ connected to $\mathrm{ID}_{\text {MDV }}$

Note:

3. Control inputs should never be left floating or unconnected. To guarantee default switch closure to the USB position, the SEL pins should be tied to GND with a weak pull- down resistor $(3 \mathrm{M} \Omega)$ to minimize static current draw.

Pin Configuration

Figure 3. Pin Assignments (Top-Through View)

Pin Definitions

Pin\#	Name	Description
1	GND	Ground
2	D+	Data Switch Output (Positive)
3	D-	Data Switch Output (Negative)
4	PSO	Power Select Override
5	SEL1	Data Switch Select
6	USB-	USB Differential Data (Negative)
7	USB+	USB Differential Data (Positive)
8	GND	Ground
9	SEL2	ID Switch Select
10	MDV-	MDV Differential Data (Negative)
11	MDV+	MDV Differential Data (Positive)
12	IDUSB	ID Switch MUX Output for USB
13	ID	MDV
14	ID	ID Switch MUX Output for MDV
15	$V_{\text {BUS }}$	ID Switch Common
16	V $_{\text {CC }}$	Device Power when VCC Not Available

Note:

4. Device automatically switches from $V_{B U S}$ when valid $V_{C C}$ minimum voltage is present.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {cc, }} \mathrm{V}_{\text {Bus }}$	Supply Voltage		-0.5	5.5	V
$V_{\text {CNTRL }}$	DC Input Voltage (SELn, PSO) ${ }^{(5)}$		-0.5	V_{cc}	V
$\mathrm{V}_{\mathrm{SW}}{ }^{(6)}$	DC Switch I/O Voltage ${ }^{(5)}$		-0.50	5.25	V
$\mathrm{I}_{1 \times}$	DC Input Diode Current		-50		mA
lout	DC Output Current			100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity Level (JEDEC J-STD-020A)			1	
ESD	Human Body Model, JEDEC: JESD22-A114	All Pins		3.5	kV
	IEC 61000-4-2, Level 4, for D+/D- and V_{cc} Pins ${ }^{(7)}$	Contact		8.0	
	IEC 61000-4-2, Level 4, for D+/D- and V_{cc} Pins ${ }^{(7)}$	Air		15.0	
	Charged Device Model, JESD22-C101			2.0	

Notes:

5. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.
6. Vsw refers to analog data switch paths (USB, MDV, and ID).
7. Testing performed in a system environment using TVS diodes.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{BUS}}$	Supply Voltage Running from $\mathrm{V}_{\mathrm{Bus}}$ Voltage	4.20	5.25	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage Running from V_{CC}	2.7	4.5	V
$\mathrm{t}_{\text {RAMP(VBUS) }}$	Power Supply Slew Rate from $\mathrm{V}_{\mathrm{BUS}}$	100	1000	$\mu \mathrm{~s} / \mathrm{V}$
$\mathrm{t}_{\text {RAMP(VCC) }}$	Power Supply Slew Rate from V_{CC}	100	1000	$\mu \mathrm{~s} / \mathrm{V}$
Θ_{JA}	Thermal Resistance		336	$\mathrm{C}^{\circ} / \mathrm{W}$
$\mathrm{V}_{\mathrm{CNTRL}}$	Control Input Voltage (SELn, PSO) ${ }^{(8)}$	0	4.5	V
$\mathrm{~V}_{\text {SW(USB) }}$	Switch I/O Voltage (USB and ID Switch Paths)	-0.5	3.6	V
$\mathrm{~V}_{\text {SW(MDV) }}$	Switch I/O Voltage (MDV Switch Path)	1.65	3.45	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Note:

