USB Single Channel Transceiver

The NCN2500 Integrated Circuit is a single channel transceiver designed to accommodate the physical USB Port with a microcontroller digital I/O. The part is fully USB compliant and supports the full 12 Mbps speed. On the other hand, the NCN2500 device includes the pullup resistors as defined by the USB–ECN new specifications.

Features

- Compliant to the USB Specification, Version 2.0, Low and Full Speed
- Very Small Footprint Due to the QFN-16 Package
- Integrated D+/D- Pullup Resistors
- Operates Over the Full 1.5 V to 3.6 V Supply
- Pb-Free Package is Available*

Typical Applications

- Portable Computer
- Cellular Phone

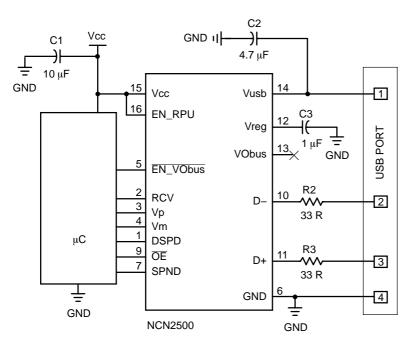


Figure 1. Typical Application

ON Semiconductor®

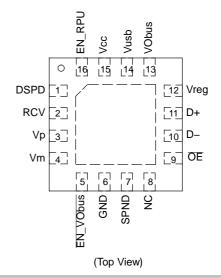
http://onsemi.com

MARKING DIAGRAM

QFN-16 MNR SUFFIX CASE 485G

A = Assembly Location

= Wafer Lot


/ = Year

L

W = Work Week

= Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping†
NCN2500MNR2	QFN-16	3000 Tape & Reel
NCN2500MNR2G	QFN-16 (Pb-Free)	3000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

