MOSFET – Single, N-Channel, Small Signal, SC-88

25 V, 1.2 A

Features

- Advance Planar Technology for Fast Switching, Low RDS(on)
- Higher Efficiency Extending Battery Life
- AEC-Q101 Qualified and PPAP Capable NVJS4405N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Boost and Buck Converter
- Load Switch
- Battery Protection

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

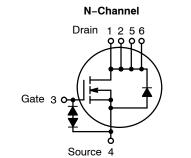
Rating	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	25	V
Gate-to-Source Voltage			V _{GS}	± 8.0	V
Drain Current	$t < 5 \text{ s}$ $T_A = 25^{\circ}C$		۱ _D	1.2	А
Continuous Drain Current	$\begin{array}{c} \text{Continuous Drain Current}\\ \text{(Note 1)} \end{array} \begin{array}{c} \text{Steady}\\ \text{State} \end{array} \begin{array}{c} \text{T}_{\text{A}} = 25^{\circ}\text{C}\\ \text{T}_{\text{A}} = 75^{\circ}\text{C} \end{array}$		I _D	1.0	А
(Note T)				0.80	
Power Dissipation (Note 1)	Power Dissipation (Note 1) Steady State			0.63	W
Power Dissipation (Note 1)	t≤	≤ 5 s	PD	0.89	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	3.7	А
Operating Junction and Sto	T _J , T _{STG}	–55 to +150	°C		
Source Current (Body Dioc	۱ _S	0.8	А		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C
ESD Rating – Machine Mo		25	V		

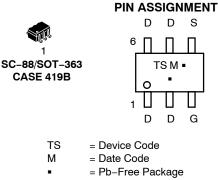
THERMAL RESISTANCE RATINGS

Rating	Symbol	Мах	Unit
Junction-to-Lead - Steady State (Note 1)	$R_{\theta JL}$	102	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	200	
Junction-to-Ambient – t \leq 5 s (Note 1)	$R_{\theta JA}$	140	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface mounted on FR4 board using 1 in sq pad size


(Cu area = 1.127 in sq [1 oz] including traces).


ON Semiconductor®

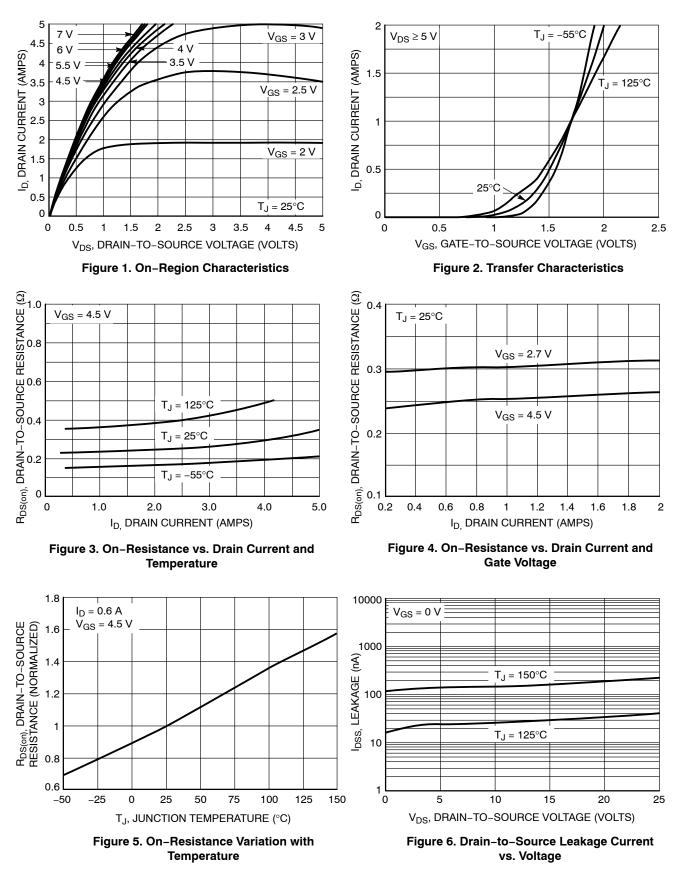
http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max	
25 V	249 mΩ @ 4.5 V	1.2 A	
	299 mΩ @ 2.7 V		