8. The control inputs must be held HIGH or LOW; they must not float.

DC Electrical Characteristics
All typical value are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
V_{IK}	Clamp Diode Voltage	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$	2.7			-1.2	V
V_{IH}	Control Input Voltage High	SELn, PSO	2.7 to 4.3	1.25			V
$\mathrm{V}_{\text {IL }}$	Control Input Voltage Low	SELn, PSO	2.7 to 4.3			0.6	V
1 N	Control Input Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CNTRL}}=0 \mathrm{~V} \text { to } 1.98 \mathrm{~V} \end{aligned}$	4.3	-1		1	$\mu \mathrm{A}$
loz (MDV)	Off-State Leakage for Open MDV Data Paths	$\begin{aligned} & V_{S W}=1.65 \mathrm{~V} \leq \mathrm{MDV} \\ & \leq 3.45 \mathrm{~V} \end{aligned}$	4.3	-1		1	$\mu \mathrm{A}$
Ioz(USB)	Off-State Leakage for Open USB Data Paths	$\mathrm{V}_{\text {Sw }}=0 \mathrm{~V} \leq \mathrm{USB} \leq 3.6 \mathrm{~V}$	4.3	-1		1	$\mu \mathrm{A}$
loz(ID)	Off-State Leakage for Open ID Data Path	$\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V} \leq \mathrm{ID} \leq 3.6 \mathrm{~V}$	4.3	-0.5		0.5	$\mu \mathrm{A}$
ICL(MDV)	On-State Leakage for Closed MDV Data Paths ${ }^{(9)}$	$\begin{aligned} & V_{S W}=1.65 \mathrm{~V} \leq \mathrm{MDV} \\ & \leq 3.45 \mathrm{~V} \end{aligned}$	4.3	-1		1	$\mu \mathrm{A}$
ICL(USB)	On-State Leakage for Closed USB Data Paths ${ }^{(9)}$	$\mathrm{V}_{\text {SW }}=0 \mathrm{~V} \leq \mathrm{USB} \leq 3.6 \mathrm{~V}$	4.3	-1		1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CL(ID) }}$	On-State Leakage for Closed ${ }^{(9)}$ ID Data Path	$\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V} \leq \mathrm{ID} \leq 3.6 \mathrm{~V}$	4.3	-0.5		0.5	$\mu \mathrm{A}$
loff	Power-Off Leakage Current (All I/O Ports)	$\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V}$ or 3.6 V, Figure 5	0	-1		1	$\mu \mathrm{A}$
Ron(USB)	HS Switch On Resistance (USB to D Path)	$\mathrm{V}_{\mathrm{sw}}=0.4 \mathrm{~V}, \mathrm{l}_{\mathrm{oN}}=-8 \mathrm{~mA}$ Figure 4	2.7		3.9	6.5	Ω
Ron(mbV)	HS Switch On Resistance (MDV to D Path)	$\begin{aligned} & \mathrm{V}_{\mathrm{sw}}=\mathrm{V}_{\mathrm{cc}}-1050 \mathrm{mV}, \\ & \mathrm{l}_{\mathrm{oN}}=-8 \mathrm{~mA}, \text { Figure } 4 \end{aligned}$	2.7		5		Ω
$\mathrm{R}_{\mathrm{ON}(\mathrm{ID})}$	LS Switch On Resistance (ID Path)	$\mathrm{V}_{\mathrm{SW}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA}$ Figure 4	2.7		12		Ω
$\Delta \mathrm{Ron}_{\text {(MDV) }}$	Difference in Ron Between MDV Positive-Negative	$\begin{aligned} & \mathrm{V}_{\mathrm{sw}}=\mathrm{V}_{\mathrm{Cc}}-1050 \mathrm{mV}, \\ & \mathrm{l}_{\mathrm{oN}}=-8 \mathrm{~mA}, \text { Figure } 4, \end{aligned}$	2.7		0.03		Ω
$\Delta \mathrm{R}_{\text {ON(USB) }}$	Difference in Ron Between USB Positive-Negative	$\mathrm{V}_{\mathrm{SW}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA}$ Figure 4	2.7		0.18		Ω
$\Delta \mathrm{R}_{\text {ON(ID) }}$	Difference in Ron Between ID Switch Paths	$\mathrm{V}_{\mathrm{sw}}=3 \mathrm{~V}, \mathrm{l}_{\mathrm{oN}}=-8 \mathrm{~mA}$ Figure 4	2.7		0.4		Ω
Ronf(MDV)	Flatness for Ron MDV Path	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=1.65 \mathrm{~V} \text { to } 3.45 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{oN}}=-8 \mathrm{~mA}, \text { Figure } 4 \end{aligned}$	2.7		1		Ω
Ivbus	V ${ }_{\text {Bus }}$ Quiescent Current	$\begin{aligned} & \mathrm{V}_{\text {BUS }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {CNTRL }}=0 \mathrm{~V} \text { or } \\ & 1.98 \mathrm{~V} \text {, I louT } \end{aligned}$	4.3			100	$\mu \mathrm{A}$
Icc	Vcc Quiescent Current	$\begin{aligned} & \mathrm{V}_{\text {BUS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CNTRL }}=0 \mathrm{~V} \text { or } \\ & 1.98 \mathrm{~V} \text {, louT }=0 \end{aligned}$	4.3			30	$\mu \mathrm{A}$