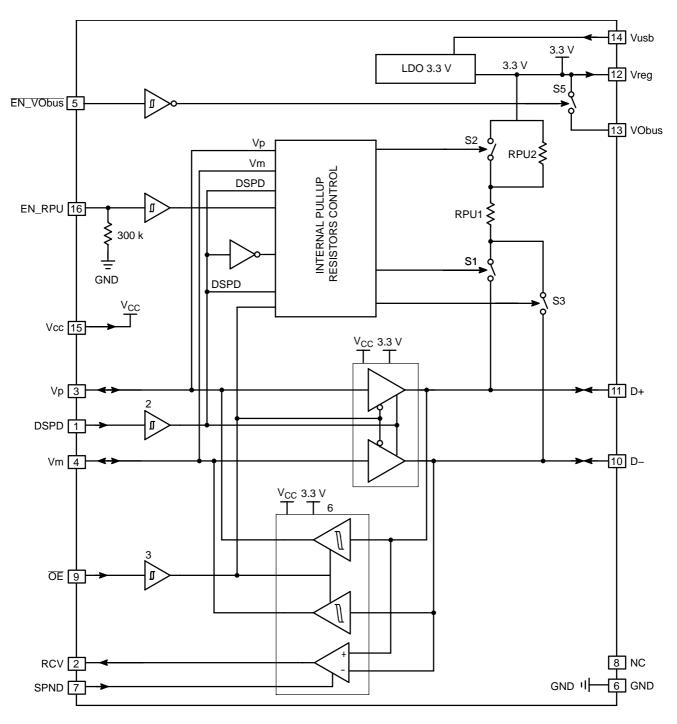


Figure 2. Block Diagram

PIN FUNCTION DESCRIPTION

Pin	Symbol	Function	Description
1	DSPD	INPUT	The DSPD logic level (Data Speed) activates the Low or the High speed operation on the USB port. DSPD = Low Low Speed, RPU1 and RPU2 connected to D-DSPD = High Full Speed, RPU1 and RPU2 connected to D+
2	RCV	OUTPUT	This pin interfaces the USB signals with the microcontroller digital line. The data present on the D+/D- pins are translated onto this signal.
3	Vp	I/O	This pin, associated with Vm, is an I/O system interface signal depending upon the \overline{OE} logic state: $\overline{OE} = \text{Low} \qquad \text{Vp is a Plus driver Input (from } \mu\text{C to USB bus)}$ $\overline{OE} = \text{High} \qquad \text{Vp is a Plus receiver Output (from USB bus to } \mu\text{C)}$
4	Vm	I/O	This pin, associated with Vp, is an I/O system interface signal depending upon the \overline{OE} logic state: \overline{OE} = Low
5	EN_VObus	INPUT	Digital input to control the VObus voltage. EN_VObus = Low VObus connected to Vreg EN_VObus = High VObus disconnected from Vreg (Hi Z)
6	GND	PWR	This pin carries the digital and USB ground level. High Quality PCB design shall be observed to avoid uncontrolled voltage spikes.
7	SPND	INPUT	The SPND digital signal (SUSPEND) selects the operation mode to reduce the power supply current. SPND = Low Normal operation SPND = High Suspend mode, no activity takes place
8	NC	-	No Connection, shall be neither grounded, nor connected to Vcc or Vbus.
9	ŌĒ	INPUT	This pin activates the operating mode of the D–/D+ signals. OE = Low logic level Data are transmitted onto the USB bus OE = High logic level Data are received from the USB bus
10	D-	I/O	This pin is connected to the USB Minus Data line I/O. The data direction depends upon the $\overline{\text{OE}}$ logic state.
11	D+	I/O	This pin is connected to the USB Plus Data line I/O The data direction depends upon the $\overline{\text{OE}}$ logic state.
12	Vreg	PWR	This pin provides a 3.3 V regulated voltage to supply the internal USB blocks and the external termination bias resistor. An external circuit can be connected to this LDO, assuming the current does not extend the maximum rating (50 mA).
13	VObus	OUTPUT, PWR	This pin connects the Vreg voltage to the 1.5 k external pullup resistor. The VObus voltage is controlled by the logic states present Pin 5. The R _{DSon} of the internal PMOS device (reference S5 in the Block Diagram) is 10 Ω typical.
14	Vusb	PWR	This pin is connected to the USB port +Vcc supply voltage.
15	Vcc	PWR	This pin provides the interface power supply. The power source can be an external supply or can be derived from the USB + Vusb voltage.
16	EN_RPU	INPUT	This pin activates or deactivate the internal RPU1 and RPU2 pullup resistors: EN_RPU = H RPU1 and RPU2 activated EN_RPU = L RPU1 and RPU2 deactivated

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	6.0	V
Digital Input Pins	Vind	-0.5 V < Vin < Vcc + 0.5 V, but < 6.0 V	V
Digital Input Pins	Vid	-0.5 V < Vin < AGND + 0.5 V, but < 6.0 V	V
Digital Input Pins	Ibias	−35 mA < lbias < 35 mA	mA
ESD Capability, HBM (Note 1) Vusb, D+, D-, GND Any Other Pins Machine Model, Any Pins	V _{ESD}	10 2.0 200	kV kV V
QFN–16 Package Power Dissipation @ Tamb = +85°C Thermal Resistance, Junction–to–Air (R _{θJA})	P _{DS} R _{θJA}	470 85	mW °C/W
Operating Ambient Temperature Range	T _A	-40 to +85	°C
Operating Junction Temperature Range	TJ	-40 to +125	°C
Maximum Junction Temperature (Note 2)	T _{Jmax}	+150	°C
Storage Temperature Range	T _{sg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Human Body Model, R = 1500 Ω, C = 100 pF; Machine Model.