MARKING DIAGRAM &

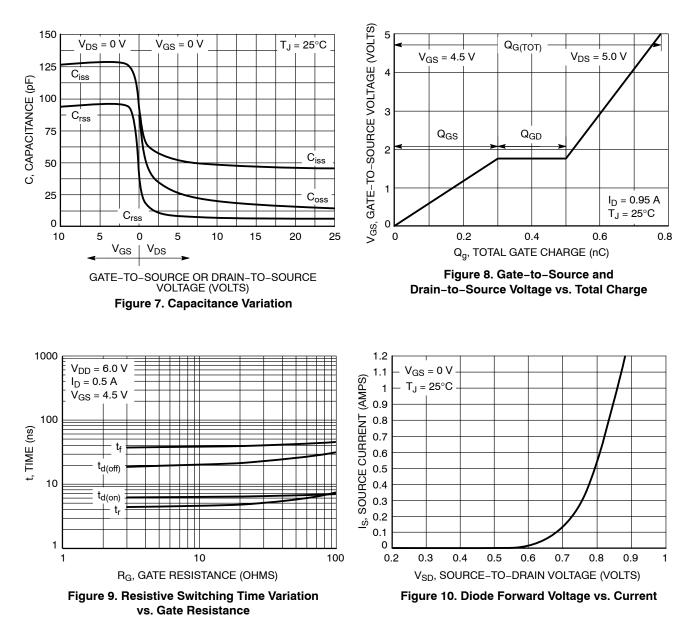
(Note: Microdot may be in either location)

ORDERING INFORMATION

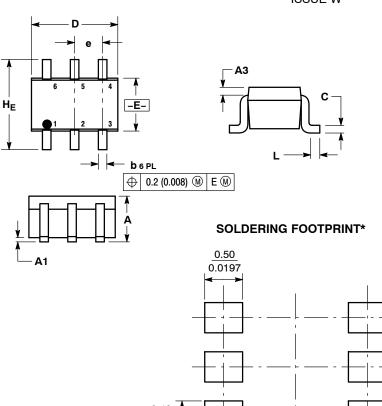

Device		Package	Shipping†
NTJS4405N	IT1G	SC-88 (Pb-Free)	3000 / Tape & Reel
NVJS4405N	IT1G	SC-88 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	-	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				30		mV/°C
Zero Gate Voltage Drain Current	I_{DSS} $V_{CS} = 0.V$	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{\rm DS} = 20$ V	$T_J = 125^{\circ}C$			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 8.0 V				100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μA	0.65		1.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$R_{DS(on)} = \frac{V_{GS} = 4.5 \text{ V}, I_D = 0.6 \text{ A}}{V_{GS} = 2.7 \text{ V}, I_D = 0.2 \text{ A}}$			249	350	mΩ
					299	400	
	V _{GS} = 4.5 V		_D = 1.2 A		260		
Forward Transconductance	9fs	V _{DS} = 5.0 V, I _D = 0.5 A			0.5		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				49	60	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = V _{DS} = 1	1.0 MHz, 0 V		22.4	30	
Reverse Transfer Capacitance	C _{RSS}	. 50			8.0	12	
Total Gate Charge	Q _{G(TOT)}				0.75	1.5	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _I	_{DS} = 5.0 V,		0.10		
Gate-to-Source Charge	Q _{GS}	l _D = 0.9	5 A		0.30	0.50	
Gate-to-Drain Charge	Q _{GD}				0.20	0.40	
SWITCHING CHARACTERISTICS (No	te 3)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V _{DS} = 6.0 V, I _D = 0.5 A, R _G = 50 Ω			6.0	12	ns
Rise Time	t _r				4.7	8.0	7
Turn-Off Delay Time	t _{d(OFF)}				25	35	
Fall Time	t _f				41	60	
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 0.6 A	$T_J = 25^{\circ}C$		0.82	1.20	V

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE W**

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

CONTROLLING DIMENSION: INCH. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A3	0.20 REF			0.008 REF			
b	0.10	0.21	0.30	0.004	0.008	0.012	
С	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
Е	1.15	1.25	1.35	0.045	0.049	0.053	
е		0.65 BSC			0.026 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	2.00	2.10	2.20	0.078	0.082	0.086	

0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 $\left(\frac{mm}{inches}\right)$ SCALE 20:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC obsence under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NVJS4405NT1G