Note:

9. For this test, the data switch is closed with the respective switch pin floating.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
ton	Turn-On Time, SELn to Output	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\mathrm{V}_{\text {SW(USB) }}=0.8 \mathrm{~V}$, V_{SW} (MDV) $=3.3 \mathrm{~V}$, Figure 6, Figure 7	2.7 to 3.6		445	600	ns
toff	Turn-Off Time, SELn to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{SW}(\mathrm{USB})}=0.8 \mathrm{~V}, \mathrm{~V}, \\ & \text { Figure 6, Figure } 7 \\ & \hline \end{aligned}$	2.7 to 3.6		125	300	ns
$t_{\text {PD }}$	Propagation Delay ${ }^{(10)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, }$ Figure 6, Figure 8	2.7 to 3.6		0.25		ns
$t_{\text {BBM }}$	Break-Before-Make ${ }^{(10)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{ID}}=\mathrm{V}_{\mathrm{MDV}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{USB}}=0.8 \mathrm{~V}, \\ & \text { Figure } 10 \end{aligned}$	2.7 to 3.6	2.0		13	ns
$\mathrm{O}_{\text {IRR(MDV) }}$	Off Isolation ${ }^{(10)}$	$\begin{aligned} & V_{\mathrm{S}}=1 \mathrm{~V}_{\text {pk-pk }}, R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=240 \mathrm{MHz} \text {, Figure } 12 \end{aligned}$	2.7 to 3.6		-45		dB
$\mathrm{O}_{\text {IRR(USB) }}$		$\begin{aligned} & V_{\mathrm{S}}=400 \mathrm{~m} V_{\text {pk-pk }}, R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=240 \mathrm{MHz}, \text { Figure } 12 \end{aligned}$	2.7 to 3.6		-38		dB
Xtalk ${ }_{\text {MDV }}$	Non-Adjacent Channel ${ }^{(10)}$ Crosstalk	$\begin{aligned} & V_{\mathrm{S}}=1 \mathrm{~V}_{\text {pk-pk }}, R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=240 \mathrm{MHz} \text {, Figure } 13 \end{aligned}$	2.7 to 3.6		-44		dB
Xtalkusb		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=400 \mathrm{mV} \mathrm{pk}_{\text {pk-pk, }}, R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=240 \mathrm{MHz}, \text { Figure } 13 \end{aligned}$	2.7 to 3.6		-39		dB
BW	Differential -3 db Bandwidth ${ }^{(10)}$	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{pk} \text {-pk }}$, MDV Path, $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$, Figure 11, Figure 16	2.7 to 3.6		2.34		GHz
		$\mathrm{V}_{\mathrm{IN}}=400 \mathrm{~m} \mathrm{~V}_{\mathrm{pk} \text {-pk }}$, USB Path, $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$, Figure 11, Figure 17			1.59		
		ID Path, $R_{L}=50 \Omega, C_{L}=0 \mathrm{pF}$, Figure 11			100		MHz