2. Absolute Maximum Rating beyond which damage(s) to the device may occur.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin	Min	Тур	Max	Unit
DIGITAL PARAMETERS SECTION @ 1.5 V < Vcc < 3.6 V (NOTE: Digital inputs undershoot < -0.3 V to ground, digital in				ess otherwis	e noted.)	
High Level Input Voltage DSPD, Vp, Vm, EN_VObus, SPND, OE, EN_RPU	V _{IH}	1, 3, 4, 5, 7, 9, 16	0.80*Vcc	-	-	V
Low Level Input Voltage DSPD, Vp, Vm, EN_VObus, SPND, OE, EN_RPU	V _{IL}	1, 3, 4, 5, 7, 9, 16	-	-	0.20*Vcc	V
High Level Output Voltage RCV, Vp, Vm @ I _{OH} = 1.0 mA	V _{OH}	2, 3, 4	0.80*Vcc	_	_	V
Low Level Output Voltage RCV, Vp, Vm @ I _{OL} = 1.0 mA	V_{OL}	2, 3, 4	_	_	0.20*Vcc	V
Input Leakage Current DSPD, Vp, Vm, EN_VObus, SPND, OE, EN_RPU	I _{IL}	1, 3, 4, 5, 7, 9, 16	-	-	±5.0	μΑ
Input EN_RPU Pulldown Resistor @VCC = 3.3 V	RPU	_	_	300	-	kΩ
TRANSCEIVER SECTION @ 1.5 V < Vcc < 3.6 V (-40°C to)	+85°C ambie	nt temperatur	e, unless other	wise noted.)		
Static Output High, D-, D+ @ \overline{OE} = Low, R _L = 15 k Ω to GND	V _{OH}	10, 11	2.8	-	3.6	V
Static Output Low, D–, D+ @ $\overline{\text{OE}}$ = Low, R _L = 1.5 k Ω to Vreg	V _{OL}	10, 11	-	-	0.3	V
Single Input Receiver Threshold	V_{SE}	10, 11	0.8	_	2.0	V
Single Ended Receiver Hysteresis (Note 3)	-	_	-	200	-	mV
Differential Input Sensitivity \mid D+ - D- \mid @ 0.8 V < V _{CM} < 2.5 V (Note 3)	V _{DI}	10, 11	0.2	-	-	V
Differential Common Mode Including the V _{DI}	V_{CM}	10, 11	0.8	-	2.5	V
Differential Receiver Hysteresis (Note 3)	-	10, 11	_	70	_	mV
D+ and D- Transceiver Hi-Z State Leakage Current @ OE = 1, 0 V < Vusb < 3.3 V	I _{LO}	10, 11	-	-	±10	μΑ
Transceiver Input Capacitance (Note 3)	Cin	10, 11	-	-	20	pF
Transceiver Output Resistance (Note 3)	Z _{DRV}	10, 11	28	-	44	Ω
Transceiver Input Impedance (Note 3)	Z _{IN}	10, 11	10	_	-	MΩ
Internal RPU1 Pull Resistor	R _{RPU-1}	10, 12	900	_	1575	Ω
Internal RPU2 Pull Up Resistor	R _{RPU-2}	10, 12	525	_	1515	Ω
LOW SPEED DRIVER OPERATION (Note 3)						
Transition Rise Time @ $C_L = 50 \text{ pF}$ @ $C_L = 600 \text{ pF}$	tr	10, 11	75 75		300 300	ns
Transition Fall Time @ $C_L = 50 \text{ pF}$ @ $C_L = 600 \text{ pF}$	tf	10, 11	75 75	- -	300 300	ns
Rise and Fall Time Matching	tr, tf	10, 11	80	-	125	%
Output Signal Crossover Voltage	V _{CRS}	10, 11	1.3	-	2.0	V
Data Transaction Rate	Drate	10, 11	-	_	1.5	Mbs

^{3.} Parameter guaranteed by design, not production tested.

ELECTRICAL CHARACTERISTICS (continued)

