Low On-Resistance, 3.3V High-Bandwidth 4-Port, 2:1 Mux/DeMux VideoSwitch

Description

Pericom Semiconductor's PI3V312 is a 4-port, 2:1 Multiplexer/ Demultiplexer with 3-state outputs. The switch introduces no additional ground bounce noise or propagation delay.
Low On-Resistance and High bandwidth make it ideal for video and other applications. Also this device has exceptionally low crosstalk and off-isolation, which is far greater than most analog switches offered today. A single 3.3 V supply is all that is required for operation.
The PI3V312 offers a high-performance (500 MHz), low-cost solution to switch between video signals that have high bandwidth.

Block Diagram

Truth Table ${ }^{(1)}$

$\overline{\mathbf{E N}}$	\mathbf{S}	$\mathbf{Y}_{\mathbf{A}}$	$\mathbf{Y}_{\mathbf{B}}$	$\mathbf{Y}_{\mathbf{C}}$	$\mathbf{Y}_{\mathbf{D}}$	Function
H	X	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Disable
L	L	IA0	IB0	IC0	ID0	S=0
L	H	IA1	IB1	IC1	ID1	S=1

Notes:

1. $\mathrm{H}=$ High Voltage Level

L=Low Voltage Level

Pin Configuration

Pin Description

Pin Name	Description
${ }_{I} A_{\mathrm{N}}$ to ${ }_{\mathrm{I}} \mathrm{D}_{\mathrm{N}}$	Data Inputs
S	Select Inputs
$\overline{\mathrm{EN}}$	Enable
Y_{A} to Y_{D}	Data Outputs
GND	Ground
V_{CC}	Power

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +4.6 V
DC Input Voltage ... -0.5 V to +6.0 V
DC Output Current.. 120 mA
Power Dissipation .. 0.5 W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics, 3.3V Supply (Over Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-1.3	-1.8	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
I_{IL}	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND			± 1	
IOZH	High Impedance Output Current	$0 \leq \mathrm{Y}, \mathrm{IN} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	
R_{ON}	Switch On-Resistance ${ }^{(4)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=48 \mathrm{~mA} \text { or }-64 \mathrm{~mA} \end{aligned}$		4	6	Ω
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-15 \mathrm{~mA}$		5	8	

DC Electrical Characteristics, 2.5V Supply (Over Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 10 \%$)

Parameters ${ }^{(5)}$	Description	Test Conditions	Min.	Typ.	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	1.8	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Inout LOW Voltage	Guaranteed Logic LOW Level	-0.3	-	0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {IN }}=-6 \mathrm{~mA}$	-	-0.7	-1.8	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND	-	-	± 1	
IOZH	High Impedance Current ${ }^{(3)}$	$0 \leq \mathrm{Y}, \mathrm{In} \leq \mathrm{V}_{\mathrm{CC}}$	-	-	± 1	
R_{ON}	Switch On-Resistance ${ }^{(4)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. }, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=-48 \mathrm{~mA} \end{aligned}$	-	6	8	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=2.25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=-15 \mathrm{~mA} \end{aligned}$	-	7	14	

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{f}=1 \mathrm{MHz}\right)$

Parameters ${ }^{(5)}$	Description	Test Conditions	Typ.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	3.0	pF
Coff(IN)	In Capacitance, Switch Off		3.5	
$\mathrm{C}_{\text {OFF(}}$ ($)$	Y Capacitance, Switch Off		7.0	
CON	Y/In Capacitance, Switch On		10.0	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between Y and In pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (Y, In) pins.
5. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(\mathbf{1})}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}			0.5	mA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.

Dynamic Electrical Characteristics Over the Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Condition	Min.	Typ.	Max.	Units
$X_{\text {TALK }}$	Crosstalk	See Test Diagram (f $=100 \mathrm{MHz})$		-60		dB
$\mathrm{O}_{\text {IRR }}$	Off-Isolation	See Test Diagram $(\mathrm{f}=100 \mathrm{MHz})$		-60		
BW	$-3 d B$ Bandwidth	See Test Diagram; $C_{L}=0 \mathrm{pF}$	100	500		MHz

Switching Characteristics over 3.3V Operating Range

Parameters	Description	Conditions ${ }^{(1)}$	Com.			Units
			Min.	Typ.	Max.	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay ${ }^{(2,3)} \mathrm{Y}$ to In, In to Y	See Test Diagram			0.3	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5		9.0	
$\begin{aligned} & \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\text {PLZ }} \end{aligned}$	Disable Time S or $\overline{\mathrm{EN}}$ to Y or In		1.5		9.0	

Switching Characteristics over 2.5V Operating Range

Parameters	Description	Conditions ${ }^{(1)}$	Com.		Units
			Min.	Max.	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay ${ }^{(2,3)} \mathrm{Y}$ to In, In to Y	See Test Diagram		0.3	ns
$t_{\text {PZH }}$ tPZL	Enable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	15.0	
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Disable Time S or $\overline{\mathrm{EN}}$ to Y or In		1.5	12.0	

Notes:

1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Bandwidth vs Capacitance

Test Circuit for Electrical Characteristics ${ }^{(1)}$

Notes:

1. $\quad \mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\quad \mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of the Pulse Generator
3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
t $_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	6.0 V
tehZ, $^{\text {PZH }}$	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

Crosstalk ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$)

RBW: 300 Hz , ST: 13.7 sec

Off Isolation $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\right)$

ABW: 300 Hz ST: 13.7 sec

Switching Waveforms

Voltage Waveforms Enable and Disable Times

Pulse Skew - $\mathbf{t}_{\mathbf{S K}(\mathrm{p})}$

Applications Information

Logic Inputs

The logic control inputs can be driven upto 3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, $\overline{\mathrm{EN}}$ maybe driven LOW to 0 V and HIGH to 3.6 V . Driving $\overline{\mathrm{EN}}$ Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Hot Insertion

For Datacom and Telecom applications that have ten or more volts passing through the backplane, a high voltage from the power supply may be seen at the device input pins during hot insertion. The PI3V312 device have maximum limits of 6 V and 120 mA for 20 ns . If the power is higher or applied for a longer time or repeatedly reaches the maximum limits, the devices can be damaged.

Packaging Mechanical: 16-pin QSOP (Q)

Packaging Mechanical: 16-pin TSSOP (L)

Note: For latest package info, please check: http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3V312QE	Q	16-pin, 150-Mil Wide (QSOP)
PI3V312QEX	Q	16-pin, 150-Mil Wide (QSOP), Tape \& Reel
PI3V312LE	L	16-pin, 173 Mil Wide (TSSOP)
PI3V312LEX	L	16-pin, 173 Mil Wide (TSSOP), Tape \& Reel

NOTES:

1. Thermal characteristics can be found on the company web site at www.pericom.com/package
2. $\mathrm{E}=\mathrm{Pb}$-free and Green
3. Adding an X suffix $=$ Tape $/$ Reel

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Diodes Incorporated:
PI3V312LE PI3V312LEX PI3V312QEX PI3V312QE PI3V312QE-2017 PI3V312QEX-2017