Note:

10. Guaranteed by characterization.

USB High-Speed AC Electrical Characteristics
Typical values are at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	$\mathbf{V}_{c c}(V)$	Typ.	Unit
$\mathrm{t}_{\mathrm{SK}(\mathrm{P})}$	Skew of Opposite Transitions of the Same Output ${ }^{(11)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, Figure 9	3.0 to 3.6	3	ps
t_{J}	Total Jitter ${ }^{(11)}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pf}$, $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=500 \mathrm{ps}(10-90 \%)$ at $480 \mathrm{Mbps}, \mathrm{PN} 7$	3.0 to 3.6	15	ps

Note:

11. Guaranteed by characterization.

MDV AC Electrical Characteristics

Typical values are at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Typ.	Unit
$\mathrm{tsk}_{\text {(P) }}$	Skew of Opposite Transitions of the Same Output ${ }^{(12)}$	$\mathrm{R}_{\mathrm{PU}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	3.0 to 3.6	3	ps
t_{J}	Total Jitter ${ }^{(12)}$	$\begin{aligned} & \mathrm{f}=2.25 \mathrm{Gbps}, \mathrm{PN} 7, \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega \text { to } \mathrm{V}_{\mathrm{Cc}}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	3.0 to 3.6	15	ps

Note:
12. Guaranteed by characterization.

Capacitance

Typical values are at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	Typ.	Unit
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance ${ }^{(13)}$	$\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	1.5	pF
$\mathrm{C}_{\text {On(Usb) }}$	USB Path On Capacitance ${ }^{(13)}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=240 \mathrm{MHz}$, Figure 15	3.1	
Coff(USB)	USB Path Off Capacitance ${ }^{(13)}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=240 \mathrm{MHz}$, Figure 14	1.6	
Con(MDV)	MDV Path On Capacitance ${ }^{(13)}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=240 \mathrm{MHz}$, Figure 15	2.7	
CofF(MDV)	MDV Path Off Capacitance ${ }^{(13)}$	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{f}=240 \mathrm{MHz}$, Figure 14	1.1	

Note:

13. Guaranteed by characterization.

Test Diagrams

Note:

14. HSD refers to the high-speed data USB or MDV paths.

Figure 4. On Resistance

Figure 6. AC Test Circuit Load

Figure 8. Propagation Delay $\left(\mathrm{t}_{\mathrm{R}} \mathrm{t}_{\mathrm{F}}-500 \mathrm{ps}\right)$

**Each switch port is tested separately

Figure 5. Off Leakage

Figure 7. Turn-On / Turn-Off Waveforms

Figure 9. Intra-Pair Skew Test $\mathrm{t}_{\mathbf{S K}(\mathrm{P})}$

Test Diagrams (Continued)

Figure 10. Break-Before-Make Interval Timing

$\mathrm{V}_{\mathrm{S}}, \mathrm{R}_{\mathrm{S}}$ and R_{T} are function of application environment (see AC/DC Tables for values)
Figure 11. Insertion Loss

Off isolation $=20$ Log $\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
Figure 12. Channel Off Isolation

Figure 13. Non-Adjacent Channel-to-Channel Crosstalk

Figure 14. Channel Off Capacitance
Figure 15. Channel On Capacitance

Insertion Loss

One of the key factors for using the FSA3200 in mobile digital video applications is the small amount of insertion loss experienced by the received signal as it passes through the switch. This results in minimal degradation of the received eye. One of the ways to measure the quality of the high data rate channels is using balanced
ports and 4-port differential S-parameter analysis, particularly SDD21.
Bandwidth is measured using the S-parameter SDD21 methodology. Figure 16 shows the bandwidth (GHz) for the MDV path and Figure 17 the bandwidth curve for the USB path.