ELECTRICAL CHARACTERISTICS (continued) Characteristic	Symbol	Pin	Min	Тур	Max	Unit
FULL SPEED DRIVER OPERATION (Note 4)		1				1
Transition Rise Time @ C _L = 50 pF	tr	10, 11	4.0	_	20	ns
Transition Fall Time @ C _L = 50 pF	tf	10, 11	4.0	_	20	ns
Rise and Fall Time Matching	tr, tf	10, 11	90	-	110	%
Output Signal Crossover Voltage	V _{CRS}	10, 11	1.3	-	2.0	V
Data Transaction Rate	Drate	10, 11	_	-	12	Mbs
TRANSCEIVER TIMING (Note 4)						•
OE to RCVR Hi–Z Delay (see Figure 3)	t _{PVZ}	9	_	-	15	ns
Receiver Hi–Z to Transmit Delay (see Figure 3)	t _{PZD}	-	15	-	-	ns
OE to DRVR Hi–Z Delay (see Figure 3)	t _{PDZ}	-	_	-	15	ns
Driver Hi–Z to Receiver Delay (see Figure 3)	t _{PZV}	-	15	-	-	ns
Vp/Vm to D+/D– Propagation Delay (see Figure 6)	t _{PLH}	3, 4, 10, 11	-	-	15	ns
Vp/Vm to D+/D- Propagation Delay (see Figure 6)	t _{PHL}	3, 4, 10, 11	_	-	15	ns
D+/D- to RCV Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) $C_L = 25 pF tr = tf = 3.0 ns$	t _{PLH}	11, 10, 2	-	-	15	ns
D+/D- to RCV Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) $C_L = 25 pF tr = tf = 3.0 ns$	t _{PHL}	11, 10, 2	-	-	15	ns
D+/D- to Vp/D- Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) $C_L = 25 pF tr = tf = 3.0 ns$	t _{PLH}	11, 10, 3	-	-	8.0	ns
D+/D- to Vm/D- Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) $C_L = 25 pF tr = tf = 3.0 ns$	t _{PHL}	11, 10, 4	-	-	8.0	ns
POWER SUPPLY SECTION @ 1.5 V < Vcc < 3.6 V (-40°C	to +85°C aml	pient temperatu	re, unless oth	erwise noted.)	1
Digital Supply Voltage	Vcc	15	1.5	-	3.6	V
USB Port Input Supply Voltage	Vusb	14	4.0	-	5.25	V
Output Regulated Voltage @ 4.0 V < Vusb < 5.25 V, Cin = 4.7 μF, Cout = 1.0 μF, Ireg = 100 mA	Vreg	12	3.0	3.3	3.6	V
Output Switched Voltage @ Io = 1.0 mA, Cin = 4.7 μF	Vobus	13	3.0	3.3	3.6	V
Line Regulation Output Voltage	Vreg	12	_	0.1	-	%
Standby Current @ Vusb = 5.25 V, $\overline{\text{OE}}$ = H, SPND = H, D+ and D- are Idle, Vcc = 3.6 V	I _{VCC}	14	-	1.0	-	μΑ
Standby Current @ Vusb = 5.25 V, \overline{OE} = H, SPND = L, D+ and D- are Idle, Vcc = 3.6 V	I _{VCC}	14	-	1.0	-	μΑ
Operating Current \overline{OE} = L, D- and D+ Active, SPND = L (Note 4), Transmitter Mode @ F = 6.0 MHz, C _L = 50 pF @ F = 750 kHz, C _L = 600 pF	l _{vcc}	14	-	300 40	- -	μΑ
Operating Current \overline{OE} = H, D– and D+ Active, SPND = L (Note 4), Receiver Mode @ F = 6.0 MHz, C _L = 25 pF @ F = 750 kHz, C _L = 25 pF	l _{vcc}	14	-	1.5 250		mA μA

^{4.} Parameter guaranteed by design, not production tested.

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Pin	Min	Тур	Max	Unit			
POWER SUPPLY SECTION @ 1.5 V < Vcc < 3.6 V (continued) (-40°C to +85°C ambient temperature, unless otherwise noted.)									
USB Supply Current @ D- and D+ are Idle, Vusb = 5.25 V and:	I _{BUS}	14							
@ SPND = 1, OE = 1, DSPD = 0, EN_RPU = 0			_	120	200	μΑ			
@ SPND = 0, \overline{OE} = 1, DSPD = 1, EN_RPU = 0			_	1.7	_	mΑ			
$@$ SPND = 0, \overline{OE} = 0, DSPD = 0, EN_RPU = 0			-	1.7	-	mA			
@ SPND = 1, OE = 1, DSPD = 0, EN_RPU = 1			-	320	500	μΑ			
@ D- and D+ are Active, $C_L = 50$ pF, Vusb = 5.25 V, SPND = 0, $\overline{OE} = 0$, DSPD = 1, F = 6.0 MHz (Note 5)									
@ EN_RPU = Low			_	8.3	_	mA			
@ EN_RPU = High			_	9.4	_	mA			
@ D- and D+ are Active (Note 5)									
Vusb = 5.25 V, SPND = 0, \overline{OE} = 0, DSPD = 1,									
$F = 750 \text{ kHz}, C_L = 600 \text{ pF}$			_	5.4	_	mA			
$F = 750 \text{ kHz}, C_L = 300 \text{ pF}$			_	3.9	_	mA			

^{5.} Parameter guaranteed by design, not production tested.

Table 1. Internal RPU1 and RPU2 Pullup Resistors Control

EN_RPU	DSPD	S1	S2	S3	Data Line	USB	Note
0	Х	Х	Х	Х	X	Х	Internal RPU Deactivated, S1 and S3 are Forced OPEN
1	1	Open	Х	Open	Vbus Off	Х	Internal RPU disabled
1	1	Close	Close	Open	Idle	Full Speed	Internal RPU Activated
1	1	Closed	Open	Open	Receiving	Full Speed	Internal RPU Activated
1	0	Open	Х	Open	Vbus Off	Х	Internal RPU disabled
1	0	Open	Close	Close	Idle	Low Speed	Internal RPU Activated
1	0	Open	Open	Close	Receiving	Low Speed	Internal RPU Activated

^{6.} See Figure 8 and Figure 9.

Table 2. Transmit Mode Interface Control ($\overline{OE} = 0 \rightarrow \text{Transmit Mode}$)

SPND	Vp	Vm	D+	D-	RCV	STATE
0	0	0	0	0	Х	SE0
0	0	1	0	1	0	Low
0	1	0	1	0	1	High
0	1	1	1	1	Х	Undefined
1	0	0	0	0	0	Suspend
1	0	1	0	1	0	Suspend
1	1	0	1	0	0	Suspend
1	1	1	1	1	0	Suspend

Table 3. Receive Mode Interface Control ($\overline{OE} = 1 \rightarrow \text{Receive Mode}$)

SPND	D+	D-	Vp	Vm	RCV	STATE
0	0	0	0	0	Х	SE0
0	0	1	0	1	0	Low
0	1	0	1	0	1	High
0	1	1	1	1	Х	Undefined
1	0	0	0	0	0	Suspend
1	0	1	0	1	0	Suspend
1	1	0	1	0	0	Suspend
1	1	1	1	1	0	Suspend

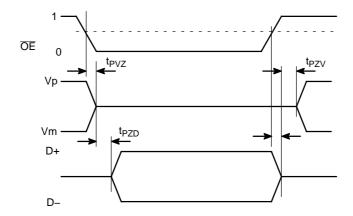


Figure 3. Enable and Disable USB Times

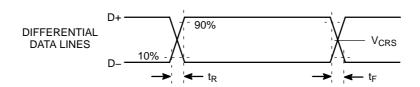


Figure 4. USB Line Rise and Fall Times

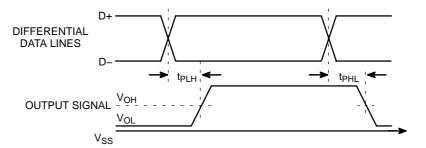


Figure 5. Receiver Propagation Delays

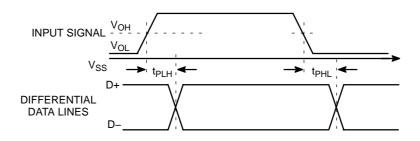


Figure 6. Driver Propagation Delays

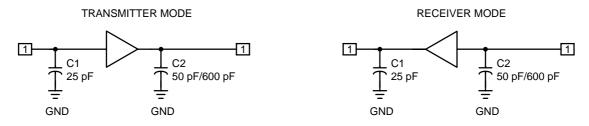
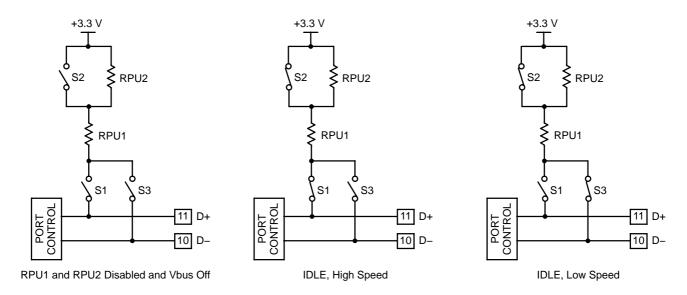
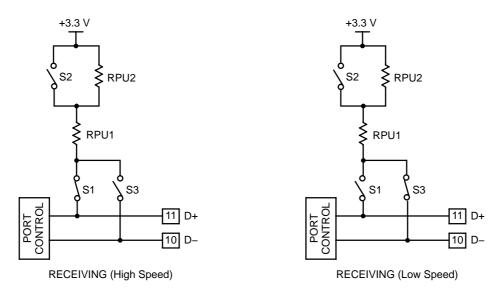
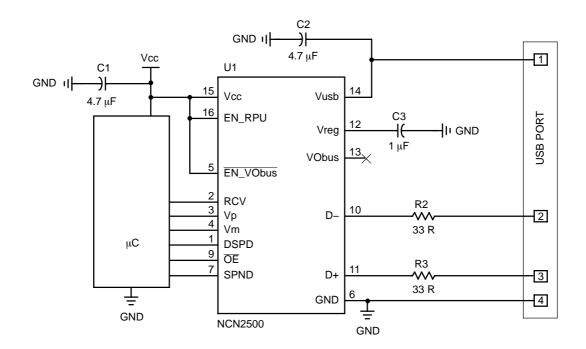