Figure 17. USB Path SDD21 Insertion Loss Curve

Typical Applications

Figure 18 shows the FSA3200 utilizing the $V_{\text {Bus }}$ connection from the micro-USB connector. The 3M resistor is used to ensure, for manufacturing test via the micro-USB connector, that the FSA3200 configures for
connectivity through the FSA9280A accessory switch. Figure 19 shows the configuration for the FSA3200 "self powered" by the battery only.

Figure 18. Typical FSA3200 Application Using Vbus

Figure 19. Typical FSA3200 "Self-Powered" Application Using VBAT

Physical Dimensions

NOTES:

A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
E. DRAWING FILENAME: MKT-UMLP16Arev4.
F. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

Figure 20. 16-Lead, Ultrathin Molded Leadless Package (UMLP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

FAIRCHILD
 SEMICONDUCTOR

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

$2 \mathrm{Cool}{ }^{\text {™ }}$	F-PFS ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$
AccuPower ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	the wer.
AX-CAP**	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {TM }}$	Prawer
BitSiC ${ }^{\text {™ }}$	GreenBridge ${ }^{\text {Tu }}$	QFET ${ }^{\text {a }}$	TinyBoost ${ }^{\text {TM }}$
Build it $\mathrm{Now}^{\text {Tu }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {™ }}$
CorePLUS ${ }^{\text {T }}$	Green FPS ${ }^{\text {ru }}$ e-Series ${ }^{\text {Tu }}$	Quiet Series ${ }^{\text {Tu }}$	TinyCalc ${ }^{\text {™ }}$
CorePOWER ${ }^{\text {ru }}$	Gmax ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {Th }}$	TinyLogic ${ }^{\text {e }}$
CROSSVOLT ${ }^{\text {M }}$	GTO ${ }^{\text {™ }}$	$)^{\text {™ }}$	TINYOPTO ${ }^{\text {T }}$
CTL ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{N} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {Tu }}$	ISOPLANAR ${ }^{\text {™ }}$	SignalWise ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
DEUXPEED	Making Small Speakers Sound Louder	SmartMax ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Ecospark ${ }^{\text {D }}$	MegaBuck ${ }^{\text {u }}$	SMART START'M	TranSiC'm
EfficientMax ${ }^{\text {Tu }}$	MICROCOUPLER ${ }^{\text {m }}$	Solutions for Your Success ${ }^{\text {TM }}$ SPM ${ }^{\oplus}$	TriFault Detect ${ }^{\text {TM }}$ (RUECURRENT ${ }^{\text {a }}$
ESBC ${ }^{\text {T }}$	MicroFET ${ }^{\text {m }}$	STEALTH ${ }^{\text {™ }}$	${ }^{\prime}$ SerDes $^{\text {™ }}$
5	MicroPak ${ }^{\text {™ }}$	$\text { SuperFET }{ }^{\oplus}$	${ }^{\mu}{ }^{\text {SerDes }}$
Fairchild ${ }^{\text {a }}$	MicroPak2 ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM-3 }}$	SerDes
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {m-4,6 }}$	UHC ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {™ }}$	MotionMax mWSavertu	SuperSOT ${ }^{\text {Tu }}$-8	Ultra FRFET ${ }^{\text {™ }}$
FACT ${ }^{\text {® }}$		SupreMOS ${ }^{\text {® }}$	UniFET ${ }^{\text {Tu }}$
$\mathrm{FAST}^{\text {® }}$	OPTOLOGI® ${ }^{\oplus}$	SyncFET ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
FastvCore ${ }^{\text {Tu }}$	OPTOPLANAR ${ }^{\circledR}$	Sync-Lock ${ }^{\text {™ }}$	VisualMax ${ }^{\text {TM }}$
FETBench ${ }^{\text {TM }}$.		كGENERAL**	VoltagePlus ${ }^{\text {Tu }}$
FlashWriter ${ }^{\text {® }}$ *			XS ${ }^{\text {TM }}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOESNOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