Figure 7. Input/Output Stray Capacitance Definitions


Figure 8. Internal RPU1 and RPU2 Pullup Resistors Operation, IDLE Mode

NOTE: Internal Pullup Resistor Range: RPU1: 900 Ω min–1575 Ω max, RPU2: 525 Ω min–1515 Ω max

Figure 9. Internal RPU1 and RPU2 Pullup Resistors Activated, RECEIVING Mode

TYPICAL APPLICATIONS

In this application, the two internal pullup resistors (RPU1 and RPU2) are used to bias the USB line. Consequently, the VObus voltage is deactivated (Pin 5 connected to Vcc).

Figure 10. Fully Independent Power Supplies

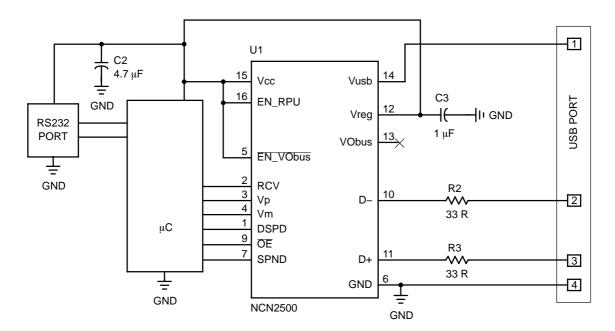
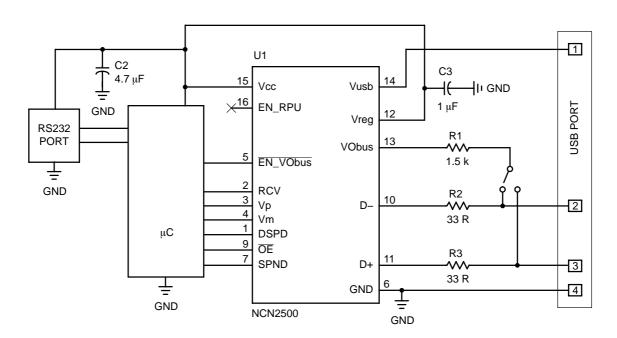
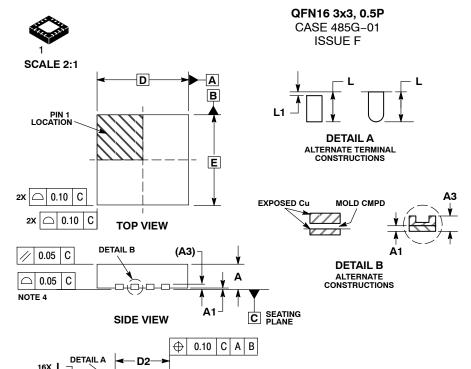



Figure 11. Peripheral are Powered by the Vreg Supply

TYPICAL APPLICATIONS

Note: Pin 16 can be left open, due to the internal pull-down resistor, or connected to ground.

Figure 12. Using External Pullup Resistors


16X K

16

BOTTOM VIEW

е

e/2

E2

0.10 Ф

0.05 С NOTE 3

CAB

16X b

DATE 22 JUN 2011

NOTES:

- ANTES.

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

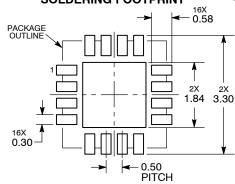
 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3.
- CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
DIM	MIN	MIN NOM				
Α	0.80	0.90	1.00			
A 1	0.00	0.03	0.05			
А3	0	.20 REF				
b	0.18	0.24	0.30			
D	3	.00 BSC				
D2	1.65	1.75	1.85			
Е	3	.00 BSC				
E2	1.65	1.75	1.85			
е	0.50 BSC					
K	0.18 TYP					
L	0.30	0.40	0.50			
L1	0.00	0.08	0.15			

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

= Assembly Location L = Wafer Lot


= Year W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON04795D	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	QFN16, 3X3 MM, 0.5 PITCH	1	PAGE 1 OF 1		

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative