

Propeller Manual
Version 1.1

jmartin
Improved

jmartin
New

Jeff Martin
Enhanced PDF Notes
NOTE TO USERS OF THE PREVIOUS PROPELLER MANUAL (v1.0):

To assist you in easily locating updated information, this PDF has been enhanced to include tags (icons on the left) where significant improvements have been made.

"Improved" tags indicate lines or sections where important improvements have been made to previously existing info.

"New" tags indicate sections where new, or completely rewritten, information has been included.

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt of product.
If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the purchase price. Before
returning the product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the RMA number on the
outside of the box used to return the merchandise to Parallax. Please enclose the following along with the returned merchandise:
your name, telephone number, shipping address, and a description of the problem. Parallax will return your product or its
replacement using the same shipping method used to ship the product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund.
Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is void if the
product has been altered or damaged. See the Warranty section above for instructions on returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright © 2006-2009 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not permitted
and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or intellectual property
laws. Any duplication of this documentation for commercial uses is expressly prohibited by Parallax Inc. Duplication for
educational use is permitted, subject to the following Conditions of Duplication: Parallax Inc. grants the user a conditional right
to download, duplicate, and distribute this text without Parallax's permission. This right is based on the following conditions: the
text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated only for educational purposes when
used solely in conjunction with Parallax products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is often less
than typical retail duplication charges.

Parallax, Propeller Spin, and the Parallax and Propeller Hat logos are trademarks of Parallax Inc. BASIC Stamp, Stamps in
Class, Boe-Bot, SumoBot, Toddler, and SX-Key are registered trademarks of Parallax, Inc. If you decide to use any trademarks
of Parallax Inc. on your web page or in printed material, you must state that (trademark) is a (registered) trademark of Parallax
Inc.” upon the first appearance of the trademark name in each printed document or web page. Other brand and product names
herein are trademarks or registered trademarks of their respective holders.

ISBN 9-781928-982470

1.1.0-09.03.05-HKTP

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under
any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or any costs of
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax Inc. is also not
responsible for any personal damage, including that to life and health, resulting from use of any of our products. You take full
responsibility for your Propeller microcontroller application, no matter how life-threatening it may be.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These forums are accessible at
forums.parallax.com:

• Propeller chip – This list is specifically for our customers using Propeller chips and products.
• BASIC Stamp – This list is widely utilized by engineers, hobbyists and students who share their BASIC Stamp

projects and ask questions.
• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in Class series

of tutorials in their courses. The list provides an opportunity for both students and educators to ask questions
and get answers.

• HYDRA – for enthusiasts of the Propeller-powered HYDRA videogame development system.
• Parallax Educators – A private forum exclusively for educators and those who contribute to the development of

Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a place for
educators to develop and obtain Teacher’s Guides.

• Robotics – Designed for Parallax robots, this forum is intended to be an open dialogue for robotics enthusiasts.
Topics include assembly, source code, expansion, and manual updates. The Boe-Bot®, Toddler®, SumoBot®,
HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with Parallax assembly
language SX – Key® tools and 3rd party BASIC and C compilers.

• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us know by
sending an email to editor@parallax.com. We continually strive to improve all of our educational materials and documentation,
and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and corrections for a given text will be
posted to our web site, www.parallax.com. Please check the individual product page’s free downloads for an errata file.

SUPPORTED HARDWARE AND FIRMWARE
This manual is valid with the following hardware and firmware versions:

Hardware Firmware
P8X32A-D40
P8X32A-Q44
P8X32A-M44

P8X32A v1.0

CREDITS
Authorship: Jeff Martin. Format & Editing, Stephanie Lindsay.
Cover Art: Jen Jacobs; Technical Graphics: Rich Allred; with many thanks to everyone at Parallax Inc.

Table of Contents
PREFACE ... 11
CHAPTER 1 : INTRODUCING THE PROPELLER CHIP... 13

CONCEPT ... 13
PACKAGE TYPES... 14
PIN DESCRIPTIONS.. 15
SPECIFICATIONS ... 16
HARDWARE CONNECTIONS.. 17
BOOT UP PROCEDURE .. 18
RUN-TIME PROCEDURE... 18
SHUTDOWN PROCEDURE... 19
BLOCK DIAGRAM... 20
SHARED RESOURCES.. 22
SYSTEM CLOCK .. 22
COGS (PROCESSORS) ... 22
HUB ... 24
I/O PINS ... 26
SYSTEM COUNTER .. 27
CLK REGISTER... 28
LOCKS.. 30
MAIN MEMORY.. 30
MAIN RAM ... 31
MAIN ROM... 32
CHARACTER DEFINITIONS.. 32
LOG AND ANTI-LOG TABLES... 34
SINE TABLE .. 34
BOOT LOADER AND SPIN INTERPRETER.. 34

CHAPTER 2 : SPIN LANGUAGE REFERENCE .. 35
STRUCTURE OF PROPELLER OBJECTS/SPIN ... 36
CATEGORICAL LISTING OF PROPELLER SPIN LANGUAGE ... 38

Block Designators... 38
Configuration .. 38
Cog Control .. 39
Process Control .. 39
Flow Control ... 39
Memory... 40
Directives.. 41
Registers .. 41
Constants ... 42
Variable .. 42
Unary Operators ... 42
Binary Operators .. 43

Propeller Manual v1.1 · Page 5

Table of Contents
Syntax Symbols ..44

SPIN LANGUAGE ELEMENTS ...45
Symbol Rules..45
Value Representations..45
Syntax Definitions ...46

ABORT..47
BYTE ...51
BYTEFILL ..57
BYTEMOVE ..58
CASE ...59
CHIPVER ..62
CLKFREQ ..63
_CLKFREQ ..65
CLKMODE ..67
_CLKMODE ..68
CLKSET..71
CNT ...73
COGID..75
COGINIT ..76
COGNEW..78
COGSTOP ..83
CON ...84
CONSTANT ..91
CONSTANTS (PRE-DEFINED) ...93
CTRA, CTRB ...95
DAT ...99
DIRA, DIRB ...104
FILE ...107
FLOAT..108
_FREE..110
FRQA, FRQB ...111
IF ...112
IFNOT..117
INA, INB ..118
LOCKCLR ..120
LOCKNEW ..122
LOCKRET ..125
LOCKSET ..126
LONG ...128
LONGFILL ..134
LONGMOVE ..135
LOOKDOWN, LOOKDOWNZ...136
LOOKUP, LOOKUPZ..138

Page 6 · Propeller Manual v1.1

Table of Contents
NEXT ... 140
OBJ... 141
OPERATORS ... 143
OUTA, OUTB .. 175
PAR... 178
PHSA, PHSB .. 180
PRI... 181
PUB... 182
QUIT ... 186
REBOOT ... 187
REPEAT ... 188
RESULT ... 194
RETURN ... 196
ROUND ... 198
SPR... 200
_STACK ... 202
STRCOMP ... 203
STRING ... 205
STRSIZE ... 206
SYMBOLS.. 207
TRUNC ... 209
VAR... 210
VCFG ... 213
VSCL ... 216
WAITCNT ... 218
WAITPEQ ... 222
WAITPNE ... 224
WAITVID ... 225
WORD ... 227
WORDFILL.. 234
WORDMOVE.. 235
_XINFREQ.. 236

CHAPTER 3 : ASSEMBLY LANGUAGE REFERENCE ... 238
THE STRUCTURE OF PROPELLER ASSEMBLY .. 238

Cog Memory ... 240
Where Does an Instruction Get Its Data? .. 240
Don't Forget the Literal Indicator '#'.. 241
Literals Must Fit in 9 Bits .. 241
Global and Local Labels... 242

CATEGORICAL LISTING OF PROPELLER ASSEMBLY LANGUAGE... 243
Directives.. 243
Configuration .. 243

Propeller Manual v1.1 · Page 7

Table of Contents
Cog Control ...243
Process Control ..243
Conditions ...243
Flow Control ..245
Effects ...245
Main Memory Access..245
Common Operations...245
Constants ..247
Registers ...248
Unary Operators ...248
Binary Operators...249

ASSEMBLY LANGUAGE ELEMENTS ..250
Syntax Definitions ...250
Opcodes and Opcode Tables ...251
Concise Truth Tables..252
Propeller Assembly Instruction Master Table ...253

ABS ...257
ABSNEG..258
ADD ...259
ADDABS..260
ADDS ...261
ADDSX..262
ADDX ...264
AND ...266
ANDN ...267
CALL ...268
CLKSET..271
CMP ...272
CMPS ...274
CMPSUB..276
CMPSX..277
CMPX ...280
CNT ...282
COGID..283
COGINIT ..284
COGSTOP ..286
CONDITIONS (IF_X) ..287
CTRA, CTRB ...288
DIRA, DIRB ...289
DJNZ ...290
EFFECTS (WC, WZ, WR, NR) ..291
FIT ...292
FRQA, FRQB ...293

Page 8 · Propeller Manual v1.1

Table of Contents
HUBOP ... 294
IF_X (CONDITIONS)... 295
INA, INB .. 297
JMP... 298
JMPRET ... 300
LOCKCLR ... 303
LOCKNEW ... 304
LOCKRET ... 305
LOCKSET ... 306
MAX... 307
MAXS ... 308
MIN... 309
MINS ... 310
MOV... 311
MOVD ... 312
MOVI ... 313
MOVS ... 314
MUXC ... 315
MUXNC ... 316
MUXNZ ... 317
MUXZ ... 318
NEG... 319
NEGC ... 320
NEGNC ... 321
NEGNZ ... 322
NEGZ ... 323
NOP... 324
NR .. 325
OPERATORS ... 326
OR .. 327
ORG... 328
OUTA, OUTB .. 330
PAR... 331
PHSA, PHSB .. 332
RCL... 333
RCR... 334
RDBYTE ... 335
RDLONG ... 336
RDWORD ... 337
REGISTERS... 338
RES... 339
RET... 342
REV... 343

Propeller Manual v1.1 · Page 9

Table of Contents

Page 10 · Propeller Manual v1.1

ROL ...344
ROR ...345
SAR ...346
SHL ...347
SHR ...348
SUB ...349
SUBABS..350
SUBS ...351
SUBSX..352
SUBX ...354
SUMC ...356
SUMNC..357
SUMNZ..358
SUMZ ...359
SYMBOLS ..360
TEST ...362
TESTN..363
TJNZ ...364
TJZ ...365
VCFG ...366
VSCL ...367
WAITCNT ..368
WAITPEQ ..369
WAITPNE ..370
WAITVID ..371
WC ...372
WR ...373
WRBYTE..374
WRLONG..375
WRWORD..376
WZ ...377
XOR ...378

APPENDIX A: RESERVED WORD LIST ..379
APPENDIX B: MATH SAMPLES AND FUNCTION TABLES...380
INDEX..386

Preface

Preface
Thank you for purchasing a Propeller chip. You will be spinning your own programs in no
time!

Propeller chips are incredibly capable multiprocessor microcontrollers; the much-anticipated
result of over eight years of the intense efforts of Chip Gracey and the entire Parallax
Engineering Team.

This book is intended to be a reference guide to Propeller chips and their native programming
languages, Spin and Propeller Assembly. For a programming tutorial and Propeller Tool
details, please refer to the on-line help that is installed with the Propeller Tool software.
Have fun!

Despite our best efforts, there are bound to be questions unanswered by this manual alone.
Check out our Propeller chip discussion forum – (accessible from www.parallax.com via the
Support → Discussion Forums menu) – this is a group especially for Propeller users where
you can post your questions or review discussions that may have already answered yours.

In addition to the forum, visit the Propeller Object Exchange (obex.parallax.com) for free
access to hundreds of Propeller objects made by customers and Parallax Engineers. Besides
being immediately useful for your own applications, Propeller objects written by various
authors are a great resource for studying techniques and tricks employed by the very active
Propeller community.

Editor’s Note: About Version 1.1
The major content additions, corrections, and deletions that were made to Propeller Manual
v1.0 to produce this edition are highlighted in the PDF version of this document of Propeller
Manual v1.1. We recommend that if you previously read the original edition of the Propeller
Manual. A complete record of changes can be found in the Propeller Manual Supplement
and Errata v1.4. Both documents are available for download at www.parallax.com/Propeller.

Most significantly, the former Chapter 2: Using the Propeller Tool, was moved to the
Propeller Tool’s Online Help system where it can be updated frequently to stay in sync with
the enhancements to the development software. Likewise, the former Chapter 3: Propeller
Programming Tutorial was also moved to the Propeller Tool’s Online Help system where it
can be expanded more readily.

Propeller Manual v1.1 · Page 11

jmartin
New

Preface

Page 12 · Propeller Manual v1.1

Additional important changes include:

• An additional Propeller Assembly instruction was added; TESTN (see page 347)

• The following sections were rewritten for clarity:

o ADDSX on page 262
o ADDX on page 264
o CALL on page 268
o CMPSX on page 277
o CMPX on page 280
o JMPRET on page 300
o ORG on page 328
o RES on page 339
o RET on page 342
o SUBSX on page 352
o SUBX on page 354

• Extensive enhancements to the following sections were made to provide detail on
previously undocumented features:

o BYTE on page 51
o COGINIT on page 76
o COGNEW on page 78
o DAT on page 99
o LONG on page 128
o WORD on page 227

• Extensive revisions were made to The Structure of Propeller Assembly section
beginning on page 238, as well as to the start of the Assembly Language Elements
section which begins on page 250.

• Concise Truth Tables have been added above the Explanation section for each
Propeller Assembly instruction. Each of these truth tables include key value and flag
combinations that reveal important aspects of the related instruction’s nature.

• Individual Effects and Registers were given their own sections in the Assembly
Language Reference for easier locating while scanning the manual.

• Multiplication, Division, and Square Root examples were added to Appendix B.

• Hundreds of important details were enhanced or corrected throughout. See the
manual’s PDF version, or the Supplement and Errata v1.4, for more information.

1: Introducing the Propeller Chip

Chapter 1: Introducing the Propeller Chip
This chapter describes the Propeller chip hardware. To fully understand and use the Propeller
effectively, it’s important to first understand its hardware architecture. This chapter presents
the details of the hardware such as package types, package sizes, pin descriptions, and
functions.

Concept
The Propeller chip is designed to provide high-speed processing for embedded systems while
maintaining low current consumption and a small physical footprint. In addition to being
fast, the Propeller provides flexibility and power through its eight processors, called cogs,
that can perform simultaneous independent or cooperative tasks, all while maintaining a
relatively simple architecture that is easy to learn and utilize.

The resulting design of the Propeller frees application developers from common complexities
of embedded systems programming. For example:

• The memory map is flat. There is no need for paging schemes with blocks of code,
data or variables. This is a big time-saver during application development.

• Asynchronous events are easier to handle than they are with devices that use
interrupts. The Propeller has no need for interrupts; just assign some cogs to
individual, high-bandwidth tasks and keep other cogs free and unencumbered. The
result is a more responsive application that is easier to maintain.

• The Propeller Assembly language features conditional execution and optional result
writing for each individual instruction. This makes critical, multi-decision blocks of
code more consistently timed; event handlers are less prone to jitter and developers
spend less time padding, or squeezing, cycles here and there.

Propeller Manual v1.1 · Page 13

Introducing the Propeller Chip

Package Types
The Propeller chip is available in the package types shown here.

 P8X32A-Q44

44-pin LQFP

P8X32A-D40 40-pin DIP

P8X32A-M44
44-pin QFN

Page 14 · Propeller Manual v1.1

1: Introducing the Propeller Chip

Pin Descriptions
Table 1-1: Pin Descriptions

Pin Name Direction Description

P0 – P31 I/O

General purpose I/O Port A. Can source/sink 40 mA each at 3.3 VDC.
Logic threshold is ≈ ½ VDD; 1.65 VDC @ 3.3 VDC.

The pins shown below have a special purpose upon power-up/reset but are
general purpose I/O afterwards.

P28 - I2C SCL connection to optional, external EEPROM.
P29 - I2C SDA connection to optional, external EEPROM.
P30 - Serial Tx to host.
P31 - Serial Rx from host.

VDD --- 3.3 volt power (2.7 – 3.3 VDC).

VSS --- Ground.

BOEn I

Brown Out Enable (active low). Must be connected to either VDD or VSS.
If low, RESn becomes a weak output (delivering VDD through 5 KΩ) for
monitoring purposes but can still be driven low to cause reset. If high,
RESn is CMOS input with Schmitt Trigger.

RESn I/O
Reset (active low). When low, resets the Propeller chip: all cogs disabled
and I/O pins floating. Propeller restarts 50 ms after RESn transitions from
low to high.

XI I

Crystal Input. Can be connected to output of crystal/oscillator pack (with
XO left disconnected), or to one leg of crystal (with XO connected to other
leg of crystal or resonator) depending on CLK Register settings. No
external resistors or capacitors are required.

XO O
Crystal Output. Provides feedback for an external crystal, or may be left
disconnected depending on CLK Register settings. No external resistors
or capacitors are required.

The Propeller (P8X32A) has 32 I/O pins (Port A, pins P0 through P31). Four of these I/O
pins, P28-P31 have a special purpose upon power-up/reset. At power-up/reset, pins P30 and
P31 communicate with a host for programming and P28 and P29 interface to an external 32
KB EEPROM (24LC256).

Propeller Manual v1.1 · Page 15

jmartin
Improved

Introducing the Propeller Chip

Page 16 · Propeller Manual v1.1

Specifications
Table 1-2: Specifications

Model P8X32A

Power Requirements 3.3 volts DC. (Max current draw must be limited to 300 mA).

External Clock Speed DC to 80 MHz (4 MHz to 8 MHz with Clock PLL running)

System Clock Speed DC to 80 MHz

Internal RC Oscillator 12 MHz or 20 kHz (approximate; may range from 8 MHz – 20 MHz,
or 13 kHz – 33 kHz, respectively)

Main RAM/ROM 64 K bytes; 32 KB RAM + 32 KB ROM

Cog RAM 512 x 32 bits each

RAM/ROM Organization Long (32-bit), Word (16-bit), or Byte (8-bit) addressable

I/O pins 32 CMOS signals with VDD/2 input threshold.

Current Source/Sink per I/O 40 mA

Current Draw @ 3.3 vdc, 70 °F 500 µA per MIPS (MIPS = Freq in MHz / 4 * Number of Active Cogs)

jmartin
Improved

jmartin
Improved

1: Introducing the Propeller Chip

Hardware Connections
Figure 1-1 shows an example wiring diagram that provides host and EEPROM access to the
Propeller chip. In this example the host access is achieved through the Propeller Plug device
(a USB to TTL serial converter).

Figure 1-1: Example wiring diagram that allows for programming the Propeller chip
nd an external 32 Kbyte EEPROM, and running the Propeller with an external crystal. a

Propeller Manual v1.1 · Page 17

Introducing the Propeller Chip

Boot Up Procedure
Upon power-up (+ 100 ms), RESn low-to-high, or software reset:

1. The Propeller chip starts its internal clock in slow mode (≈ 20 kHz), delays for 50 ms
(reset delay), switches the internal clock to fast mode (≈ 12 MHz), and then loads and
runs the built-in Boot Loader program in the first processor (Cog 0).

2. The Boot Loader performs one or more of the following tasks, in order:

a. Detects communication from a host, such as a PC, on pins P30 and P31. If
communication from a host is detected, the Boot Loader converses with the
host to identify the Propeller chip and possibly download a program into
Main RAM and optionally into an external 32 KB EEPROM.

b. If no host communication was detected, the Boot Loader looks for an
external 32 KB EEPROM (24LC256) on pins P28 and P29. If an EEPROM
is detected, the entire 32 KB data image is loaded into the Propeller chip’s
Main RAM.

c. If no EEPROM was detected, the boot loader stops, Cog 0 is terminated, the
Propeller chip goes into shutdown mode, and all I/O pins are set to inputs.

3. If either step 2a or 2b was successful in loading a program into the Main RAM, and a
suspend command was not given by the host, then Cog 0 is reloaded with the built-in
Spin Interpreter and the user code is run from Main RAM.

Run-Time Procedure
A Propeller Application is a user program compiled into its binary form and downloaded to
the Propeller chip’s RAM and, possibly, external EEPROM. The application consists of code
written in the Propeller chip’s Spin language (high-level code) with optional Propeller
Assembly language components (low-level code). Code written in the Spin language is
interpreted during run time by a cog running the Spin Interpreter while code written in
Propeller Assembly is run in its pure form directly by a cog. Every Propeller Application
consists of at least a little Spin code and may actually be written entirely in Spin or with
various amounts of Spin and assembly. The Propeller chip’s Spin Interpreter is started in
Step 3 of the Boot Up Procedure, above, to get the application running.

Once the boot-up procedure is complete and an application is running in Cog 0, all further
activity is defined by the application itself. The application has complete control over things
like the internal clock speed, I/O pin usage, configuration registers, and when, what and how

Page 18 · Propeller Manual v1.1

1: Introducing the Propeller Chip

Propeller Manual v1.1 · Page 19

many cogs are running at any given time. All of this is variable at run time, as controlled by
the application, including the internal clock speed.

Shutdown Procedure
When the Propeller goes into shutdown mode, the internal clock is stopped causing all cogs
to halt and all I/O pins are set to input direction (high impedance). Shutdown mode is
triggered by one of the three following events:

1) VDD falling below the brown-out threshold (≈2.7 VDC), when the brown-out circuit
is enabled,

2) the RESn pin going low, or

3) the application requesting a reboot (see the REBOOT command, page 187).

Shutdown mode is discontinued when the voltage level rises above the brown-out threshold
and the RESn pin is high.

Introducing the Propeller Chip

Block Diagram
Figure 1-2: Propeller Chip Block Diagram

Page 20 · Propeller Manual v1.1

1: Introducing the Propeller Chip
Cog and Hub interaction is critical to the Propeller chip. The Hub controls which cog can
access mutually exclusive resources, such as Main RAM/ROM, configuration registers, etc.
The Hub gives exclusive access to every cog one at a time in a “round robin” fashion,
regardless of how many cogs are running, in order to keep timing deterministic.

Propeller Manual v1.1 · Page 21

Introducing the Propeller Chip

Shared Resources
There are two types of shared resources in the Propeller: 1) common, and 2) mutually
exclusive. Common resources can be accessed at any time by any number of cogs. Mutually
exclusive resources can also be accessed by all cogs, but only by one cog at a time. The
common resources are the I/O pins and the System Counter. All other shared resources are
mutually exclusive by nature and access to them is controlled by the Hub. See the Hub
section on page 24.

System Clock
The System Clock (shown as “CLOCK” in Figure 1-2) is the central clock source for nearly
every component of the Propeller chip. The System Clock’s signal comes from one of three
possible sources: 1) the Internal RC Oscillator, 2) the Clock Phase-Locked Loop (PLL), or
3) the Crystal Oscillator (an internal circuit that is fed by an external crystal or
crystal/oscillator pack). The source is determined by the CLK register’s settings, which is
selectable at compile time or at run time. The only components that don’t use the System
Clock directly are the Hub and Bus; they divide the System Clock by two (2).

Cogs (processors)
The Propeller contains eight (8) processors, called cogs, numbered 0 to 7. Each cog contains
the same components (see Figure 1-2): a Processor block, local 2 KB RAM configured as 512
longs (512 x 32 bits), two Counter Modules with PLLs, a Video Generator, I/O Output
Register, I/O Direction Register, and other registers not shown in the diagram. See Table 1-3
for a complete list of cog registers. Each cog is designed exactly the same and can run tasks
independently from the others.

All eight cogs are driven from the same clock source, the System Clock, so they each
maintain the same time reference and all active cogs execute instructions simultaneously.
See System Clock, above. They also all have access to the same shared resources, like I/O
pins, Main RAM, and the System Counter. See Shared Resources, above.

Cogs can be started and stopped at run time and can be programmed to perform tasks
simultaneously, either independently or with coordination from other cogs through Main
RAM. Regardless of the nature of their use, the Propeller application designer has full
control over how and when each cog is employed; there is no compiler-driven or operating
system-driven splitting of tasks between multiple cogs. This empowers the developer to
deliver absolutely deterministic timing, power consumption, and response to the embedded
application.
Page 22 · Propeller Manual v1.1

1: Introducing the Propeller Chip
Each cog has its own RAM, called Cog RAM, which contains 512 registers of 32 bits each.
The Cog RAM is all general purpose RAM except for the last 16 registers, which are special
purpose registers, as described in Table 1-3. The Cog RAM is used for executable code, data,
variables, and the last 16 locations serve as interfaces to the System Counter, I/O pins, and
local cog peripherals.

When a cog is booted up, locations 0 ($000) through 495 ($1EF) are loaded sequentially from
Main RAM / ROM and its special purpose locations, 496 ($1F0) through 511 ($1FF) are
cleared to zero. After loading, the cog begins executing instructions, starting at location 0 of
Cog RAM. It will continue to execute code until it is stopped or rebooted by either itself or
another cog, or a reset occurs.

Table 1-3: Cog RAM Special Purpose Registers

Cog RAM Map Address Name Type Description
$1F0 PAR Read-Only1 Boot Parameter, p. 178, 331
$1F1 CNT Read-Only1 System Counter, p. 73, 282
$1F2 INA Read-Only1 Input States for P31–P0, p. 118, 297
$1F3 INB 3 Read-Only1 Input States for P63–P32, p. 118, 297
$1F4 OUTA Read/Write Output States for P3–P0, p. 175, 330
$1F5 OUTB 3 Read/Write Output States for P63–P32, p. 175, 330
$1F6 DIRA Read/Write Direction States for P31–P0, p. 104, 456
$1F7 DIRB 3 Read/Write Direction States for P63–P32, p. 104, 456

$1F8 CTRA Read/Write Counter A Control, p. 95, 288
$1F9 CTRB Read/Write Counter B Control, p. 95, 288
$1FA FRQA Read/Write Counter A Frequency, p. 111, 293
$1FB FRQB Read/Write Counter B Frequency, p. 111, 293
$1FC PHSA Read/Write2 Counter A Phase, p. 180, 332
$1FD PHSB Read/Write2 Counter B Phase, p. 180, 332
$1FE VCFG Read/Write Video Configuration, p. 213, 366

$1FF VSCL Read/Write Video Scale, p. 216, 367

Special
Purpose

Registers
(16 x 32)

General
Purpose

Registers
(496 x 32)

$000
|
|
|
|
|
|
|
|
|
|
|
|
|
|

$1EF
$1F0

|
|
|

$1FF

Note 1: For Propeller Assembly, only accessible as a source register (i.e., mov dest, source). See the
Assembly language sections for PAR, page 331; CNT, page 282, and INA, INB, page 297.

Note 2: For Propeller Assembly, only readable as a source register (i.e., mov dest, source); read
modify-write not possible as a destination register. See the Assembly language section
for PHSA, PHSB on page 332.

Note 3: Reserved for future use.

Propeller Manual v1.1 · Page 23

jmartin
Improved

Introducing the Propeller Chip
Each Special Purpose Register may be accessed via:

1) its physical register address (Propeller Assembly),

2) its predefined name (Spin or Propeller Assembly), or

3) the register array variable (SPR) with an index of 0 to 15 (Spin).

The following are examples in Propeller Assembly:

MOV $1F4, #$FF 'Set OUTA 7:0 high
MOV OUTA, #$FF 'Same as above

The following are examples in Spin:

SPR[$4] := $FF 'Set OUTA 7:0 high
OUTA := $FF 'Same as above

Hub
To maintain system integrity, mutually exclusive resources must not be accessed by more
than one cog at a time. The Hub maintains this integrity by controlling access to mutually
exclusive resources, giving each cog a turn to access them in a “round robin” fashion from
Cog 0 through Cog 7 and back to Cog 0 again. The Hub, and the bus it controls, runs at half
the System Clock rate. This means that the Hub gives a cog access to mutually exclusive
resources once every 16 System Clock cycles. Hub instructions, the Propeller Assembly
instructions that access mutually exclusive resources, require 7 cycles to execute but they first
need to be synchronized to the start of the hub access window. It takes up to 15 cycles (16
minus 1, if we just missed it) to synchronize to the hub access window plus 7 cycles to
execute the hub instruction, so hub instructions take from 7 to 22 cycles to complete.

Figure 1-3 and Figure 1-4 show examples where Cog 0 has a hub instruction to execute.
Figure 1-3 shows the best-case scenario; the hub instruction was ready right at the start of that
cog’s access window. The hub instruction executes immediately (7 cycles) leaving an
additional 9 cycles for other instructions before the next hub access window arrives.

Page 24 · Propeller Manual v1.1

1: Introducing the Propeller Chip

Figure 1-3: Cog-Hub Interaction – Best Case Scenario

Figure 1-4 shows the worst-case scenario; the hub instruction was ready on the cycle right
after the start of Cog 0’s access window; it just barely missed it. The cog waits until the next
hub access window (15 cycles later) then the hub instruction executes (7 cycles) for a total of
22 cycles for that hub instruction. Again, there are 9 additional cycles after the hub
instruction for other instructions to execute before the next hub access window arrives. To
get the most efficiency out of Propeller Assembly routines that have to frequently access
mutually exclusive resources, it can be beneficial to interleave non-hub instructions with hub
instructions to lessen the number of cycles waiting for the next hub access window. Since
most Propeller Assembly instructions take 4 clock cycles, two such instructions can be
executed in between otherwise contiguous hub instructions.

Figure 1-4: Cog-Hub Interaction – Worst Case Scenario

Keep in mind that a particular cog’s hub instructions do not, in any way, interfere with other
cogs’ instructions because of the Hub mechanism. Cog 1, for example, may start a hub
instruction during System Clock cycle 2, in both of these examples, possibly overlapping its
execution with that of Cog 0 without any ill effects. Meanwhile, all other cogs can continue
executing non-hub instructions, or awaiting their individual hub access windows regardless of
what the others are doing.

Propeller Manual v1.1 · Page 25

Introducing the Propeller Chip

I/O Pins
The Propeller has 32 I/O pins, 28 of which are entirely general purpose. Four I/O pins (28 -
31) have a special purpose at Boot Up and are available for general purpose use afterwards;
see the Boot Up Procedure section on page 18. After boot up, any I/O pins can be used by
any cogs at any time since I/O pins are one of the common resources. It is up to the
application developer to ensure that no two cogs try to use the same I/O pin for conflicting
purposes during run-time.

For details of the I/O hardware, refer to the internals of the cogs in Figure 1-2 on page 20
while reading the following explanation.

Each cog has its own 32-bit I/O Direction Register and 32-bit I/O Output Register to
influence the directions and output states of the Propeller chip’s corresponding 32 I/O pins.
A cog's desired I/O directions and output states is communicated through the entire cog
collective to ultimately become what is called "Pin Directions" and "Pin Outputs" in the
upper right corner of Figure 1-2 on page 20.

The cog collective determines Pin Directions and Pin Outputs as follows:

1. Pin Directions are the result of OR'ing the Direction Registers of the cogs together.

2. Pin Outputs are the result of OR'ing the output states of the cogs together. A cog's
output state consists of the bits of its I/O modules (the Counters, the Video
Generator, and the I/O Output Register) OR'd together then AND'd with the bits of its
Direction Register.

In essence, each I/O pin’s direction and output state is the “wired-OR” of the entire cog
collective. This allows the cogs to access and influence the I/O pins simultaneously without
the need for any resource arbiter and without any possibility of electrical contention between
the cogs.

The result of this I/O pin wiring configuration can easily be described in the following simple
rules:

A. A pin is an input only if no active cog sets it to an output.

B. A pin outputs low only if all active cogs that set it to output also set it to low.

C. A pin outputs high if any active cog sets it to an output and also sets it high.

Table 1-4 demonstrates a few possible combinations of the collective cogs’ influence on a
particular I/O pin, P12 in this example. For simplification, these examples assume that bit 12
of each cog’s I/O hardware, other than its I/O Output Register, is cleared to zero (0).

Page 26 · Propeller Manual v1.1

jmartin
Improved

1: Introducing the Propeller Chip
Table 1-4: I/O Sharing Examples

Bit 12 of Cogs’ I/O
Direction Register

Bit 12 of Cogs’ I/O
Output Register

Cog ID 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

State of I/O Pin
P12

Rule
Followed

Example 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Input A

Example 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Output Low B

Example 3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Output High C

Example 4 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Output Low B

Example 5 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Output High C

Example 6 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 Output High C

Example 7 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 Output High C

Example 8 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 Output Low B
Note: For the I/O Direction Register, a 1 in a bit location sets the corresponding I/O pin to the
output direction while a 0 sets it to an input direction.

Any cog that is shut down has its Direction Register and output states cleared to zero,
effectively removing it from influencing the final state of the I/O pins that the remaining
active cogs are controlling.

Each cog also has its own 32-bit Input Register. This input register is really a pseudo-
register; every time it is read, the actual states of the I/O pins are read, regardless of their
input or output direction.

System Counter
The System Counter is a global, read-only, 32-bit counter that increments once every System
Clock cycle. Cogs can read the System Counter (via their CNT register, page 73) to perform
timing calculations and can use the WAITCNT command (page 218) to create effective delays
within their processes. The System Counter is a common resource. Every cog can read it
simultaneously. The System Counter is not cleared upon startup since its practical use is for
differential timing. If a cog needs to keep track of time from a specific, fixed moment in
time, it simply needs to read and save the initial counter value at that moment in time, and
compare all of the later counter values against that initial value.

Propeller Manual v1.1 · Page 27

Introducing the Propeller Chip

Page 28 · Propeller Manual v1.1

CLK Register
The CLK register is the System Clock configuration control; it determines the source of and
the characteristics for the System Clock. More precisely, the CLK register configures the RC
Oscillator, Clock PLL, Crystal Oscillator, and Clock Selector circuits. (See Figure 1-2:
Propeller Chip Block Diagram on page 20.) It is configured at compile time by the _CLKMODE
constant (page 68) and is writable at run time through the CLKSET Spin command (page 71) or
the CLKSET assembly instruction (page 271). Whenever the CLK register is written, a global
delay of ≈75 µs occurs as the clock source transitions.

Whenever this register is changed, a copy of the value written should be placed in the Clock
Mode value location (which is BYTE[4] in Main RAM) and the resulting master clock
frequency should be written to the Clock Frequency value location (which is LONG[0] in
Main RAM) so that objects which reference this data will have current information for their
timing calculations. (See CLKMODE, page 67, and CLKFREQ, page 63.) When possible, it is
recommended to use Spin’s CLKSET command (page 71), since it automatically updates all the
above-mentioned locations with the proper information.

Only certain bit patterns in the CLK register are valid clock modes. See the _CLKMODE
constant on page 68 and Table 2-4 on page 69 for more information. The Clock object in the
Propeller Library may also be useful since it provides clock modification and timing
methods.

Table 1-5: CLK Register Structure

Bit 7 6 5 4 3 2 1 0

Name RESET PLLENA OSCENA OSCM1 OSCM0 CLKSEL2 CLKSEL1 CLKSEL0

Table 1-6: CLK Register RESET (Bit 7)

Bit Effect

0 Always write ‘0’ here unless you intend to reset the chip.

1 Same as a hardware reset – reboots the chip. The Spin command REBOOT writes a ‘1’
to the RESET bit.

T

jmartin
New

1: Introducing the Propeller Chip

Propeller Manual v1.1 · Page 29

Table 1-7: CLK Register PLLENA (Bit 6)

Bit Effect

0 Disables the PLL circuit. The RCFAST and RCSLOW settings of the _CLKMODE declaration
configure PLLENA this way.

1

Enables the PLL circuit. Each of the PLLxx settings of the _CLKMODE declaration
configures PLLENA this way at compile time. The Clock PLL internally multiplies the
XIN pin frequency by 16. OSCENA must also be ‘1’ to propagate the XIN signal to the
Clock PLL. The Clock PLL's internal frequency must be kept within 64 MHz to 128 MHz
– this translates to an XIN frequency range of 4 MHz to 8 MHz. Allow 100 µs for the
Clock PLL to stabilize before switching to one of its outputs via the CLKSELx bits.
Once the Crystal Oscillator and Clock PLL circuits are enabled and stabilized, you can
switch freely among all clock sources by changing the CLKSELx bits.

Table 1-8: CLK Register OSCENA (Bit 5)

Bit Effect

0 Disables the Crystal Oscillator circuit. The RCFAST and T RCSLOW settings of the
_CLKMODE declaration configure OSCENA this way.

1

Enables the Crystal Oscillator circuit so that a clock signal can be input to XIN, or so
that XIN and XOUT can function together as a feedback oscillator. The XINPUT and
XTALx settings of the _CLKMODE declaration configure OSCENA this way. The OSCMx
bits select the operating mode of the Crystal Oscillator circuit. Note that no external
resistors or capacitors are required for crystals and resonators. Allow a crystal or
resonator 10 ms to stabilize before switching to a Crystal Oscillator or Clock PLL output
via the CLKSELx bits. When enabling the Crystal Oscillator circuit, the Clock PLL may
be enabled at the same time so that they can share the stabilization period.

Table 1-9: CLK Register OSCMx (Bits 4:3)

OSCMx

1 0
_CLKMODE

Setting
XOUT

Resistance
XIN/XOUT

Capacitance Frequency Range

0 0 XINPUT Infinite 6 pF (pad only) DC to 80 MHz Input

0 1 XTAL1 2000 Ω 36 pF 4 to 16 MHz Crystal/Resonator

1 0 XTAL2 1000 Ω 26 pF 8 to 32 MHz Crystal/Resonator

1 1 XTAL3 500 Ω 16 pF 20 to 60 MHz Crystal/Resonator

jmartin
Improved

Introducing the Propeller Chip

Page 30 · Propeller Manual v1.1

Table 1-10: CLK Register CLKSELx (Bits 2:0)

CLKSELx

2 1 0
_CLKMODE

Setting
Master
Clock Source Notes

0 0 0 RCFAST ~12 MHz Internal No external parts.
May range from 8 MHz to 20 MHz.

0 0 1 RCSLOW ~20 kHz Internal Very low power. No external parts.
May range from 13 kHz to 33 kHz.

0 1 0 XINPUT XIN OSC OSCENA must be '1'.

0 1 1 XTALx and PLL1X XIN x 1 OSC+PLL OSCENA and PLLENA must be '1'.

1 0 0 XTALx and PLL2X XIN x 2 OSC+PLL OSCENA and PLLENA must be '1'.

1 0 1 XTALx and PLL4X XIN x 4 OSC+PLL OSCENA and PLLENA must be '1'.

1 1 0 XTALx and PLL8X XIN x 8 OSC+PLL OSCENA and PLLENA must be '1'.

1 1 1 XTALx and PLL16X XIN x 16 OSC+PLL OSCENA and PLLENA must be '1'.

Locks
There are eight lock bits (also known as semaphores) available to facilitate exclusive access
to user-defined resources among multiple cogs. If a block of memory is to be used by two or
more cogs at once and that block consists of more than one long (four bytes), the cogs will
each have to perform multiple reads and writes to retrieve or update that memory block. This
leads to the likely possibility of read/write contention on that memory block where one cog
may be writing while another is reading, resulting in misreads and/or miswrites.

The locks are global bits accessed through the Hub via the hub instructions: LOCKNEW,
LOCKRET, T LOCKSET, and LOCKCLR. Because locks are accessed only through the Hub, only one
cog at a time can affect them, making this an effective control mechanism. The Hub
maintains an inventory of which locks are in use and their current states, and cogs can check
out, return, set, and clear locks as needed during run time. See LOCKNEW, 122; LOCKRET 125T, ;
LOCKSETT, 126; and LOCKCLR, 120 for more information.

Main Memory
The Main Memory is a block of 64 K bytes (16 K longs) that is accessible by all cogs as a
mutually exclusive resource through the Hub. It consists of 32 KB of RAM and 32 KB of

1: Introducing the Propeller Chip
ROM. The 32 KB of Main RAM is general purpose and is the destination of a Propeller
Application either downloaded from a host or uploaded from the external 32 KB EEPROM.
The 32 KB of Main ROM contains all the code and data resources vital to the Propeller chip’s
function: character definitions, log, anti-log and sine tables, and the Boot Loader and Spin
Interpreter. The Main Memory organization is shown in Figure 1-5.

Figure 1-5: Main
Memory Map

Main RAM
The first half of Main Memory is all RAM. This space is used for your program, data,
variables and stack(s); otherwise known as your Propeller Application.

When a program is loaded into the chip, either from a host or from an external EEPROM, this
entire memory space is written. The first 16 locations, $0000 – $000F, hold initialization data
used by the Boot Loader and Interpreter. Your program’s executable code and data will
begin at $0010 and extend for some number of longs. The area after your executable code,
extending to $7FFF, is used as variable and stack space.

There are two values stored in the initialization area that might be of interest to your program:
a long at $0000 contains the initial master clock frequency, in Hertz, and a byte following it
at $0004 contains the initial value written into the CLK register. These two values can be
read/written using their physical addresses (LONG[$0] and BYTE[$4]) and can be read by using
their predefined names (CLKFREQ and CLKMODE). If you change the CLK register without using
the CLOCKSET command, you will also need to update these two locations so that objects which
reference them will have current information.

Propeller Manual v1.1 · Page 31

Introducing the Propeller Chip

Main ROM
The second half of Main Memory is all ROM. This space is used for character definitions,
math functions, and the Boot Loader and Spin Interpreter.

Character Definitions
The first half of ROM is dedicated to a set of 256 character definitions. Each character
definition is 16 pixels wide by 32 pixels tall. These character definitions can be used for
video displays, graphical LCD's, printing, etc. The character set is based on a North
American / Western European layout (Basic Latin and Latin-1 Supplement), with many
specialized characters inserted. The special characters are connecting waveform and
schematic building-blocks, Greek symbols commonly used in electronics, and several arrows
and bullets.

Figure 1-6: Propeller Font Characters

The character definitions are numbered 0 to 255 from left-to-right, top-to-bottom in Figure
1-6, above. In ROM, they are arranged with each pair of adjacent even-odd characters
merged together to form 32 longs. The first character pair is located in bytes $8000-$807F.
The second pair occupies bytes $8080-$80FF, and so on, until the last pair fills $BF80-
$BFFF. The Propeller Tool includes an interactive character chart (Help → View Character
Chart…) that has a ROM Bitmap view which shows where and how each character resides in
ROM.
Page 32 · Propeller Manual v1.1

1: Introducing the Propeller Chip
The character pairs are merged row-by-row such that each character's 16 horizontal pixels are
spaced apart and interleaved with their neighbors' so that the even character takes bits 0, 2, 4,
...30, and the odd character takes bits 1, 3, 5, ...31. The leftmost pixels are in the lowest bits,
while the rightmost pixels are in the highest bits, as shown in Figure 1-7. This forms a long (4
bytes) for each row of pixels in the character pair. 32 such longs, building from the
character’s top row down to the bottom, make up the complete merged-pair definition. The
definitions are encoded in this manner so that a cog’s video hardware can handle the merged
longs directly, using color selection to display either the even or the odd character. It also has
the advantage of allowing run-time character pairs (see next paragraph) that are four-color
characters used to draw beveled buttons, lines and focus indicators.

Figure 1-7: Propeller Character Interleaving

Some character codes have inescapable meanings, such as 9 for Tab, 10 for Line Feed, and 13
for Carriage Return. These character codes invoke actions and do not equate to static
character definitions. For this reason, their character definitions have been used for special
four-color characters. These four-color characters are used for drawing 3-D box edges at run
time and are implemented as 16 x 16 pixel cells, as opposed to the normal 16 x 32 pixel cells.
They occupy even-odd character pairs 0-1, 8-9, 10-11, and 12-13. Figure 1-8 shows an
example of a button with 3D beveled edges made from some of these characters.

Figure 1-8: Button
with 3-D Beveled
Edges

The Propeller Tool includes, and uses, the Parallax True Type® font which follows the design
of the Propeller Font embedded in the hardware. With this font, and the Propeller Tool, you

Propeller Manual v1.1 · Page 33

Introducing the Propeller Chip

Page 34 · Propeller Manual v1.1

can include schematics, timing diagrams and other diagrams right in the source code for your
application.

Log and Anti-Log Tables
The log and anti-log tables are useful for converting values between their number form and
exponent form.

When numbers are encoded into exponent form, simple math operations take on more
complex effects. For example ‘add’ and ‘subtract’ become ‘multiply’ and ‘divide.’ ‘Shift left’
becomes ‘square’ and ‘shift right’ becomes 'square-root.’ ‘Divide by 3’ will produce ‘cube
root.’ Once the exponent is converted back to a number, the result will be apparent.

See Appendix B: Math Samples and Function Tables on page 380 for more information.

Sine Table
The sine table provides 2,049 unsigned 16-bit sine samples spanning from 0° to 90°,
inclusively (0.0439° resolution). Sine values for all other quadrants covering > 90° to < 360°
can be calculated from simple transformations on this single-quadrant sine table. The sine
table can be used for calculations related to angular phenomena.

See Appendix B: Math Samples and Function Tables on page 380 for more information.

Boot Loader and Spin Interpreter
The last section in Main ROM contains the Propeller chip’s Boot Loader and Spin Interpreter
programs.

The Boot Loader is responsible for initializing the Propeller upon power-up/reset. When a
Boot Up procedure is started, the Boot Loader is loaded into Cog 0’s RAM and the cog
executes the code starting at location 0. The Boot Loader program first checks the host and
EEPROM communication pins for code/data to download/upload, processes that information
accordingly and finally it either launches the Spin Interpreter program into Cog 0’s RAM
(overwriting itself) to run the user’s Propeller Application, or it puts the Propeller into
shutdown mode. See the Boot Up Procedure section on page 18.

The Spin Interpreter program fetches and executes the Propeller Application from Main
RAM. This may lead to launching additional cogs to run more Spin code or Propeller
Assembly code, as is requested by the application. See Run-Time Procedure, page 18.

2: Spin Language Reference

Chapter 2: Spin Language Reference
This chapter describes all elements of the Propeller chip’s Spin language and is best used as a
reference for individual elements of the Spin language. For a tutorial on the use of the
language refer to the Spin Language Tutorial in the Propeller Tool’s on-line help, then return
here for more details.

The Spin Language Reference is divided into three sections:

1) The Structure of the Propeller Objects. Propeller Objects consist of Spin code,
optional Assembly Code, and data. An object’s Spin code provides it with structure,
consisting of special-purpose blocks. This section lists these blocks and the elements
that may be used in each. Each listed element has a page reference for more
information.

2) The Categorical Listing of the Propeller Spin Language. All elements, including
operators and syntax symbols, are grouped by related function. This is a great way to
quickly realize the breadth of the language and what features are available for
specific uses. Each listed element has a page reference for more information. Some
elements are marked with a superscript “a” indicating that they are also available in
Propeller Assembly, though syntax may vary. Such marked elements are also
included in Chapter 3: Assembly Language Reference.

3) The Spin Language Elements. Most elements have their own dedicated sub-
section, alphabetically arranged to ease searching for them. Those individual
elements without a dedicated sub-section, such as Operators, Symbols and some
constants, are grouped within other related sub-sections but can be easily located by
following their page reference from the Categorical Listing.

Propeller Manual v1.1 · Page 35

Spin Language Reference

Page 36 · Propeller Manual v1.1

Structure of Propeller Objects/Spin
Each Propeller object is a Spin file that has an inherent structure consisting of up to six
different special-purpose blocks: CON, VAR, OBJ, PUB, PRI, and DAT. These blocks are shown
below (in the order that they typically appear in objects) along with the set of elements usable
within each.

For detailed examples of the object (Spin) structure and usage, refer to the Propeller
Programming Tutorial in the Propeller Tool Help.

CON: Constant blocks define global constants (page 84).
_CLKFREQ p 65 NEGX p 93 PLL16X p 68 XINPUT p 68
_CLKMODE p 68 Operators* p 143 POSX p 93 XTAL1 p 68
_FREE p 110 PI p 93 RCFAST p 68 XTAL2 p 68
_STACK p 202 PLL1X p 68 RCSLOW p 68 XTAL3 p 68
_XINFREQ p 236 PLL2X p 68 ROUND p 198
FALSE p 93 PLL4X p 68 TRUE p 93
FLOAT p 108 PLL8X p 68 TRUNC p 209

* Non-assignment operators only.

VAR: Variable blocks define global variables (page 210).
BYTE p 51 LONG p 128 ROUND p 198 TRUNC p 209
FLOAT p 108 Operators* p 143 WORD p 227

* Non-assignment operators only.

OBJ: Object blocks define referenced objects (page 141).
FLOAT p 108 Operators* p 143 ROUND p 198 TRUNC p 209

* Non-assignment operators only.

2: Spin Language Reference

PUB/PRI: Public and Private method blocks define Spin routines (pages 182/181).
ABORT p 47 FLOAT p 108 Operators p 143 ROUND p 198
BYTE p 51 FRQA p 111 OUTA p 175 SPR p 200
BYTEFILL p 57 FRQB p 111 OUTB p 175 STRCOMP p 203
BYTEMOVE p 58 IF p 112 PAR p 178 STRING p 205
CASE p 59 IFNOT p 117 PHSA p 180 STRSIZE p 206
CHIPVER p 62 INA p 117 PHSB p 180 TRUE p 93
CLKFREQ p 63 INB p 117 PI p 93 TRUNC p 209
CLKMODE p 67 LOCKCLR p 120 PLL1X p 68 VCFG p 213
CLKSET p 71 LOCKNEW p 122 PLL2X p 68 VSCL p 216
CNT p 73 LOCKRET p 125 PLL4X p 68 WAITCNT p 218
COGID p 75 LOCKSET p 126 PLL8X p 68 WAITPEQ p 222
COGINIT p 76 LONG p 128 PLL16X p 68 WAITPNE p 224
COGNEW p 78 LONGFILL p 134 POSX p 93 WAITVID p 225
COGSTOP p 83 LONGMOVE p 135 QUIT p 186 WORD p 227
CONSTANT p 91 LOOKDOWN p 136 RCFAST p 68 WORDFILL p 234
CTRA p 95 LOOKDOWNZ p 136 RCSLOW p 68 WORDMOVE p 235
CTRB p 95 LOOKUP p 138 REBOOT p 187 XINPUT p 68
DIRA p 104 LOOKUPZ p 138 REPEAT p 188 XTAL1 p 68
DIRB p 104 NEGX p 93 RESULT p 194 XTAL2 p 68
FALSE p 93 NEXT p 140 RETURN p 196 XTAL3 p 68

DAT: Data blocks define data and Propeller Assembly code (page 99).

Assembly p 238 FRQB p 111 PI p 93 TRUNC p 209
BYTE p 51 INA p 117 PLL1X p 68 VCFG p 213
CNT p 73 INB p 117 PLL2X p 68 VSCL p 216
CTRA p 95 LONG p 128 PLL4X p 68 WORD p 227
CTRB p 95 NEGX p 93 PLL8X p 68 XINPUT p 68
DIRA p 104 Operators* p 143 PLL16X p 68 XTAL1 p 68
DIRB p 104 OUTA p 175 POSX p 93 XTAL2 p 68
FALSE p 93 OUTB p 175 RCFAST p 68 XTAL3 p 68
FILE p 107 PAR p 178 RCSLOW p 68
FLOAT p 108 PHSA p 180 ROUND p 198
FRQA p 111 PHSB p 180 TRUE p 93
* Non-assignment operators only.

Propeller Manual v1.1 · Page 37

Spin Language Reference

Categorical Listing of Propeller Spin Language
Elements marked with a superscript “a” are also available in Propeller Assembly.

Block Designators
CON Declare constant block; p 84.
VAR Declare variable block; p 210.
OBJ Declare object reference block; p 141.
PUB Declare public method block; p 182.
PRI Declare private method block; p 181.
DAT Declare data block; p 99.

Configuration
CHIPVER Propeller chip version number; p 62.
CLKMODE Current clock mode setting; p 67.
_CLKMODE Application-defined clock mode (read-only); p 68.
CLKFREQ Current clock frequency; p 63.
_CLKFREQ Application-defined clock frequency (read-only); p 65.
CLKSETa Set clock mode and clock frequency; p 71.
_XINFREQ Application-defined external clock frequency (read-only); p 236.
_STACK Application-defined stack space to reserve (read-only); p 202.
_FREE Application-defined free space to reserve (read-only); p 110.
RCFAST Constant for _CLKMODE: internal fast oscillator; p 68.
RCSLOW Constant for _CLKMODE: internal slow oscillator; p 68.
XINPUT Constant for _CLKMODE: external clock/osc (XI pin); p 68.
XTAL1 Constant for _CLKMODE: external low-speed crystal; p 68.
XTAL2 Constant for _CLKMODE: external med-speed crystal; p 68.
XTAL3 Constant for _CLKMODE: external high-speed crystal; p 68.
PLL1X Constant for _CLKMODE: external frequency times 1; p 68.
PLL2X Constant for _CLKMODE: external frequency times 2; p 68.
PLL4X Constant for _CLKMODE: external frequency times 4; p 68.

Page 38 · Propeller Manual v1.1

2: Spin Language Reference
PLL8X Constant for _CLKMODE: external frequency times 8; p 68.
PLL16X Constant for _CLKMODE: external frequency times 16; p 68.

Cog Control
COGIDa Current cog’s ID (0-7); p 75.
COGNEW Start the next available cog; p 78.
COGINITa Start, or restart, a cog by ID; p 76.
COGSTOPa Stop a cog by ID; p 83.
REBOOT Reset the Propeller chip; p 187.

Process Control
LOCKNEWa Check out a new lock; p 122.
LOCKRETa Release a lock; p 125.
LOCKCLRa Clear a lock by ID; p 120.
LOCKSETa Set a lock by ID; p 126.
WAITCNTa Wait for System Counter to reach a value; p 218.
WAITPEQa Wait for pin(s) to be equal to value; p 222.
WAITPNEa Wait for pin(s) to be not equal to value; p 224.
WAITVIDa Wait for video sync and deliver next color/pixel group; p 225.

Flow Control
IF Conditionally execute one or more blocks of code; p 112.

IFNOT Conditionally execute one or more blocks of code; p 117.

CASE Evaluate expression and execute block of code that satisfies a condition;

p 59.

...ELSEIF

...ELSEIFNOT

...ELSE

...OTHER

...ELSEIF

...ELSEIFNOT

...ELSE

Propeller Manual v1.1 · Page 39

Spin Language Reference

Page 40 · Propeller Manual v1.1

REPEAT Execute block of code repetitively an infinite or finite number of times
with optional loop counter, intervals, exit and continue conditions; p
188.

NEXT Skip rest of REPEAT block and jump to next loop iteration; p . T 140
QUIT Exit from REPEAT loop; p . T 186
RETURN Exit PUB/PRI with normal status and optional return value; p 196.
ABORT Exit PUB/PRI with abort status and optional return value; p 47.

Memory
BYTE Declare byte-sized symbol or access byte of main memory; p 51.
WORD Declare word-sized symbol or access word of main memory; p 227.
LONG Declare long-sized symbol or access long of main memory; p 128.
BYTEFILL Fill bytes of main memory with a value; p 57.
WORDFILL Fill words of main memory with a value; p 234.
LONGFILL Fill longs of main memory with a value; p 134.
BYTEMOVE Copy bytes from one region to another in main memory; p 58.
WORDMOVE Copy words from one region to another in main memory; p 235.
LONGMOVE Copy longs from one region to another in main memory; p 135.
LOOKUP Get value at index (1..N) from a list; p 138.
LOOKUPZ Get value at zero-based index (0..N−1) from a list; p 138.
LOOKDOWN Get index (1..N) of a matching value from a list; p 136.
LOOKDOWNZ Get zero-based index (0..N−1) of a matching value from a list; p 136.
STRSIZE Get size of string in bytes; p 206.
STRCOMP Compare a string of bytes against another string of bytes; p 203.

...FROM

...TO

...STEP

...UNTIL

...WHILE

2: Spin Language Reference

Directives
STRING Declare in-line string expression; resolved at compile time; p 205.
CONSTANT Declare in-line constant expression; resolved at compile time; p 91.
FLOAT Declare floating-point expression; resolved at compile time; p 108.
ROUND Round compile-time floating-point expression to integer; p 198.
TRUNC Truncate compile-time floating-point expression at decimal; p 209.
FILE Import data from an external file; p 107.

Registers
DIRAa Direction Register for 32-bit port A; p 104.
DIRBa Direction Register for 32-bit port B (future use); p 104.
INAa Input Register for 32-bit port A (read only); p 117.
INBa Input Register for 32-bit port B (read only) (future use); p 118.
OUTAa Output Register for 32-bit port A; p 175.
OUTBa Output Register for 32-bit port B (future use); p 177.
CNTa 32-bit System Counter Register (read only); p 73.
CTRAa Counter A Control Register; p 95.
CTRBa Counter B Control Register; p 95.
FRQAa Counter A Frequency Register; p 111.
FRQBa Counter B Frequency Register; p 111.
PHSAa Counter A Phase-Locked Loop (PLL) Register; p 180.
PHSBa Counter B Phase-Locked Loop (PLL) Register; p 180.
VCFGa Video Configuration Register; p 213.
VSCLa Video Scale Register; p 216.
PARa Cog Boot Parameter Register (read only); p 178.
SPR Special-Purpose Register array; indirect cog register access; p 200.

Propeller Manual v1.1 · Page 41

Spin Language Reference

Constants
TRUEa Logical true: -1 ($FFFFFFFF); p 93.
FALSEa Logical false: 0 ($00000000) ; p 93.
POSXa Maximum positive integer: 2,147,483,647 ($7FFFFFFF); p 93.
NEGXa Maximum negative integer: -2,147,483,648 ($80000000); p 93.
PIa Floating-point value for PI: ~3.141593 ($40490FDB); p 93.

Variable
RESULT Default result variable for PUB/PRI methods; p 194.

Unary Operators
+ Positive (+X); unary form of Add; p 150.
- Negate (-X); unary form of Subtract; p 150.
- - Pre-decrement (--X) or post-decrement (X--) and assign; p 151.
+ + Pre-increment (++X) or post-increment (X++) and assign; p 152.
^^ Square root; p 156.
|| Absolute Value; p 156.
~ Sign-extend from bit 7 (~X) or post-clear to 0 (X~); p 156.
~~ Sign-extend from bit 15 (~~X) or post-set to -1(X~~); p 157.
? Random number forward (?X) or reverse (X?); p 159.
|< Decode value (modulus of 32; 0-31) into single-high-bit long; p 160.
>| Encode long into magnitude (0 - 32) as high-bit priority; p 160.
! Bitwise: NOT; p 166.
NOT Boolean: NOT (promotes non-0 to -1); p 168.
@ Symbol address; p 173.
@@ Object address plus symbol value; p 173.

Page 42 · Propeller Manual v1.1

2: Spin Language Reference

Binary Operators
NOTE: All right-column operators are assignment operators.

= --and-- = Constant assignment (CON blocks); p 148.
:= --and-- := Variable assignment (PUB/PRI blocks); p 149.
+ --or-- += Add; p 149.
- --or-- -= Subtract; p 150.
* --or-- *= Multiply and return lower 32 bits (signed); p 153.
** --or-- **= Multiply and return upper 32 bits (signed); p 153.
/ --or-- /= Divide (signed); p 154.
// --or-- //= Modulus (signed); p 154.
#> --or-- #>= Limit minimum (signed); p 155.
<# --or-- <#= Limit maximum (signed); p 155.
~> --or-- ~>= Shift arithmetic right; p 158.
<< --or-- <<= Bitwise: Shift left; p 161.
>> --or-- >>= Bitwise: Shift right; p 161.
<- --or-- <-= Bitwise: Rotate left; p 162.
-> --or-- ->= Bitwise: Rotate right; p 162.
>< --or-- ><= Bitwise: Reverse; p 163.
& --or-- &= Bitwise: AND; p 164.
| --or-- |= Bitwise: OR; p 165.
^ --or-- ^= Bitwise: XOR; p 165.
AND --or-- AND= Boolean: AND (promotes non-0 to -1); p 167.
OR --or-- OR= Boolean: OR (promotes non-0 to -1); p 168.
= = --or-- = = = Boolean: Is equal; p 169.
<> --or-- <>= Boolean: Is not equal; p 170.
< --or-- <= Boolean: Is less than (signed); p 170.
> --or-- >= Boolean: Is greater than (signed); p 171.
=< --or-- =<= Boolean: Is equal or less (signed); p 171.
=> --or-- =>= Boolean: Is equal or greater (signed); p 172.

Propeller Manual v1.1 · Page 43

Spin Language Reference

Page 44 · Propeller Manual v1.1

Syntax Symbols
% Binary number indicator, as in %1010; p 207.
%% Quaternary number indicator, as in %%2130; p 207.
$ Hexadecimal indicator, as in $1AF or assembly 'here' indicator; p 207.
" String designator "Hello"; p 207.
_ Group delimiter in constant values, or underscore in symbols; p 207.
Object-Constant reference: obj#constant; p 207.
. Object-Method reference: obj.method(param) or decimal point; p 207.
.. Range indicator, as in 0..7; p 207.
: Return separator: PUB method : sym, or object assignment, etc.; p 207.
| Local variable separator: PUB method | temp, str; p 208.
\ Abort trap, as in \method(parameters); p 208.
, List delimiter, as in method(param1, param2, param3); p 208.
() Parameter list designators, as in method(parameters); p 208.
[] Array index designators, as in INA[2]; p 208.
{ } In-line/multi-line code comment designators; p 208.
{{ }} In-line/multi-line document comment designators; p 208.
' Code comment designator; p 208.
' ' Document comment designator; p 208.

jmartin
Improved

2: Spin Language Reference

Spin Language Elements
The remainder of this chapter describes the elements of the Spin Language, shown above, in
alphabetical order. A few elements are explained within the context of others for clarity; use
the page references from the categorical listing, above, to find those discussions. Many
elements are available both in Spin and Propeller Assembly. Those elements are described in
detail within this section, with references to them, and any differences, in the appropriate
areas of Chapter 3: Assembly Language Reference beginning on page 238.

Symbol Rules
Symbols are case-insensitive, alphanumeric names either created by the compiler (reserved
word) or by the code developer (user-defined word). They represent values (constants or
variables) to make source code easier to understand and maintain. Symbols must fit the
following rules:

1) Begins with a letter (a – z) or an underscore ‘_’.
2) Contains only letters, numbers, and underscores (a – z, 0 – 9, _); no spaces allowed.
3) Must be 30 characters or less.
4) Is unique to the object; not a reserved word (p. 379) or previous user-defined symbol.

Value Representations
Values can be entered in binary (base-2), quaternary (base-4), decimal (base-10),
hexadecimal (base-16), or character formats. Numerical values can also use underscores, ‘_’,
as a group separator to clarify numbers. The following are examples of these formats.

Table 2-1: Value Representations
Base Type of Value Examples

2 Binary %1010 –or– %11110000_10101100
4 Quaternary %%2130_3311 –or– %%3311_2301_1012

10 Decimal (integer) 1024 –or– 2_147_483_647 –or– -25
10 Decimal (floating-point) 1e6 –or– 1.000_005 –or– -0.70712
16 Hexadecimal $1AF –or– $FFAF_126D_8755
n/a Character "A"

Separators can be used in place of commas (in decimal values) or to form logical groups,
such as nibbles, bytes, words, etc.

Propeller Manual v1.1 · Page 45

jmartin
Improved

Spin Language Reference

Syntax Definitions
In addition to detailed descriptions, the following pages contain syntax definitions for many
elements that describe, in short terms, all the options of that element. The syntax definitions
use special symbols to indicate when and how certain element features are to be used.

BOLDCAPS Items in bold uppercase should be typed in as shown.

Bold Italics Items in bold italics should be replaced by user text;
symbols, operators, expressions, etc.

. .. : , # Periods, double-periods, colons, commas, pound signs,
pipes, back slashes, square brackets and parentheses
should be typed in where shown. | \ [] ()

〈 〉 Angle bracket symbols enclose optional items. Enter the
enclosed item if desired. Do not enter the angle brackets.

((┆)) Double parentheses symbols enclose mutually exclusive
items, separated by a dash-bar. Enter one, and only one,
of the encoded items. Do not enter the double
parentheses or dash-bar.

… Repetition symbol indicates that the previous item, or
group, can be repeated numerous times. Repeat the last
item(s) if desired. Do not enter the repetition symbol.

 New Line/Indent symbol indicates following items should
appear on the next line, indented by at least one space.

 Indent symbol indicates following items should be
intended by at least one space.

Single line Separates various syntax structure options.

Double line Separates instruction from the value it returns.

Since elements are limited to specific Spin blocks, all syntax definitions begin with an
indication of the type of block required. For example, the following syntax indicates that the
BYTEFILL command and its parameters must appear in either a PUB or PRI block, but it may be
one of many commands within that block.

((PUB ┆ PRI))
 BYTEFILL (StartAddress, Value, Count)

Page 46 · Propeller Manual v1.1

2: Spin Language Reference – ABORT

Propeller Manual v1.1 · Page 47

ABORT
Command: Exit from PUB/PRI method using abort status with optional return Value.

((PUB ┆ PRI))
 ABORT 〈Value〉
Returns: Either the current RESULT value, or Value if provided.

• Value is an optional expression whose value is to be returned, with abort status, from
the PUB or PRI method.

Explanation
ABORT is one of two commands (T ABORT and RETURN) that terminate a PUB or PRI method’s
execution.

ABORT causes a return from a T PUB or PRI method with abort status; meaning it pops the call
stack repeatedly until either the call stack is empty or it reaches a caller with an Abort Trap,
(\), and delivers a value in the process.

ABORT is useful for cases where a method needs to terminate and indicate an abnormal or
elevated status to the immediate caller or one its previous callers. For example, an
application may be involved in a complicated chain of events where any one of those events
could lead to a different branch of the chain or a final action decision. It may be easier to
write that application using small, specialized methods that are called in a nested fashion,
each meant to deal with a specific sub-event in the chain. When one of the simple methods
determines a course of action, it can issue an abort that completely collapses the nested call
chain and prevents all the intermediate methods from continuing.

T

When ABORT appears without the optional Value, it returns the current value of the T PUB/PRI’s
built-in RESULT variable. If the Value field was entered, however, the PUB or PRI aborts and
returns that Value instead.

About the Call Stack
When methods are called simply by referring to them from other methods, there must be
some mechanism in place to store where to return to once the called method is completed.
This mechanism is a called a “stack” but we’ll use the term “call stack” here. It is simply
RAM memory used to store return addresses, return values, parameters and intermediate
results. As more and more methods are called, the call stack logically gets longer. As more

ABORT – Spin Language Reference

Page 48 · Propeller Manual v1.1

and more methods are returned from (via RETURN or by reaching the end of the method) the
call stack gets shorter. This is called “pushing” onto the stack and “popping” off of the stack,
respectively.

The RETURN command pops the most recent data off the call stack to facilitate returning to the
immediate caller; the one who directly called the method that just returned. The ABORT
command, however, repetitively pops data off the call stack until it reaches a caller with an
Abort Trap (see below); returning to some higher-level caller that may have just been one
call, or many calls, up the nested chain of calls. Any return points along the way between an
aborting method and an abort trapping method are ignored and essentially terminated. In this
way, ABORT allows code to back way out of a very deep and potentially complicated series of
logic to handle a serious issue at a high level.

Using ABORT
Any method can choose to issue an ABORT command. It’s up to the higher-level code to
check for an abort status and handle it. This higher-level code can be either that which called
an aborting method directly, or via some other set of methods. To issue an ABORT command,
use something like the following:

 if <bad condition>
 abort 'If bad condition detected, abort

—or—

 if <bad condition>
 abort <value> 'If bad condition detected, abort with value

...where <bad condition> is a condition that determines the method should abort and <value>
is a value to return upon aborting.

The Abort Trap (\)
To trap an ABORT, the call to the method or method chain that could potentially abort must be
preceded with the Abort Trap symbol, a backslash (

T

\). For example, if a method named
MayAbort could possibly abort, or if it calls other methods that may abort, a calling method
could trap this with the following:

 if \MayAbort 'Call MayAbort with abort trap

 abort <value> 'Process abort

2: Spin Language Reference – ABORT

Propeller Manual v1.1 · Page 49

The type of exit that MayAbort actually used, ABORT or T RETURN, is not automatically known by
the trapping call; it may have just happened to be the destination of a RETURN command.
Therefore, the code must be written in a way to detect which type was used. Some
possibilities are: 1) code may be designed such that a high-level method is the only place that
traps an abort and other mid-level code processes things normally without allowing RETURNs
to propagate higher, or 2) aborting methods may return a special value that can not occur in
any normal circumstance, or 3) a global flag can be set by the aborting method prior to
aborting.

Example Use Of Abort
The following is an example of a simple-minded robot application in which the robot is
designed to move away from an object it senses with its four sensors (Left, Right, Front and
Back). Assume that CheckSensors, Beep, and MotorStuck are methods defined elsewhere.

CON
 #0, None, Left, Right, Front, Back 'Direction Enumerations

PUB Main | Direction
 Direction := None
 repeat
 case CheckSensors 'Get active sensor
 Left : Direction := Right 'Object on left? Let's go right
 Right : Direction := Left 'Object on right? Let's go left
 Front : Direction := Back 'Object in front? Let's go back
 Back : Direction := Front 'Object in back? Let's go front
 other : Direction := None 'Otherwise, stay still
 if not \Move(Direction) 'Move robot
 Beep 'We're stuck? Beep

PUB Move(Direction)
 result := TRUE 'Assume success
 if Direction == None
 return 'Return if no direction
 repeat 1000
 DriveMotors(Direction) 'Drive motor 1000 times

PUB DriveMotors(Direction)
 <code to drive motors>
 if MotorStuck
 abort FALSE 'If motor is stuck, abort

ABORT – Spin Language Reference

Page 50 · Propeller Manual v1.1

 <more code>

The above example shows three methods of various logical levels, Main (“high-level”), Move
(“mid-level”) and DriveMotors (“low-level”). The high-level method, Main, is the decision
maker of the application; deciding how to respond to events like sensor activations and motor
movements. The mid-level method, Move, is responsible for moving the robot a short
distance. The low-level method, DriveMotors, handles the details of driving the motors
properly and verifying that it is successful.

In an application like this, critical events could occur in low-level code that needs to be
addressed by high-level code. The ABORT command can be instrumental in getting the
message to the high-level code without requiring complicated message-passing code for all
the mid-level code in-between. In this case, we have only one mid-level method but there
could be many nested mid-level methods between the high-level and the low-level.

The Main method gets sensor inputs and decides what direction to move the robot via the CASE
statement. It then calls Move in a special way, with the Abort Trap symbol, \ , preceding it.
The Move method sets its RESULT to T TRUE and then calls DriveMotors in a finite loop. If it
successfully completes, Move returns TRUE. The DriveMotors method handles the
complication of moving the robot’s motors to achieve the desired direction, but if it
determines the motors are stuck, it cannot move them further and it aborts with a FALSE value.
Otherwise it simply returns normally.

If everything is fine, the DriveMotors method returns normally, the Move method carries on
normally and eventually returns TRUE, and the Main method continues on normally. If,
however, DriveMotors finds a problem, it ABORTs which causes the Propeller to pop the call
stack all the way through the Move method and up to the Main method where the Abort Trap
was found. The Move method is completely oblivious to this and is now effectively
terminated. The Main method checks the value returned by its call to Move (which is now the
FALSE value that was actually returned by the aborted DriveMotors method deep down the call
stack) and it decides to Beep as a result of the detected failure.

If we had not put the Abort Trap, (\), in front of the call to Move, when DriveMotors aborted,
the call stack would have been popped until it was empty and this application would have
terminated immediately.

2: Spin Language Reference – BYTE

BYTE
Designator: Declare byte-sized symbol, byte aligned/sized data, or read/write a byte of main
memory.

VAR

 BYTE Symbol 〈[Count]〉
DAT

 〈Symbol〉 BYTE Data 〈[Count]〉
((PUB ┆ PRI))
 BYTE [BaseAddress] 〈[Offset]〉
((PUB ┆ PRI))
 Symbol.BYTE 〈[Offset]〉

• Symbol is the desired name for the variable (Syntax 1) or data block (Syntax 2) or is
the existing name of the variable (Syntax 4).

• Count is an optional expression indicating the number of byte-sized elements for
Symbol (Syntax 1), or the number of byte-sized entries of Data (Syntax 2) to store in
a data table.

• Data is a constant expression or comma-separated list of constant expressions.
Quoted strings of characters are also allowed; they are treated as a comma-separated
list of characters.

• BaseAddress is an expression describing the address of main memory to read or write.
If Offset is omitted, BaseAddress is the actual address to operate on. If Offset is
specified, BaseAddress + Offset is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate on,
or the offset from byte 0 of Symbol.

Explanation
BYTE is one of three multi-purpose declarations (BYTE, WORD, and LONG) that declare or operate
on memory. BYTE can be used to:

1) declare a byte-sized (8-bit) symbol or a multi-byte symbolic array in a VAR block, or
2) declare byte-aligned, and possibly byte-sized, data in a DAT block, or
3) read or write a byte of main memory at a base address with an optional offset, or
4) access a byte within a word-sized or long-sized variable.

Propeller Manual v1.1 · Page 51

jmartin
Improved

jmartin
Improved

BYTE – Spin Language Reference

Page 52 · Propeller Manual v1.1

Range of Byte
Memory that is byte-sized (8 bits) can contain a value that is one of 28 possible combinations
of bits (i.e., one of 256 combinations). This gives byte-sized values a range of 0 to 255.
Since the Spin language performs all mathematic operations using 32-bit signed math, any
byte-sized values will be internally treated as positive long-sized values. However, the actual
numeric value contained within a byte is subject to how a computer and user interpret it. For
example, you may choose to use the Sign-Extend 7 operator (~), page 156, in a Spin
expression to convert a byte value that you interpret as “signed” (-128 to +127) to a signed
long value.

Byte Variable Declaration (Syntax 1)
In VAR blocks, syntax 1 of BYTE is used to declare global, symbolic variables that are either
byte-sized, or are any array of bytes.

For example:

VAR
 byte Temp 'Temp is a byte
 byte Str[25] 'Str is a byte array

The above example declares two variables (symbols), Temp and Str. Temp is simply a single,
byte-sized variable. The line under the Temp declaration uses the optional Count field to
create an array of 25 byte-sized variable elements called Str. Both Temp and Str can be
accessed from any PUB or PRI method within the same object that this VAR block was declared;
they are global to the object. An example of this is below.

PUB SomeMethod
 Temp := 250 'Set Temp to 250
 Str[0] := "A" 'Set first element of Str to "A"
 Str[1] := "B" 'Set second element of Str to "B"
 Str[24] := "C" 'Set last element of Str to "C"

For more information about using BYTE in this way, refer to the VAR section’s Variable
Declarations (Syntax 1) on page 210, and keep in mind that BYTE is used for the Size field in
that description.

Byte Data Declaration (Syntax 2)
In DAT blocks, syntax 2 of T BYTE is used to declare byte-aligned, and/or byte-sized data that is
compiled as constant values in main memory. DATT blocks allow this declaration to have an

jmartin
New

2: Spin Language Reference – BYTE
optional symbol preceding it, which can be used for later reference (See DAT, page 99). For
example:

DAT
 MyData byte 64, $AA, 55 'Byte-aligned and byte-sized data
 MyString byte "Hello",0 'A string of bytes (characters)

The above example declares two data symbols, MyData and MyString. Each data symbol
points to the start of byte-aligned and byte-sized data in main memory. MyData’s values, in
main memory, are 64, $AA and 55, respectively. MyString’s values, in main memory, are
“H”, “e”, “l”, “l”, “o”, and 0, respectively. This data is compiled into the object and resulting
application as part of the executable code section and may be accessed using the read/write
form, syntax 3, of BYTE (see below). For more information about using BYTE in this way, refer
to the DAT section’s Declaring Data(Syntax 1) on page 100, and keep in mind that BYTE is
used for the Size field in that description.

Data items may be repeated by using the optional Count field. For example:

DAT
 MyData byte 64. $AA[8], 55

The above example declares a byte-aligned, byte-sized data table, called MyData, consisting of
the following ten values: 64, $AA, $AA, $AA, $AA, $AA, $AA, $AA, $AA, 55. There were
eight occurrences of $AA due to the [8] in the declaration immediately after it.

Reading/Writing Bytes of Main Memory (Syntax 3)
In PUB and PRI blocks, syntax 3 of BYTE is used to read or write byte-sized values of main
memory. This is done by writing expressions that refer to main memory using the form:
byte[BaseAddress][Offset]. Here’s an example.

PUB MemTest | Temp
 Temp := byte[@MyData][1] 'Read byte value
 byte[@MyStr][0] := "M" 'Write byte value

DAT
 MyData byte 64, $AA, 55 'Byte-sized/aligned data
 MyStr byte "Hello", 0 'A string of bytes (characters)

In this example, the DAT block (bottom of code) places its data in memory as shown in Figure
2-1. The first data element of MyData is placed at memory address $18. The last data element
of MyData is placed at memory address $1A, with the first element of MyStr immediately

Propeller Manual v1.1 · Page 53

jmartin
New

jmartin
Improved

BYTE – Spin Language Reference
following it at $1B. Note that the starting address ($18) is arbitrary and is likely to change as
the code is modified or the object itself is included in another application.

Data — 64 $AA 55 “H” “e” “l” “l” “o” 0

Figure 2-1: Main Memory Byte-Sized Data Structure and Addressing

$18
(0)

[MyData]

$19
(1)

$1A
(2)

$1B
(0)

[MyStr]

$1C
(1)

$1E
(3)

$1D
(2)

$1F
(4)

Byte Address —
(Byte Offset) —
[Byte Symbol] —

$20
(5)

Near the top of the code, the first executable line of the MemTest method,
Temp := byte[@MyData][1], reads a byte-sized value from main memory. It sets local
variable Temp to $AA; the value read from main memory address $19. The address $19 was
determined by the address of the symbol MyData ($18) plus byte offset 1. The following
progressive simplification demonstrates this.

byte[@MyData][1] byte[$18][1] byte[$18 + 1] byte[$19]

The next line, byte[@MyStr][0] := "M", writes a byte-sized value to main memory. It sets the
value at main memory address $1B to the character “M.” The address $1B was calculated
from the address of the symbol MyStr ($1B) plus byte offset 0.

byte[@MyStr][0] byte[$1B][0] byte[$1B + 0] byte[$1B]

Addressing Main Memory
As Figure 2-1 shows, main memory is really just a set of contiguous bytes and the addresses
are calculated in terms of bytes. This concept is a consistent theme for any commands that
use addresses.

Main memory is ultimately addressed in terms of bytes regardless of the size of value you are
accessing; byte, word, or long. This is advantageous when thinking about how bytes, words,
and longs relate to each other, but it may prove problematic when thinking of multiple items
of a single size, like words or longs. See the Syntax 3 discussions for WORD (page 229) and
LONG (page 130) for examples of accessing words and longs.

For more explanation of how data is arranged in memory, see the DAT section’s Declaring
Data(Syntax 1) on page 100.

Page 54 · Propeller Manual v1.1

jmartin
New

2: Spin Language Reference – BYTE
An Alternative Memory Reference
There is yet another way to access the data from the code example above; you could
reference the data symbols directly. For example, this statement reads the first byte of the
MyData list:

Temp := MyData[0]

And these statements read the second and third bytes of MyData:

Temp := MyData[1]
Temp := MyData[2]

Other Addressing Phenomena
Both the BYTE and direct symbol reference techniques demonstrated above can be used to
access any location in main memory, regardless of how it relates to defined data. Here are
some examples:

Temp := byte[@MyStr][-1] 'Read last byte of MyData (before MyStr)
Temp := byte[@MyData][3] 'Read first byte of MyStr (after MyData)
Temp := MyStr[-3] 'Read first byte of MyData
Temp := MyData[-2] 'Read byte that is two bytes before MyData

These examples read beyond the logical borders (start point or end point) of the lists of data
they reference. This may be a useful trick, but more often it’s done by mistake; be careful
when addressing memory, especially if you’re writing to that memory.

Accessing Bytes of Larger-Sized Symbols (Syntax 4)
In PUB and PRI blocks, syntax 4 of BYTE is used to read or write byte-sized components of
word-sized or long-sized variables. For example:

VAR
 word WordVar
 long LongVar

PUB Main
 WordVar.byte := 0 'Set first byte of WordVar to 0
 WordVar.byte[0] := 0 'Same as above
 WordVar.byte[1] := 100 'Set second byte of WordVar to 100
 LongVar.byte := 25 'Set first byte of LongVar to 25
 LongVar.byte[0] := 25 'Same as above
 LongVar.byte[1] := 50 'Set second byte of LongVar to 50

Propeller Manual v1.1 · Page 55

jmartin
New

jmartin
New

BYTE – Spin Language Reference

Page 56 · Propeller Manual v1.1

 LongVar.byte[2] := 75 'Set third byte of LongVar to 75
 LongVar.byte[3] := 100 'Set fourth byte of LongVar to 100

This example accesses the byte-sized components of both WordVar and LongVar, individually.
The comments indicate what each line is doing. At the end of the Main method, WordVar will
equal 25,600 and LongVar will equal 1,682,649,625.

The same techniques can be used to reference byte-sized components of word-sized or long-
sized data symbols.

PUB Main | Temp
 Temp := MyData.byte[0] 'Read low byte of MyData word 0
 Temp := MyData.byte[1] 'Read high byte of MyData word 0
 MyList.byte[3] := $12 'Write high byte of MyList long 0
 MyList.byte[4] := $FF 'Write low byte of MyList long 1

DAT
 MyData word $ABCD, $9988 'Word-sized/aligned data
 MyList long $FF998877, $EEEE 'Long-sized/aligned data

The first and second executable lines of Main read the values $CD and $AB, respectively,
from MyData. The third line writes $12 to the high byte of the long in element 0 of MyList,
resulting in a value of $12998877. The fourth line writes $FF to the byte at index 4 in MyList
(the low byte of the long in element 1), resulting in a value of $EEFF.

jmartin
New

2: Spin Language Reference – BYTEFILL

Propeller Manual v1.1 · Page 57

BYTEFILL
Command: Fill bytes of main memory with a value.

((PUB ┆ PRI))
 BYTEFILL (StartAddress, Value, Count)

• StartAddress is an expression indicating the location of the first byte of memory to fill
with Value.

• Value is an expression indicating the value to fill bytes with.
• Count is an expression indicating the number of bytes to fill, starting with

StartAddress.

Explanation
BYTEFILL is one of three commands (BYTEFILL, WORDFILL, and LONGFILL) used to fill blocks of
main memory with a specific value. BYTEFILL fills Count bytes of main memory with Value,
starting at location StartAddress.

Using BYTEFILL
BYTEFILL is a great way to clear large blocks of byte-sized memory. For example:

VAR
 byte Buff[100]

PUB Main
 bytefill(@Buff, 0, 100) 'Clear Buff to 0

The first line of the Main method, above, clears the entire 100-byte Buff array to all zeros.
BYTEFILL is faster at this task than a dedicated REPEAT loop is. T

BYTEMOVE – Spin Language Reference

Page 58 · Propeller Manual v1.1

BYTEMOVE
Command: Copy bytes from one region to another in main memory.

((PUB ┆ PRI))
 BYTEMOVE (DestAddress, SrcAddress, Count)

• DestAddress is an expression specifying the main memory location to copy the first
byte of source to.

• SrcAddress is an expression specifying the main memory location of the first byte of
source to copy.

• Count is an expression indicating the number of bytes of the source to copy to the
destination.

Explanation
BYTEMOVE is one of three commands (BYTEMOVE, WORDMOVE, and LONGMOVE) used to copy blocks
of main memory from one area to another. BYTEMOVE copies Count bytes of main memory
starting from SrcAddress to main memory starting at DestAddress.

Using BYTEMOVE
BYTEMOVE is a great way to copy large blocks of byte-sized memory. For example:

VAR
 byte Buff1[100]
 byte Buff2[100]

PUB Main
 bytemove(@Buff2, @Buff1, 100) 'Copy Buff1 to Buff2

The first line of the Main method, above, copies the entire 100-byte Buff1 array to the Buff2
array. BYTEMOVE is faster at this task than a dedicated REPEAT loop. T

2: Spin Language Reference – CASE

Propeller Manual v1.1 · Page 59

CASE
Command: Compare expression against matching expression(s) and execute code block if
match found.

((PUB ┆ PRI))
 CASE CaseExpression
 MatchExpression :
 Statement(s)
 〈 MatchExpression :
 Statement(s) 〉
 〈 OTHER :
 Statement(s) 〉

• CaseExpression is the expression to compare.
• MatchExpression is a singular or comma-delimited set of value- and/or range-

expressions, to compare CaseExpression against. Each MatchExpression must be
followed by a colon (:).

• Statement(s) is a block of one or more lines of code to execute when the
CaseExpression matches the associated MatchExpression. The first, or only,
statement in Statement(s) may appear to the right of the colon on the
MatchExpression line, or below it and slightly indented from the MatchExpression
itself.

Explanation
CASE is one of the three conditional commands (IF, IFNOT, and T CASE) that conditionally
executes a block of code. CASE is the preferred structure to use, as opposed to
IF..ELSEIF..ELSE, when you need to compare the equality of CaseExpression to a number of
different values.

CASE compares CaseExpression against the values of each MatchExpression, in order, and if a
match is found, executes the associated Statement(s). If no previous matches were found, the
Statement(s) associated with the optional OTHER command are executed.

Indention is Critical
IMPORTANT: Indention is critical. The Spin language relies on indention (of one space or
more) on lines following conditional commands to determine if they belong to that command
or not. To have the Propeller Tool indicate these logically grouped blocks of code on-screen,

CASE – Spin Language Reference
you can press Ctrl + I to turn on block-group indicators. Pressing Ctrl + I again will disable
that feature. See the Propeller Tool Help for a complete list of shortcut keys.

Using CASE
CASE is handy where one of many actions needs to be performed depending on the value of an
expression. The following example assumes A, X and Y are variables defined earlier.

 case X+Y 'Test X+Y
 10, 15: !outa[0] 'X+Y = 10 or 15? Toggle P0
 A*2 : !outa[1] 'X+Y = A*2? Toggle P1
 30..40: !outa[2] 'X+Y in 30 to 40? Toggle P2
 X += 5 'Add 5 to X

Since the MatchExpression lines are indented from the CASE line, they belong to the CASE
structure and are executed based on the CaseExpression comparison results. The next line,
X += 5, is not indented from CASE, so it is executed regardless of the CASE results.

This example compares the value of X + Y against 10 or 15, A*2 and the range 30 through
40. If X + Y equals 10 or 15, P0 is toggled. If X + Y equals A*2, P1 is toggled. If X + Y is in
the range 30 through 40, inclusive, then P2 is toggled. Whether or not any match was found,
the X += 5 line is executed next.

Using OTHER
The optional OTHER component of CASE is similar to the optional ELSE component of an IF
structure. For example:

 case X+Y 'Test X+Y
 10, 15: !outa[0] 'X+Y = 10 or 15? Toggle P0
 25 : !outa[1] 'X+Y = 25? Toggle P1
 20..30: !outa[2] 'X+Y in 20 to 30? Toggle P2
 OTHER : !outa[3] 'Otherwise toggle P3
 X += 5 'Add 5 to X

This example is similar to the last one except that the third MatchStatement checks for the
range 20 to 30 and there’s an OTHER component. If X + Y does not equal 10, 15, 25, or is not
in the range 20 to 30, the Statement(s) block following OTHER is executed. Following that, the
X += 5 line is executed.

There is an important concept to note about this example. If X + Y is 10 or 15, P0 is toggled,
or if X + Y is 25, P1 is toggled, or if X + Y is 20 to 30, P2 is toggled, etc. This is because the
MatchExpressions are checked, one at a time, in the order they are listed and only the first

Page 60 · Propeller Manual v1.1

2: Spin Language Reference – CASE

Propeller Manual v1.1 · Page 61

expression that is a match has its block of code executed; no further expressions are tested
after that. This means that if we had rearranged the 25 and 20..30 lines, so that the range of
20..30 is checked first, we’d have a bug in our code. We did this below:

 case X+Y 'Test X+Y
 10, 15: !outa[0] 'X+Y = 10 or 15? Toggle P0
 20..30: !outa[2] 'X+Y in 20 to 30? Toggle P2
 25 : !outa[1] 'X+Y = 25? Toggle P1 <-- THIS NEVER RUNS

The above example contains an error because, while X + Y could be equal to 25, that match
expression would never be tested since the previous one, 20..30 would be tested first, and
since it is true, its block is executed and no further match expressions are checked.

Variations of Statement(s)
The above examples only use one line per Statement(s) block, but each block can be many
lines of course. Additionally, the Statement(s) block may also appear below, and slightly
indented from, the MatchExpression itself. The following two examples show these
variations.

 case A 'Test A
 4 : !outa[0] 'A = 4? Toggle P0
 Z+1 : !outa[1] 'A = Z+1? Toggle P1
 !outa[2] 'And toggle P2
 10..15: !outa[3] 'A in 10 to 15? Toggle P3

 case A 'Test A
 4: 'A = 4?
 !outa[0] 'Toggle P0
 Z+1: 'A = Z+1?
 !outa[1] 'Toggle P1
 !outa[2] 'And toggle P2
 10..15: 'A in 10 to 15?
 !outa[3] 'Toggle P3

CHIPVER – Spin Language Reference

CHIPVER
Command: Get the Propeller chip’s version number.

((PUB ┆ PRI))
 CHIPVER
Returns: Version number of the Propeller chip.

Explanation
The CHIPVER command reads and returns the version number of the Propeller chip. For
example:

V := chipver

This example sets V to the version number of the Propeller chip, 1 in this case. Future
Propeller Applications can use this to determine the version and type of Propeller chip they
are running on and make modifications to their operation as necessary.

Page 62 · Propeller Manual v1.1

2: Spin Language Reference – CLKFREQ

Propeller Manual v1.1 · Page 63

CLKFREQ
Command: Current System Clock frequency; the frequency at which each cog is running.

((PUB ┆ PRI))
 CLKFREQ
Returns: Current System Clock frequency, in Hz.

Explanation
The value returned by CLKFREQ is the actual System Clock frequency as determined by the
current clock mode (oscillator type, gain, and PLL settings) and the external XI pin
frequency, if any. Objects use CLKFREQ to determine the proper time delays for time-sensitive
operations. For example:

 waitcnt(clkfreq / 10 + cnt) 'wait for .1 seconds (100 ms)

This statement divides CLKFREQ by 10 and adds the result to CNT (the current System Counter
value) then waits (

T

WAITCNTT) until the System Counter reaches the result value. Since CLKFREQ
is the number of cycles per second, a divide by 10 yields the number of clock cycles per 0.1
seconds, or 100 ms. So, disregarding the time it takes to process the expression, this
statement pauses the cog’s program execution for 100 ms. The table below shows more
examples of System Clock tick verses Time calculations.

Table 2-2: System Clock Ticks vs. Time Calculations
Expression Result

clkfreq / 10 Clock ticks per 0.1 seconds (100 ms)

clkfreq / 100 Clock ticks per 0.01 seconds (10 ms)
clkfreq / 1_000 Clock ticks per 0.001 seconds (1 ms)
clkfreq / 10_000 Clock ticks per 0.0001 seconds (100 µs)
clkfreq / 100_000 Clock ticks per 0.00001 seconds (10 µs)
clkfreq / 9600 Clock ticks per serial bit period at 9,600 baud (~ 104 µs)
clkfreq / 19200 Clock ticks per serial bit period at 19,200 baud (~ 52 µs)

The value that CLKFREQ returns is actually read from long 0 (the first location in RAM) and
that value can change whenever the application changes the clock mode, either manually or
via the CLKSET command. Objects that are time-sensitive should check CLKFREQ at strategic
points in order to adjust to new settings automatically.

CLKFREQ – Spin Language Reference

Page 64 · Propeller Manual v1.1

CLKFREQ vs. _CLKFREQ
CLKFREQ is related to, but not the same as, _CLKFREQ. CLKFREQ is command that returns the
current System Clock frequency whereas _CLKFREQ is an application-defined constant that
contains the application’s System Clock frequency at startup. In other words, CLKFREQ is the
current clock frequency and _CLKFREQ is the original clock frequency; they both may happen
to be the same value but they certainly can be different.

2: Spin Language Reference – _CLKFREQ

_CLKFREQ
Constant: Pre-defined, one-time settable constant for specifying the System Clock
frequency.

CON
 _CLKFREQ = Expression

• Expression is an integer expression that indicates the System Clock frequency upon
application start-up.

Explanation
_CLKFREQ specifies the System Clock frequency for start-up. It is a pre-defined constant
symbol whose value is determined by the top object file of an application. _CLKFREQ is either
set directly by the application itself, or is set indirectly as the result of the _CLKMODE and
_XINFREQ settings.

The top object file in an application (the one where compilation starts from) can specify a
setting for _CLKFREQ in its CON block. This defines the initial System Clock frequency for the
application and is the frequency that the System Clock will switch to as soon as the
application is booted up and execution begins.

The application can specify either _CLKFREQ or _XINFREQ in the CON block; they are mutually
exclusive and the non-specified one is automatically calculated and set as a result of
specifying the other.

The following examples assume that they are contained within the top object file. Any
_CLKFREQ settings in child objects are simply ignored by the compiler.

For example:

CON
 _CLKMODE = XTAL1 + PLL8X
 _CLKFREQ = 32_000_000

The first declaration in the above CON block sets the clock mode for an external low-speed
crystal and a Clock PLL multiplier of 8. The second declaration sets the System Clock
frequency to 32 MHz, which means the external crystal’s frequency must be 4 MHz because
4 MHz * 8 = 32 MHz. The _XINFREQ value is automatically set to 4 MHz because of these
declarations.

Propeller Manual v1.1 · Page 65

_CLKFREQ – Spin Language Reference

Page 66 · Propeller Manual v1.1

CON
 _CLKMODE = XTAL2
 _CLKFREQ = 10_000_000

These two declarations set the clock mode for an external medium-speed crystal, no Clock
PLL multiplier, and a System Clock frequency of 10 MHz. The _XINFREQ value is
automatically set to 10 MHz, as well, because of these declarations.

_CLKFREQ vs CLKFREQ
_CLKFREQ is related to, but not the same as, CLKFREQ. _CLKFREQ contains the application’s
System Clock frequency at startup whereas CLKFREQ is a command that returns the current
System Clock frequency. In other words, _CLKFREQ is the original System Clock frequency
and CLKFREQ is the current System Clock frequency; they both may happen to be the same
value but they certainly can be different.

2: Spin Language Reference – CLKMODE

CLKMODE
Command: Current clock mode setting.

((PUB ┆ PRI))
 CLKMODE
Returns: Current clock mode.

Explanation
The clock mode setting is the byte-sized value, determined by the application at compile
time, from the CLK register. See CLK Register, page 28, for explanation of the possible
settings. For example:

 Mode := clkmode

This statement can be used to set a variable, Mode, to the current clock mode setting. Many
applications maintain a static clock mode setting; however, some applications will change the
clock mode setting during run time for clock speed adjustments, low-power modes, etc. It
may be necessary for some objects to pay attention to the potential for dynamic clock modes
in order to maintain proper timing and functionality.

CLKMODE vs._CLKMODE
CLKMODE is related to, but not the same as, _CLKMODE. CLKMODE is a command that returns the
current clock mode (in the form of the CLK register’s bit pattern) whereas _CLKMODE is an
application-defined constant containing the requested clock mode at startup (in the form of
clock setting constants that are OR’d together). Both may describe the same logical clock
mode but their values are not equivalent.

Propeller Manual v1.1 · Page 67

_CLKMODE – Spin Language Reference

_CLKMODE
Constant: Pre-defined, one-time settable constant for specifying application-level clock
mode settings.

CON
 _CLKMODE = Expression

• Expression is an integer expression made up of one or two Clock Mode Setting
Constants shown in Table 2-3. This will be the clock mode upon application start-up.

Explanation
_CLKMODE is used to specify the desired nature of the System Clock. It is a pre-defined
constant symbol whose value is determined by the top object file of an application. The clock
mode setting is a byte whose value is described by a combination of the RCxxxx, XINPUT,
XTALx and PLLxx constants at compile time. Table 2-3 illustrates the clock mode setting
constants. Note that not every combination is valid; Table 2-4 shows all valid combinations.

Table 2-3: Clock Mode Setting Constants
Clock Mode

Setting
Constant1

XO
Resistance2

XI/XO
Capacitance2 Description

RCFAST Infinite n/a Internal fast oscillator (~12 MHz). May be 8 MHz to 20 MHz. (Default)
RCSLOW Infinite n/a Internal slow oscillator (~20 KHz). May be 13 KHz to 33 KHz.
XINPUT Infinite 6 pF (pad only) External clock-oscillator (DC to 80 MHz); XI pin only, XO disconnected
XTAL1 2 kΩ 36 pF External low-speed crystal (4 MHz to 16 MHz)
XTAL2 1 kΩ 26 pF External medium-speed crystal (8 MHz to 32 MHz)
XTAL3 500 Ω 16 pF External high-speed crystal (20 MHz to 80 MHz)
PLL1X n/a n/a Multiply external frequency times 1
PLL2X n/a n/a Multiply external frequency times 2
PLL4X n/a n/a Multiply external frequency times 4
PLL8X n/a n/a Multiply external frequency times 8
PLL16X n/a n/a Multiply external frequency times 16

1. All constants are also available in Propeller Assembly.
2. All necessary resistors/capacitors are included in Propeller chip.

Page 68 · Propeller Manual v1.1

2: Spin Language Reference – _CLKMODE
Table 2-4: Valid Clock Mode Expressions and CLK Register Values

Valid Expression CLK Register Value Valid Expression CLK Register Value

RCFAST 0_0_0_00_000

RCSLOW 0_0_0_00_001

XINPUT 0_0_1_00_010

XTAL1 + PLL1X 0_1_1_01_011
XTAL1 + PLL2X 0_1_1_01_100
XTAL1 + PLL4X 0_1_1_01_101
XTAL1 + PLL8X 0_1_1_01_110
XTAL1 + PLL16X 0_1_1_01_111

XTAL1 0_0_1_01_010
XTAL2 0_0_1_10_010
XTAL3 0_0_1_11_010

XTAL2 + PLL1X 0_1_1_10_011
XTAL2 + PLL2X 0_1_1_10_100
XTAL2 + PLL4X 0_1_1_10_101
XTAL2 + PLL8X 0_1_1_10_110
XTAL2 + PLL16X 0_1_1_10_111

XINPUT + PLL1X 0_1_1_00_011
XINPUT + PLL2X 0_1_1_00_100
XINPUT + PLL4X 0_1_1_00_101
XINPUT + PLL8X 0_1_1_00_110
XINPUT + PLL16X 0_1_1_00_111

XTAL3 + PLL1X 0_1_1_11_011
XTAL3 + PLL2X 0_1_1_11_100
XTAL3 + PLL4X 0_1_1_11_101
XTAL3 + PLL8X 0_1_1_11_110
XTAL3 + PLL16X 0_1_1_11_111

The top object file in an application (the one where compilation starts from) can specify a
setting for _CLKMODE in its CON block. This defines the initial clock mode setting for the
application and is the mode that the System Clock will switch to as soon as the application is
booted up and execution begins. The following examples assume that they are contained
within the top object file. Any _CLKMODE settings in child objects are simply ignored by the
compiler. For example:

CON
 _CLKMODE = RCFAST

This sets the clock mode for the internal, fast RC Clock/Oscillator circuit. The System Clock
would run at approximately 12 MHz with this setting. The RCFAST setting is the default
setting, so if no _CLKMODE was actually defined, this is the setting that would be used. Note
that the Clock PLL can not be used with the internal RC Clock/Oscillator. Here’s an example
with an external clock:

CON
 _CLKMODE = XTAL1 + PLL8X

This sets the clock mode for an external low-speed crystal (XTAL1), enables the Clock PLL
circuit and sets the System Clock to use the 8x tap from the Clock PLL (PLL8X). If an
external 4 MHz crystal was attached to XI and XO, for example, its signal would be

Propeller Manual v1.1 · Page 69

jmartin
Improved

_CLKMODE – Spin Language Reference

Page 70 · Propeller Manual v1.1

multiplied by 16 (the Clock PLL always multiplies by 16) but the 8x bit result would be used;
the System Clock would be 4 MHz * 8 = 32 MHz.

CON
 _CLKMODE = XINPUT + PLL2X

This sets the clock mode for an external clock-oscillator, connected to XI only, and enables
the Clock PLL circuit and sets the System Clock to use the 2x result. If an external clock-
oscillator pack of 8 MHz was attached to XI, the System clock would run at 16 MHz; that’s 8
MHz * 2.

Note that the Clock PLL is not required and can be disabled by simply not specifying any
multiplier setting, for example:

CON
 _CLKMODE = XTAL1

This sets the clock mode for an external low-speed crystal but leaves the Clock PLL disabled;
the System Clock will be equal to the external crystal’s frequency.

The _CLKFREQ and _XINFREQ Settings
For simplicity, the examples above only show _CLKMODE settings, but either a _CLKFREQ or
_XINFREQ setting is required to follow it so that objects can determine their actual System
Clock’s frequency. The following is the full version of the second example, above, with an
external crystal frequency (_XINFREQ) of 4 MHz.

CON
 _CLKMODE = XTAL1 + PLL8X 'low-speed crystal x 8
 _XINFREQ = 4_000_000 'external crystal of 4 MHz

This example is exactly like the second example above, but _XINFREQ indicates that the
frequency of the external crystal is 4 MHz. The Propeller chip uses this value along with the
_CLKMODE setting to determine the System Clock frequency (as reported by the CLKFREQ
command) so that objects can properly adjust their timing. See _XINFREQ, page 236.

_CLKMODE vs.CLKMODE
_CLKMODE is related to, but not the same as, CLKMODE. _CLKMODE is an application-defined
constant containing the requested clock mode at startup (in the form of clock setting constants
that are OR’d together) whereas CLKMODE is a command that returns the current clock mode
(in the form of the CLK register’s bit pattern). Both may describe the same logical clock
mode but their values are not equivalent.

2: Spin Language Reference – CLKSET

Propeller Manual v1.1 · Page 71

CLKSET
Command: Set both the clock mode and System Clock frequency at run time.

((PUB ┆ PRI))
 CLKSET (Mode, Frequency)

• Mode is an integer expression that will be written to the CLK register to change the
clock mode.

• Frequency is an integer expression that indicates the resulting System Clock
frequency.

Explanation
One of the most powerful features of the Propeller chip is the ability to change the clock
behavior at run time. An application can choose to toggle back and forth between a slow
clock speed (for low-power consumption) and a fast clock speed (for high-bandwidth
operations), for example. CLKSET is used to change the clock mode and frequency during run
time. It is the run-time equivalent of the

T

_CLKMODE and _CLKFREQ constants defined by the
application at compile time. For example:

clkset(%01101100, 4_000_000) 'Set to XTAL1 + PLL2x

This sets the clock mode to a low-speed external crystal and a Clock PLL multiplier of 2, and
indicates the resulting System Clock frequency (CLKFREQ) is 4 MHz. After executing this
command, the CLKMODE and CLKFREQ commands will report the updated settings for objects
that use them.

In general, it is safe to switch between clock modes by using a single CLKSET command,
however, if enabling the Crystal Oscillator circuit (CLK register’s OSCENA bit) it is
important to perform the clock mode switch as a three-stage process:

1) First set the CLK register’s PLLENA, OSCENA, OSCM1 and OSCM0 bits as
necessary. See CLK Register on page 28 for more information.

2) Wait for 10 ms to give the external crystal time to stabilize.

3) Set the CLK register’s CLKSELx bits as necessary to switch the System Clock to the
new source.

The above process is only necessary when switching the Crystal Oscillator circuit on. No
other clock mode changes require this process if the Crystal Oscillator circuit is left in its

jmartin
Improved

CLKSET – Spin Language Reference

Page 72 · Propeller Manual v1.1

current state, either off or on. See the Clock object in the Propeller Library for clock
modification and timing methods.

NOTE: It takes approximately 75 µs for the Propeller Chip to perform the clock source
switching action.

2: Spin Language Reference – CNT

Propeller Manual v1.1 · Page 73

CNT
Register: System Counter register.

((PUB ┆ PRI))
 CNT
Returns: Current 32-bit System Counter value.

Explanation
The CNT register contains the current value in the global 32-bit System Counter. The System
Counter serves as the central time reference for all cogs; it increments its 32-bit value once
every System Clock cycle.

Upon power-up/reset, the System Counter starts with an arbitrary value and counts upwards
from there, incrementing with every System Clock cycle. Since the System Counter is a
read-only resource, every cog can read it simultaneously and can use the returned value to
synchronize events, count cycles and measure time.

Using CNT
Read CNT to get the current System Counter value. The actual value itself does not matter for
any particular purpose, but the difference in successive reads is very important. Most often,
the CNT register is used to delay execution for a specific period or to synchronize an event to
the start of a window of time. The next examples use the

T

WAITCNTT instruction to achieve this.

In Spin code, when using CNT inside of a WAITCNT command as shown above, make sure to
write the expression in the form “

T

offset + cnt” as opposed to “cnt + offset” and make
sure offset is at least 381 to account for Spin Interpreter overhead and avoid unexpectedly
long delays. See the WAITCNT command’s section on page for more
information.

Fixed Delays 218

 waitcnt(3_000_000 + cnt) 'Wait for 3 million clock cycles

The above code is an example of a “fixed delay” It delays the cog’s execution for 3 million
system clock cycles (about ¼ second when running with the internal fast oscillator).

The next is an example of a “synchronized delay.” It notes the current count at one place and
performs an action (toggles a pin) every millisecond thereafter with accuracy as good as that
of the oscillator driving the Propeller chip.

jmartin
Improved

CNT – Spin Language Reference

Page 74 · Propeller Manual v1.1

PUB Toggle | TimeBase, OneMS
 dira[0]~~ 'Set P0 to output
 OneMS := clkfreq / 1000 'Calculate cycles per 1 millisecond
 TimeBase := cnt 'Get current count
 repeat 'Loop endlessly
 waitcnt(TimeBase += OneMS) ' Wait to start of next millisecond
 !outa[0] ' Toggle P0

Here, I/O pin 0 is set to output. Then the local variable OneMS is set equal to the current
System Clock frequency divided by 1000; i.e., the number of System Clock cycles per 1
millisecond of time. Next, the local variable TimeBase is set to the current System Counter
value. Finally, the last two lines of code repeat endlessly; each time waiting until the start of
the next millisecond and then toggling the state of P0.

For more information, see the WAITCNT section’s Fixed Delays on page 218 and Synchronized
Delays on page 219.

The CNT register is read-only so in Spin it should not be assigned a value (i.e., should not be
to the left of a := or other assignment operator) and when used in Propeller Assembly it
should only be accessed as a source (s-field) value (i.e., mov dest, source).

jmartin
New

2: Spin Language Reference – COGID

COGID
Command: Current cog’s ID number (0-7).

((PUB ┆ PRI))
 COGID
Returns: The current cog’s ID (0-7).

Explanation
The value returned by COGID is the ID of the cog that executed the command. Normally, the
actual cog that code is running in does not matter, however, for some objects it might be
important to keep track of it. For example:

PUB StopMyself
 'Stop cog this code is running in
 cogstop(cogid)

This example method, StopMyself, has one line of code that simply calls COGSTOP with COGID
as the parameter. Since COGID returns the ID of the cog running that code, this routine causes
the cog to terminate itself.

Propeller Manual v1.1 · Page 75

COGINIT – Spin Language Reference

Page 76 · Propeller Manual v1.1

COGINIT
Command: Start or restart a cog by ID to run Spin code or Propeller Assembly code.

((PUB ┆ PRI))
 COGINIT (CogID, SpinMethod 〈(ParameterList)〉, StackPointer)
((PUB ┆ PRI))
 COGINIT (CogID, AsmAddress, Parameter)

• CogID is the ID (0 – 7) of the cog to start, or restart. A CogID above 7 results in the
next available cog being started (if possible).

• SpinMethod is the PUB or PRI Spin method that the affected cog should run.
Optionally, it can be followed by a parameter list enclosed in parentheses.

• ParameterList is an optional, comma-delimited list of one or more parameters for
SpinMethod. It must be included only if SpinMethod requires parameters.

• StackPointer is a pointer to memory, such as a long array, reserved for stack space for
the affected cog. The affected cog uses this space to store temporary data during
further calls and expression evaluations. If insufficient space is allocated, either the
application will fail to run or it will run with strange results.

• AsmAddress is the address of a Propeller Assembly routine from a DAT block. T

• Parameter is used to optionally pass a value to the new cog. This value ends up in the
affected cog’s read-only Cog Boot Parameter (PAR) register. Parameter can be used
to pass a either a single 14-bit value or the address of a block of memory to be used
by the assembly routine. Parameter is required by COGINIT, but if not needed for
your routine simply set it to an innocuous value like zero (0).

T

Explanation
COGINIT works exactly like COGNEWT (page 78) with two exceptions: 1) it launches code into a
specific cog whose ID is CogID, and 2) it does not return a value. Since

COGINIT

COGINIT operates on
a specific cog, as directed by the CogID parameter, it can be used to stop and restart an active
cog in one step. This includes the current cog; i.e., a cog can use

T

 to stop and restart
itself to run, perhaps, completely different code.

Note that every cog which runs Spin code must have its own stack space; they cannot share
the same stack space.

In addition, care must be taken when relaunching a cog with Spin code and specifying stack
space that is currently in use by that cog. The Propeller always builds a cog’s initial stack

jmartin
New

jmartin
New

2: Spin Language Reference – COGINIT

Propeller Manual v1.1 · Page 77

frame in the specified stack space before launching the cog. Relaunching a cog with a
COGINIT command specifying the same stack space that it is currently using will likely cause
the new stack frame image to be clobbered before the cog is restarted. To prevent this from
happening, first perform a

T

COGSTOP on that cog, followed by the desired COGINITT.

Spin Code (Syntax 1)
To run a Spin method in a specific cog, the COGINIT command needs the cog ID, the method
name, its parameters, and a pointer to some stack space. For example:

 coginit(1, Square(@X), @SqStack) 'Launch Square in Cog 1

This example launches the Square method into Cog 1, passing the address of X into Square
and the address of SqStack as COGINIT’s stack pointer. See COGNEW, page 78, for more
information.

Propeller Assembly Code (Syntax 2)
To run Propeller Assembly code in a specific cog, the COGINIT command needs the cog ID,
the address of the assembly routine, and a value that can optionally be used by the assembly
routine. For example:

 coginit(2, @Toggle, 0)

This example launches the Propeller Assembly routine, Toggle, into Cog 2 with a PAR
parameter of 0. See the example in the assembly syntax description of COGNEW, page 78, for a
more detailed example keeping in mind that the above COGINIT command can be used in
place of

T

COGNEW in that example.

The Parameter Field
It’s important to note that the Parameter field is intended to pass a long address, so only 14
bits (bits 2 through 15) are passed into the cog’s PAR register; the lower two bits are always
cleared to zero to ensure it’s a long-aligned address. A value other than a long address can
still be passed via the Parameter field, but will have to be limited to 14 bits, must be shifted
left by two bits (for the COGNEW/COGINIT command), and will have to be shifted right by two
bits by the assembly program that receives it.

jmartin
Improved

jmartin
New

COGNEW – Spin Language Reference

COGNEW
Command: Start the next available cog to run Spin code or Propeller Assembly code.

((PUB ┆ PRI))
 COGNEW (SpinMethod 〈(ParameterList)〉, StackPointer)
((PUB ┆ PRI))
 COGNEW (AsmAddress, Parameter)
Returns: The ID of the newly started cog (0-7) if successful, or -1 otherwise.

• SpinMethod is the PUB or PRI Spin method that the new cog should run. Optionally, it

can be followed by a parameter list enclosed in parentheses.
• ParameterList is an optional, comma-delimited list of one or more parameters for

SpinMethod. It must be included only if SpinMethod requires parameters.
• StackPointer is a pointer to memory, such as a long array, reserved for stack space for

the new cog. The new cog uses this space to store temporary data during further calls
and expression evaluations. If insufficient space is allocated, either the application
will fail to run or it will run with strange results.

• AsmAddress is the address of a Propeller Assembly routine, usually from a DAT block.
• Parameter is used to optionally pass a value to the new cog. This value ends up in the

new cog’s read-only Cog Boot Parameter (PAR) register. Parameter can be used to
pass a either a single 14-bit value or the address of a block of memory to be used by
the assembly routine. Parameter is required by COGNEW, but if not needed for your
routine, simply set it to an innocuous value like zero (0).

Explanation
COGNEW starts a new cog and runs either a Spin method or a Propeller Assembly routine within
it. If successful, COGNEW returns the ID of the newly started cog. If there were no more cogs
available, COGNEW returns -1. COGNEW works exactly like COGINIT (page 76) with two
exceptions: 1) it launches code into the next available cog, and 2) it returns the ID of the cog
that it started, if any.

Page 78 · Propeller Manual v1.1

jmartin
Improved

2: Spin Language Reference – COGNEW
Spin Code (Syntax 1)
To run a Spin method in another cog, the COGNEW command needs the method name, its
parameters, and a pointer to some stack space. For example:

VAR
 long SqStack[6] 'Stack space for Square cog

PUB Main | X
 X := 2 'Initialize X
 cognew(Square(@X), @SqStack) 'Launch square cog
 <check X here> 'Loop here and check X

PUB Square(XAddr)
 'Square the value at XAddr
 repeat 'Repeat the following endlessly
 long[XAddr] *= long[XAddr] ' Square value, store back
 waitcnt(2_000_000 + cnt) ' Wait 2 million cycles

This example shows two methods, Main and Square. Main starts another cog that runs Square
endlessly, then Main can monitor the results in the X variable. Square, being run by another
cog, takes the value of XAddr, squares it and stores the result back into XAddr, then waits for 2
million cycles before it does it again. More explanation follows, but the result is that X starts
out as 2, and the second cog, running Square, iteratively sets X to 4, 16, 256, 65536 and then
finally to 0 (it overflowed 32 bits), all independent of the first cog which may be checking the
value of X or performing some other task.

The Main method declares a local variable, X, that is set to 2 in its first line. Then Main starts a
new cog, with COGNEW, to run the Square method in a separate cog. COGNEW’s first parameter,
Square(@X), is the Spin method to run and its required parameter; in this case we pass it the
address of the X variable. The second parameter of COGNEW, @SqStack, is the address of stack
space reserved for the new cog. When a cog is started to run Spin code, it needs some stack
space where it can store temporary data. This example only requires 6 longs of stack space
for proper operation (see The Need for Stack Space, below, for more information).

After the COGNEW command is executed, two cogs are running; the first is still running the Main
method and the second is starting to run the Square method. Despite the fact that they are
using code from the same Spin object, they are running independently. The “<check X
here>” line can be replaced with code that uses the value of X in some way.

Propeller Manual v1.1 · Page 79

COGNEW – Spin Language Reference
The Need for Stack Space
A cog executing Spin code, unlike one executing Propeller Assembly code, needs some
temporary workspace, called “stack space,” to hold operational data such as call stacks,
parameters and intermediate expression results. Without this, sophisticated features such as
method calls, result values, and complex expressions would not be possible without severe
limitations.

The Spin compiler automatically provides stack space for the Propeller Application’s initial
code, the top-level Spin code of the application. The “free space” following the application’s
memory image is used for this purpose. However, the compiler is not able to provide distinct
blocks of stack space for Spin code that the application may launch on its own, therefore, the
application must provide that stack space itself.

Typically, this stack space is provided in the form of a declared global variable meant only
for that use, such as the SqStack variable in the example above. Unfortunately, it’s difficult
to determine just how much stack space should be provided, so when developing an object, it
is suggested to initially provide a large amount of longs of memory (like 128 longs or more)
and once the object is deemed complete, use an object like the Stack Length object in the
Propeller Library to determine the optimal length. See the Stack Length object for further
explanation.

Spin Code Can Only be Launched by its Containing Object
In the Spin language, by design, objects must intelligently manage their own data, the
methods that operate on that data, the cogs that execute those methods, and the interface that
other objects use to affect it. These are all aspects that serve to maintain the integrity of the
object and increase its useful and reliable nature.

For these reasons, the object and its designer are notably the best equipped to provide the
proper stack space that is required for Spin code being launched into another cog.

To enforce this principle, the COGNEW and COGINIT commands cannot launch Spin code outside
of its containing object. This means that a statement like the following will not work as
expected.

 cognew(SomeObject.Method, @StackSpace)

Instead of launching SomeObject.Method into another cog, the Propeller will instead execute
SomeObject.Method within the current cog and if that method returns a value, the Propeller
will take that value and use it as the address of code to launch with the cognew command.
This will not result in the code writer’s intended effect.

Page 80 · Propeller Manual v1.1

jmartin
New

jmartin
New

2: Spin Language Reference – COGNEW
If Method is determined to be code that is truly important to run in another cog, rather than
write code like the example above, SomeObject should instead be rewritten similar to the
example below.

VAR
 long StackSpace[8] 'Stack space for new cog
 byte CogID 'Stores the ID of new cog

PUB Start
 Stop 'Prevent multiple starts
 CogID := cognew(Method, @StackSpace) 'Launch method in another cog

PUB Stop
 if CogID > -1
 cogstop(CogID) 'Stop previously launched cog

PRI Method
 <some code here>

The sample above includes two public interface methods, Start and Stop, which an outside
object can use to properly launch the object’s code into another cog. The important principle
is that the object itself is providing this capability, and in doing so, is managing the stack
memory required for proper operation. Also note that Method was changed to a private (PRI)
method to discourage direct calling from the outside.

Propeller Assembly Code (Syntax 2))
To run Propeller Assembly code in another cog, the COGNEW command needs the address of
the assembly routine and a value that can optionally be used by the assembly routine. For
example:

PUB Main
 cognew(@Toggle, 0) 'Launch Toggle code

DAT
 org 0 'Reset assembly pointer
Toggle rdlong Delay, #0 'Get clock frequency
 shr Delay, #2 'Divide by 4
 mov Time, cnt 'Get current time
 add Time, Delay 'Adjust by 1/4 second
 mov dira, #1 'set pin 0 to output

Propeller Manual v1.1 · Page 81

jmartin
Improved

COGNEW – Spin Language Reference

Page 82 · Propeller Manual v1.1

Loop waitcnt Time, Delay 'Wait for 1/4 second
 xor outa, #1 'toggle pin
 jmp #Loop 'loop back

Delay res 1
Time res 1

The COGNEW instruction, in the Main method above, tells the Propeller chip to launch the
Toggle assembly code into a new cog. The Propeller then finds an available cog and copies
496 longs of the DAT block’s content, starting at Toggle, into the cog’s RAM. Then the cog’s
PAR register is initialized, the remaining special purpose registers are cleared, and the cog
starts executing the assembly code starting at Cog RAM location 0.

The Parameter Field
It’s important to note that the Parameter field is intended to pass a long address, so only
14 bits (bits 2 through 15) are passed into the cog’s PAR register; the lower two bits are always
cleared to zero to ensure it’s a long-aligned address. A value other than a long address can
still be passed via the Parameter field, but will have to be limited to 14 bits, must be shifted
left by two bits (for the COGNEW/COGINIT command), and will have to be shifted right by two
bits by the assembly program that receives it.

jmartin
New

2: Spin Language Reference – COGSTOP

COGSTOP
Command: Stop cog by its ID.

((PUB ┆ PRI))
 COGSTOP (CogID)

• CogID is the ID (0 – 7) of the cog to stop.

Explanation
COGSTOP stops a cog whose ID is CogID and places that cog into a dormant state. In the
dormant state, the cog ceases to receive System Clock pulses so that power consumption is
greatly reduced.

To stop a cog, issue the COGSTOP command with the ID of the cog to stop. For example:

VAR
 byte Cog 'Used to store ID of newly started cog

PUB Start(Pos) : Pass
 'Start a new cog to run Update with Pos,
 'return TRUE if successful
 Pass := (Cog := cognew(@Update, Pos) + 1) > 0

PUB Stop
 'Stop the cog we started earlier, if any.
 if Cog
 cogstop(Cog~ - 1)

This example, from the COGNEW description, uses COGSTOP in the public Stop method to stop
the cog that was previously started by the Start method. See COGNEW, page 78, for more
information about this example.

Propeller Manual v1.1 · Page 83

CON – Spin Language Reference

Page 84 · Propeller Manual v1.1

CON
Designator: Declare a Constant Block.

CON
 Symbol = Expression 〈((,┆)) Symbol = Expression〉…
CON
 #Expression ((,┆)) Symbol 〈[Offset]〉 〈((,┆)) Symbol 〈[Offset]〉 〉…
CON
 Symbol 〈[Offset]〉 〈((,┆)) Symbol 〈[Offset]〉 〉…

• Symbol is the desired name for the constant.
• Expression is any valid integer, or floating-point, constant algebraic expression.

Expression can include other constant symbols as long as they were defined
previously.

• Offset is an optional expression by which to adjust the enumeration value for the
Symbol following this one. If Offset is not specified, the default offset of 1 is applied.
Use Offset to influence the next Symbol’s enumerated value to something other than
this Symbol’s value plus 1.

Explanation
The Constant Block is a section of source code that declares global constant symbols and
global Propeller configuration settings. This is one of six special declarations (CON, VAR, OBJ,
PUB, PRI, and DAT) that provide inherent structure to the Spin language. T

Constants are numerical values that cannot change during run time. They can be defined in
terms of single values (1, $F, 65000, %1010, %%2310, “A”, etc.) or as expressions, called
constant expressions, (25 + 16 / 2, 1000 * 5, etc.) that always resolve to a specific number.

The Constant Block is an area of code specifically used for assigning symbols (useful names)
to constants so that the symbols can be used anywhere in code where that constant value is
needed. This makes code more readable and easier to maintain should you later have to
change the value of a constant that appears in many places. These constants are global to the
object so that any method within it can use them. There are many ways to define constants,
described below.

jmartin
Improved

jmartin
Improved

jmartin
New

2: Spin Language Reference – CON
Common Constant Declarations (Syntax 1)
The most common forms of constant declarations begin with CON on a line by itself followed
by one or more declarations. CON must start in column 1 (the leftmost column) of the line it is
on and we recommend the lines following be indented by at least one space. The expressions
can be combinations of numbers, operators, parentheses, and quoted characters. See
Operators, page 143, for examples of expressions.

Example:

CON
 Delay = 500
 Baud = 9600
 AChar = "A"

—or—

CON
 Delay = 500, Baud = 9600, AChar = "A"

Both of these examples create a symbol called Delay that is equal to 500, a symbol called
Baud that is equal to 9600, and a symbol called AChar that is equal to the character “A”. For
the Delay declaration, for example, we could also have used an algebraic expression, such as:

 Delay = 250 * 2

The above statement results in Delay equaling 500, like before, but the expression may make
the code easier to understand if the resulting number were not just an arbitrary value.

The CON block is also used for specifying global settings, such as system clock settings. The
example below shows how to set the Clock Mode to low-speed crystal, the Clock PLL to 8x,
and specify that the XIN pin frequency is 4 MHz.

CON
 _CLKMODE = XTAL1 + PLL8X
 _XINFREQ = 4_000_000

See _CLKMODE, page 68, and _XINFREQ, page 236, for detailed descriptions of these settings.

Floating-point values can also be defined as constants. Floating-point values are real
numbers (with fractional components) and are encoded within 32 bits differently than integer
constants. To specify a floating-point constant, you must give a clear indication that the

Propeller Manual v1.1 · Page 85

CON – Spin Language Reference

Page 86 · Propeller Manual v1.1

value is a floating-point value; the expression must either be a single floating-point value or
be made up entirely of floating-point values (no integers).

Floating-point values must be written as:

1) decimal digits followed by a decimal point and at least one more decimal digit,
2) decimal digits followed by “e” (for exponent) and an integer exponent value, or,
3) a combination of 1 and 2.

The following are examples of valid constants:

0.5 floating-point value

1.0 floating-point value

3.14 floating-point value

1e16 floating-point value

51.025e5 floating-point value

3 + 4 integer expression

3.0 + 4.0 floating-point expression

3.0 + 4 invalid expression; causes compile error

3.0 + FLOAT(4) floating-point expression

Here is an example declaring an integer constant and two floating-point constants.

CON
 Num1 = 20
 Num2 = 127.38
 Num3 = 32.05 * 18.1 - Num2 / float(Num1)

The above code sets Num1, Num2 and Num3 to 20, 127.38 and 573.736, respectively. Notice that
the last expression required Num1 to be enclosed in the FLOAT declaration so that the compiler
treats it as a floating-point value.

T

The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with
a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

2: Spin Language Reference – CON

Propeller Manual v1.1 · Page 87

For run-time floating-point operations, the FloatMath, FloatString, Float32, and Float32Full
objects provide math functions compatible with single-precision numbers.

See FLOAT on page , ROUNDT 108 on page 198, TRUNC on page 209, and the FloatMath,
FloatString, Float32, and Float32Full objects for more information.

Enumerations (Syntax 2 and 3)
Constant Blocks can also declare enumerated constant symbols. Enumerations are logically
grouped symbols which have incrementing integer constant values assigned to them that are
each unique for the group. For example, an object may have the need for certain modes of
operation. Each of these modes can be identified by a number, 0, 1, 2 and 3, for example.
The numbers themselves don’t really matter for our purposes; they just need to be unique
within the context of the operation mode. Since the numbers themselves are not descriptive,
it may be difficult to remember what mode 3 does, but it is a lot easier to remember what the
mode means if it had a descriptive name instead. Look at the following example.

CON
 'Declare modes of operation
 RunTest = 0
 RunVerbose = 1
 RunBrief = 2
 RunFull = 3

The above example would suffice for our purposes; now users of our object can indicate
“RunFull” instead of “3” to specify the desired mode of operation. The problem is, defining a
logical group of items this way may cause bugs and maintenance problems because if any
value was changed (on purpose or by accident) without changing the rest accordingly, it may
cause the program to fail. Also, imagine a case where there were 20 modes of operation.
That would be a much longer set of constants and even more opportunities for maintenance
issues.

Enumerations solve these problems by automatically incrementing values for symbols. We
can rewrite the above example with enumeration syntax as follows:

CON 'Declare modes of operation
 #0, RunTest, RunVerbose, RunBrief, RunFull

Here, #0, tells the compiler to start counting from the number 0 and it sets the next symbol
equal to that value. Then, any additional symbols that do not specify their own value (via an
‘= expression’) are automatically assigned the previous value plus 1. The result is that
RunTest equals 0, RunVerbose equals 1, RunBrief equals 2 and RunFull equals 3. For most

CON – Spin Language Reference
cases, the values themselves don’t usually matter; all that matters is that they are each
assigned a unique number. Defining enumerated values like this has the advantages of
insuring that the assigned values are unique and contiguous within the group.

Using the example above, the methods that use them can do things like the following (assume
Mode is a symbol set by a calling object):

 case Mode
 RunTest : <test code here>
 RunVerbose : <verbose code here>
 RunBrief : <brief code here>
 RunFull : <full code here>
—or—

 if Mode > RunVerbose
 <brief and run mode code here>

Notice that these routines do not rely on the exact value of the mode, but rather they rely on
the enumerated mode symbol itself for comparisons as well as the position of the symbol in
relation to other symbols in the same enumeration. It is important to write code this way to
decrease potentials for bugs introduced by future changes.

Enumerations don’t have to consist of comma-separated items either. The following also
works and leaves room for right-side comments about each mode.

CON 'Declare modes of operation
 #0
 RunTest 'Run in test mode
 RunVerbose 'Run in verbose mode
 RunBrief 'Run with brief prompts
 RunFull 'Run in full production mode

The above example does the same thing as the previous in-line example, but now we have
convenient room to describe the purpose of each mode without losing the automatic
incrementing advantage. Later on, if there’s a need to add a fifth mode, simply add it to the
list in whatever position is necessary. If there is a need for the list to begin at a certain value,
simply change the #0 to whatever you need: #1, #20, etc.

It is even possible to modify the enumerated value in the middle of the list.

CON
 'Declare modes of operation
 #1, RunTest, RunVerbose, #5, RunBrief, RunFull

Page 88 · Propeller Manual v1.1

2: Spin Language Reference – CON
Here, RunTest and RunVerbose are 1 and 2, respectively, and RunBrief and RunFull are 5 and
6, respectively. While this feature may be handy, to maintain good programming practices it
should only be used in rare cases.

A more recommended way to achieve the previous example’s result is to include the optional
Offset field. The previous code could have been written as follows:

CON
 'Declare modes of operation
 #1, RunTest, RunVerbose[3], RunBrief, RunFull

Just as before, RunTest and RunVerbose are 1 and 2, respectively. The [3] immediately
following RunVerbose causes the current enumeration value (2) to be incremented by 3 before
the next enumerated symbol. The effect of this is also like before, RunBrief and RunFull are
5 and 6, respectively. The advantage of this technique, however, is that the enumerated
symbols are all set relative to each other. Changing the line’s starting value causes them all
to change relatively. For example, changing the #1, to #4 causes RunTest and RunVerbose to
be 4 and 5, respectively, and RunBrief and RunFull to be 8 and 9, respectively. In contrast, if
the original example’s #1 were changed to #4, both RunVerbose and RunBrief would be set to
5, possibly causing the code that relies on those symbols to misbehave.

The Offset value may be any signed value, but only affects the value immediately following
it; the enumerated value is always incremented by 1 after a Symbol that doesn’t specify an
Offset. If overlapping values are desired, specifying an Offset of 0 or less can achieve that
effect.

Syntax 3 is a variation of the enumeration syntax. It doesn’t specify any starting value.
Anything defined this way will always start with the first symbol equal to either 0 (for new
CON blocks) or to the next enumerated value relative to the previous one (within the same CON
block).

Scope of Constants
Symbolic constants defined in Constant Blocks are global to the object in which they are
defined but not outside of that object. This means that constants can be accessed directly
from anywhere within the object but their name will not conflict with symbols defined in
other parent or child objects.

Symbolic constants can be indirectly accessed by parent objects, however, by using the
constant reference syntax.

Propeller Manual v1.1 · Page 89

jmartin
New

CON – Spin Language Reference

Page 90 · Propeller Manual v1.1

Example:

OBJ
 Num : "Numbers"

PUB SomeRoutine
 Format := Num#DEC 'Set Format to Number's Decimal constant

Here an object, “Numbers,” is declared as the symbol Num. Later, a method refers to numbers’
DEC constant with Num#DEC. Num is the object reference, # indicates we need to access that
object’s constants, and DEC is the constant within the object we need. This feature allows
objects to define constants for use with themselves and for parent objects to access those
constants freely without interfering with any symbols they created themselves.

2: Spin Language Reference – CONSTANT

Propeller Manual v1.1 · Page 91

CONSTANT
Directive: Declare in-line constant expression to be completely resolved at compile time.

((PUB ┆ PRI))
 CONSTANT (ConstantExpression)
Returns: Resolved value of constant expression.

• ConstantExpression is the desired constant expression.

Explanation
The CON block may be used to create constants from expressions that are referenced from
multiple places in code, but there are occasions when a constant expression is needed for
temporary, one-time purposes. The CONSTANT directive is used to fully resolve a method’s in-
line, constant expression at compile time. Without the use of the

T

CONSTANT directive, a
method’s in-line expressions are always resolved at run time, even if the expression is always
a constant value.

Using CONSTANT
The CONSTANT directive can create one-time-use constant expressions that save code space and
speed up run-time execution. Note the two examples below:

Example 1, using standard run-time expressions:

CON
 X = 500
 Y = 2500

PUB Blink
 !outa[0]
 waitcnt(X+200 + cnt) 'Standard run-time expression
 !outa[0]
 waitcnt((X+Y)/2 + cnt) 'Standard run-time expression

Example 2, same as above, but with CONSTANT directive around constant, run-time
expressions:

CONSTANT – Spin Language Reference

Page 92 · Propeller Manual v1.1

CON
 X = 500
 Y = 2500

PUB Blink
 !outa[0]
 waitcnt(constant(X+200) + cnt) 'exp w/compile & run-time parts
 !outa[0]
 waitcnt(constant((X+Y)/2) + cnt)'exp w/compile & run-time parts

The above two examples do exactly the same thing: their Blink methods toggle P0, wait for
X+200 cycles, toggle P0 again and wait for (X+Y)/2 cycles before returning. While the CON
block’s X and Y symbols may need to be used in multiple places within the object, the WAITCNT
expressions used in each example’s Blink method might only need to be used in that one
place. For this reason, it may not make sense to define additional constants in the

T

CON block
for things like X+200 and (X+Y)/2. There is nothing wrong with putting the expressions right
in the run-time code, as in Example 1, but that entire expression is unfortunately evaluated at
run time, requiring extra time and code space.

The CONSTANT directive is perfect for this situation, because it completely resolves each one-
time-use constant expression to a single, static value, saving code space and speeding up
execution. In Example 1, the Blink method consumes 33 bytes of code space while Example
2’s Blink method, with the addition of the

T

CONSTANT directives, only requires 23 bytes of
space. Note that the “+ cnt” portion of the expressions are not included within the CONSTANT
directive’s parentheses; this is because the value of cnt is variable (cnt is the System Counter
register; see CNT, page 73) so its value cannot be resolved at compile time.

If a constant needs to be used in more than one place in code, it is better to define it in the CON
block so it is defined only once and the symbol representing it can be used multiple times.

2: Spin Language Reference – Constants (pre-defined)

Constants (pre-defined)

The following constants are pre-defined by the compiler:

TRUE Logical true: -1 ($FFFFFFFF)

FALSE Logical false: 0 ($00000000)

POSX Maximum positive integer: 2,147,483,647 ($7FFFFFFF)

NEGX Maximum negative integer: -2,147,483,648 ($80000000)

PI Floating-point value for PI: ≈ 3.141593 ($40490FDB)

RCFAST Internal fast oscillator: $00000001 (%00000000001)

RCSLOW Internal slow oscillator: $00000002 (%00000000010)

XINPUT External clock/oscillator: $00000004 (%00000000100)

XTAL1 External low-speed crystal: $00000008 (%00000001000)

XTAL2 External medium-speed crystal: $00000010 (%00000010000)

XTAL3 External high-speed crystal: $00000020 (%00000100000)

PLL1X External frequency times 1: $00000040 (%00001000000)

PLL2X External frequency times 2: $00000080 (%00010000000)

PLL4X External frequency times 4: $00000100 (%00100000000)

PLL8X External frequency times 8: $00000200 (%01000000000)

PLL16X External frequency times 16: $00000400 (%10000000000)

(All of these constants are also available in Propeller Assembly.)

TRUE and FALSE
TRUE and FALSE are usually used for Boolean comparison purposes:

if (X = TRUE) or (Y = FALSE)
 <code to execute if total condition is true>

Propeller Manual v1.1 · Page 93

Constants (pre-defined) – Spin Language Reference

Page 94 · Propeller Manual v1.1

POSX and NEGX
POSX and NEGX are typically used for comparison purposes or as a flag for a specific event:

if Z > NEGX
 <code to execute if Z hasn't reached smallest negative>

—or—

PUB FindListItem(Item) : Index
 Index := NEGX 'Default to "not found" response
 <code to find Item in list>
 if <item found>
 Index := <items index>

PI
PI can be used for floating-point calculations, either floating-point constants or floating-point
variable values using the FloatMath and FloatString object.

RCFAST through PLL16X
RCFAST through PLL16X are Clock Mode Setting constants. They are explained in further
detail in the _CLKMODE section beginning on page 68.

Note that they are enumerated constants and are not equivalent to the corresponding CLK
register value. See CLK Register on page for information regarding how each constant28
relates to the CLK register bits.

jmartin
New

2: Spin Language Reference – CTRA, CTRB

CTRA, CTRB
Register: Counter A and Counter B Control Registers.

((PUB ┆ PRI))
 CTRA
((PUB ┆ PRI))
 CTRB
Returns: Current value of Counter A or Counter B Control Register, if used as a source
variable.

Explanation
CTRA and CTRB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The CTRA and CTRB registers contain the
configuration settings of the Counter A and Counter B Modules, respectively.

The following discussion uses CTRx, FRQx and PHSx to refer to both the A and B pairs of each
register.

Each of the two counter modules can control or monitor up to two I/O pins and perform
conditional 32-bit accumulation of the value in the FRQx register into the PHSx register on
every clock cycle. Each Counter Module has its own phase-locked loop (PLLx) which can be
used to synthesize frequencies from 64 MHz to 128 MHz.

With just a little configuration and in some cases a little maintenance from the cog, the
counter modules can be used for:

• Frequency synthesis

• Frequency measurement

• Pulse counting

• Pulse measurement

• Multi-pin state measurement

• Pulse-width modulation (PWM)

• Duty-cycle measurement

• Digital-to-analog conversion (DAC)

• Analog-to-digital conversion (ADC)

• And more.
For some of these operations the cog can set the counter’s configuration, via CTRA or CTRB,
and it will perform its task completely independently. For others, the cog may use WAITCNT to
time-align the counter’s reads and writes within a loop; creating the effect of a more complex

Propeller Manual v1.1 · Page 95

CTRA, CTRB – Spin Language Reference
state machine. Since the counter’s update period may be brief (12.5 ns at 80 MHz), very
dynamic signal generation and measurement is possible.

Control Register Fields
The CTRA and CTRB registers each contain four fields shown in the table below.

Table 2-5: CTRA and CTRB Registers
31 30..26 25..23 22..15 14..9 8..6 5..0
- CTRMODE PLLDIV - BPIN - APIN

APIN
The APIN field of CTRA selects a primary I/O pin for that counter. May be ignored if not
used. %0xxxxx = Port A, %1xxxxx = Port B (reserved for future use). In Propeller
Assembly, the APIN field can conveniently be written using the MOVS instruction.

Note that writing a zero to CTRA will immediately disable the Counter A and stop all related
pin output and PHSA accumulation.

BPIN
The BPIN field of CTRx selects a secondary I/O pin for that counter. This field may be
ignored if not used. %0xxxxx = Port A, %1xxxxx = Port B (reserved for future use). In
Propeller Assembly, the BPIN field can conveniently be written using the MOVD instruction.

PLLDIV
The PLLDIV field of CTRx selects a PLLx output tap, see table below. This determines which
power-of-two division of the VCO frequency will be used as the final PLLx output (a range
of 500 KHz to 128 MHz). This field may be ignored if not used. In Propeller Assembly, the
PLLDIV field can conveniently be written, along with CTRMODE, using the MOVI
instruction.

Table 2-6: PLLDIV Field
PLLDIV %000 %001 %010 %011 %100 %101 %110 %111
Output VCO ÷ 128 VCO ÷ 64 VCO ÷ 32 VCO ÷ 16 VCO ÷ 8 VCO ÷ 4 VCO ÷ 2 VCO ÷ 1

Page 96 · Propeller Manual v1.1

2: Spin Language Reference – CTRA, CTRB
CTRMODE
The CTRMODE field of CTRA and CTRB selects one of 32 operating modes, shown in Table
2-7, for the corresponding Counter A or Counter B. In Propeller Assembly, the CTRMODE
field can conveniently be written, along with PLLDIV, using the MOVI instruction.

The modes %00001 through %00011 cause FRQx-to-PHSx, accumulation to occur every clock
cycle. This creates a numerically controlled oscillator (NCO) in PHSx[31], which feeds the
PLLx's reference input. The PLLx will multiply this frequency by 16 using its voltage-
controlled oscillator (VCO).

For stable operation, it is recommended that the VCO frequency be kept within 64 MHz to
128 MHz. This translates to an NCO frequency of 4 MHz to 8 MHz.

Using CTRA and CTRB
In Spin, CTRx can be read/written just like any other register or pre-defined variable. As soon
as this register is written, the new operating mode goes into effect for the counter. For
example:

 CTRA := %00100 << 26

The above code sets CTRA’s CTRMODE field to the NCO mode (%00100) and all other bits
to zero.

Propeller Manual v1.1 · Page 97

CTRA, CTRB – Spin Language Reference

Page 98 · Propeller Manual v1.1

Table 2-7: Counter Modes (CTRMODE Field Values)

CTRMODE Description Accumulate
FRQx to PHSx

APIN
Output*

BPIN
Output*

%00000 Counter disabled (off) 0 (never) 0 (none) 0 (none)
%00001
%00010
%00011

PLL internal (video mode)
PLL single-ended
PLL differential

1 (always)
1
1

0
PLLx
PLLx

0
0
!PLLx

%00100
%00101

NCO single-ended
NCO differential

1
1

PHSx[31]
PHSx[31]

0
!PHSx[31]

%00110
%00111

DUTY single-ended
DUTY differential

1
1

PHSx-Carry
PHSx-Carry

0
!PHSx-Carry

%01000
%01001
%01010
%01011

POS detector
POS detector with feedback
POSEDGE detector
POSEDGE detector w/ feedback

A1
A1
A1 & !A2
A1 & !A2

0
0
0
0

0
!A1
0
!A1

%01100
%01101
%01110
%01111

NEG detector
NEG detector with feedback
NEGEDGE detector
NEGEDGE detector w/ feedback

!A1
!A1
!A1 & A2
!A1 & A2

0
0
0
0

0
!A1
0
!A1

%10000
%10001
%10010
%10011
%10100
%10101
%10110
%10111
%11000
%11001
%11010
%11011
%11100
%11101
%11110
%11111

LOGIC never
LOGIC !A & !B
LOGIC A & !B
LOGIC !B
LOGIC !A & B
LOGIC !A
LOGIC A <> B
LOGIC !A | !B
LOGIC A & B
LOGIC A == B
LOGIC A
LOGIC A | !B
LOGIC B
LOGIC !A | B
LOGIC A | B
LOGIC always

0
!A1 & !B1
A1 & !B1
!B1
!A1 & B1
!A1
A1 <> B1
!A1 | !B1
A1 & B1
A1 == B1
A1
A1 | !B1
B1
!A1 | B1
A1 | B1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

*Must set corresponding DIR bit to affect pin
A1 = APIN input delayed by 1 clock
A2 = APIN input delayed by 2 clocks
B1 = BPIN input delayed by 1 clock

jmartin
Improved

jmartin
Improved

2: Spin Language Reference – DAT

DAT
Designator: Declare a Data Block.

DAT
 〈Symbol〉 Alignment 〈Size〉 〈Data〉 〈[Count]〉 〈, 〈Size〉 Data 〈[Count]〉〉…
DAT
 〈Symbol〉 〈Condition〉 Instruction Operands 〈Effect(s)〉

• Symbol is an optional name for the data, reserved space, or instruction that follows.
• Alignment is the desired alignment and default size (BYTE, WORD, or LONG) of the data

elements that follow.
• Size is the desired size (BYTE, WORD, or LONG) of the following data element

immediately following it; alignment is unchanged.
• Data is a constant expression or comma-separated list of constant expressions.

Quoted strings of characters are also allowed; they are treated as a comma-separated
list of characters.

• Count is an optional expression indicating the number of byte-, word-, or long-sized
entries of Data to store in the data table.

• Condition is an assembly language condition, IF_C, IF_NC, IF_Z, etc.
• Instruction is an assembly language instruction, ADD, SUB, MOV, etc.
• Operands is zero, one, or two operands as required by the Instruction.
• Effect(s) is/are one, two or three assembly language effects that cause the result of the

instruction to be written or not, NR, WR, WC, or WZ.

Explanation
A DAT (Data) block is a section of source code that contains pre-defined data, memory
reserved for run-time use and Propeller Assembly code. This is one of six special
declarations (CON, VAR, OBJ, PUB, PRI, and DAT) that provide inherent structure to the Spin
language.

Data blocks are multi-purpose sections of source code that are used for data tables, run-time
workspace, and Propeller Assembly code. Assembly code and data can be intermixed, if
necessary, so that data is loaded into a cog along with the assembly code.

Propeller Manual v1.1 · Page 99

jmartin
Improved

jmartin
Improved

jmartin
New

jmartin
New

DAT – Spin Language Reference
Declaring Data(Syntax 1)
Data is declared with a specific alignment and size (BYTE, WORD, or LONG) to indicate how it
should be stored in memory. The location where data is actually stored depends on the
structure of the object and the application it is compiled into since data is included as part of
the compiled code.

For example:
DAT
 byte 64, "A", "String", 0
 word $FFC2, 75000
 long $44332211, 32

The first thing on line two of this example, BYTE, indicates the data following it should be
byte-aligned and byte-sized. At compile time, the data following BYTE, 64, “A”, etc., is stored
in program memory a byte at a time starting at the next available location. Line three
specifies word-aligned and word-sized data. Its data, $FFC2 and 75000, will begin at the next
word boundary position following the data that appeared before it; with any unused bytes
from the previous data filled with zeros to pad up to the next word boundary. The fourth line
specifies long-aligned and long-sized data; its data will be stored at the next long boundary
following the word-aligned data that appeared before it, with zero-padded words leading up
to that boundary. Table 2-8 shows what this looks like in memory (shown in hexadecimal).

Table 2-8: Example Data in Memory
L 0 1 2 3 4 5
W 0 1 2 3 4 5 6 7 8 9 10 11
B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
D 40 41 53 74 72 69 6E 67 00 00 C2 FF F8 24 00 00 11 22 33 44 20 00 00 00

L = longs, W = words, B = bytes, D = data

The first nine bytes (0 – 8) are the byte data from line one; $40 = 64 (decimal), $41 = “A”,
$53 = “S”, etc. Byte 9 is padded with zero to align the first word of word-aligned data,
$FFC2, at byte 10. Bytes 10 and 11 (word 5) contain the first word-sized value, $FFC2,
stored in low-byte-first format as $C2 and $FF. Bytes 12 and 13 (word 6) is the lowest word
of 75000; more on this later. Bytes 14 and 15 (word 7) are zero padded to align the first long
of long-aligned data, $44332211. Bytes 16 through 19 (long 5) contain that value in low-
byte-first format. Finally, bytes 20 through 23 (long 6) contains the second long of data, 32,
in low-byte-first format.

Page 100 · Propeller Manual v1.1

2: Spin Language Reference – DAT
You may have noticed that the value 75000 was specified as a word-sized one. The number
75000 in hexadecimal is $124F8, but since that’s larger than a word, only the lowest word
($24F8) of the value was stored. This resulted in word 6 (bytes 12 and 13) containing $F8
and $24, and word 7 (bytes 14 and 15) containing $00 and $00 due to the padding for the
following long-aligned values.

This phenomenon, whether or not it is intentional, occurs for byte-aligned/byte-sized data as
well, for example:

DAT
 byte $FFAA, $BB995511

...results in only the low bytes of each value, $AA and $11 being stored in consecutive
locations.

Occasionally, however, it is desirable to store an entire large value as smaller elemental units
that are not necessarily aligned according to the size of the value itself. To do this, specify
the value’s size just before the value itself.

DAT
 byte word $FFAA, long $BB995511

This example specifies byte-aligned data, but a word-sized value followed by a long-sized
value. The result is that the memory contains $AA and $FF, consecutively, and following it,
$11, $55, $99 and $BB.

If we modify line three of the first example above as follows:

 word $FFC2, long 75000

...then we’d end up with $F8, $24, $01, and $00 occupying bytes 12 through 15. Byte 15 is
the upper byte of the value and it just happens to be immediately left of the next long
boundary so no additional zero-padded bytes are needed for the next long-aligned data.

Optionally, the Symbol field of syntax 1 can be included to “name” the data. This makes
referencing the data from a PUB or PRI block easy. For example:

DAT
 MyData byte $FF, 25, %1010

PUB GetData | Temp
 Temp := MyData[0] 'Get first byte of data table

Propeller Manual v1.1 · Page 101

DAT – Spin Language Reference
This example creates a data table called MyData that consists of bytes $FF, 25 and %1010.
The public method, GetData, reads the first byte of MyData from main memory and stores it in
its local variable, Temp.

You can also use the BYTE, WORD, and LONG declarations to read main memory locations. For
example:

DAT
 MyData byte $FF, 25, %1010

PUB GetData | Temp
 Temp := BYTE[@MyData][0] 'Get first byte of data table

This example is similar to the previous one except that it uses the BYTE declaration to read the
value stored at the address of MyData. Refer to BYTE, page 51; WORD, page 227; and LONG, page
128, for more information on reading and writing main memory.

Declaring Repeating Data (Syntax 1)
Data items may be repeated by using the optional Count field. For example:

DAT
 MyData byte 64, $AA[8], 55

The above example declares a byte-aligned, byte-sized data table, called MyData, consisting of
the following ten values: 64, $AA, $AA, $AA, $AA, $AA, $AA, $AA, $AA, 55. There were
eight occurrences of $AA due to the [8] in the declaration immediately after it.

Writing Propeller Assembly Code (Syntax 2)
In addition to numeric and string data, the DAT block is also used for Propeller Assembly
code. The following example toggles pin 0 every ¼ second.

DAT
 org 0 'Reset assembly pointer
Toggle rdlong Delay, #0 'Get clock frequency
 shr Delay, #2 'Divide by 4
 mov Time, cnt 'Get current time
 add Time, Delay 'Adjust by 1/4 second
 mov dira, #1 'set pin 0 to output
Loop waitcnt Time, Delay 'Wait for 1/4 second
 xor outa, #1 'toggle pin
 jmp #Loop 'loop back

Page 102 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

2: Spin Language Reference – DAT

Propeller Manual v1.1 · Page 103

Delay res 1
Time res 1

When a Propeller Application initially boots up, only Spin code is executed. At any time,
however, that Spin code can choose to launch assembly code into a cog of its own. The
COGNEW (page 78) and COGINIT (page 76) commands are used for this purpose. The following
Spin code example launches the Toggle assembly code shown above.)

PUB Main
 cognew(@Toggle, 0) 'Launch Toggle code

The COGNEW instruction, above, tells the Propeller chip to launch the Toggle assembly code
into a new cog. The Propeller then finds an available cog, copies the code from the DAT block
starting at Toggle into the cog’s RAM, and then starts the cog which begins executing code
from Cog RAM location 0.

A DAT block may contain multiple Propeller Assembly programs, or multiple DAT blocks may
each contain individual assembly programs, but in both cases, each assembly program should
begin with an ORG directive (page 328) to reset the assembly pointer properly.

Dual Commands
The Spin and Propeller Assembly languages share a number of like-named commands, called
dual commands. These dual commands perform similar tasks but each has a different syntax
structure that resembles the language in which it is written; Spin vs. Propeller Assembly.
Any dual commands that are used in a DAT block are considered to be assembly instructions.
Conversely, any dual commands that are used in PUB and PRI blocks are considered to be Spin
commands.

jmartin
New

DIRA, DIRB – Spin Language Reference

DIRA, DIRB
Register: Direction Register for 32-bit Ports A and B.

((PUB ┆ PRI))
 DIRA 〈[Pin(s)]〉
((PUB ┆ PRI))
 DIRB 〈[Pin(s)]〉 (Reserved for future use)
Returns: Current value of direction bits for I/O Pin(s) in Ports A or B, if used as a source
variable.

• Pin(s) is an optional expression, or a range-expression, that specifies the I/O pin, or
pins, to access in Port A (0-31) or Port B (32-63). If given as a single expression,
only the pin specified is accessed. If given as a range-expression (two expressions in
a range format; x..y) the contiguous pins from the start to end expressions are
accessed.

Explanation
DIRA and DIRB are one of six registers (DIRA, DIRB, INA, INB, OUTA and OUTB) that directly affect
the I/O pins. The DIRA register holds the direction states for each of the 32 I/O pins in Port A;
bits 0 through 31 correspond to P0 through P31. The DIRB register holds the direction states
for each of the 32 I/O pins in Port B; bits 0 through 31 correspond to P32 through P63.

NOTE: DIRB is reserved for future use; the Propeller P8X32A does not include Port B I/O
pins so only DIRA is discussed below.

DIRA is used to both set and get the current direction states of one or more I/O pins in Port A.
A low (0) bit sets the corresponding I/O pin to an input direction. A high (1) bit sets the
corresponding I/O pin to an output direction. All the DIRA register’s bits default to zero (0)
upon cog startup; all I/O pins are specified as inputs by that cog until the code instructs
otherwise.

Each cog has access to all I/O pins at any given time. Essentially, all I/O pins are directly
connected to each cog so that there is no hub-related mutually exclusive access involved.
Each cog maintains its own DIRA register that gives it the ability to set any I/O pin’s direction.
Each cog’s DIRA register is OR’d with that of the other cogs’ DIRA registers and the resulting
32-bit value becomes the I/O directions of Port A pins P0 through P31. The result is that
each I/O pin’s direction state is the “wired-OR” of the entire cog collective. See I/O Pins on
page 26 for more information.
Page 104 · Propeller Manual v1.1

2: Spin Language Reference – DIRA, DIRB
This configuration can easily be described in the following simple rules:

A. A pin is an input only of no active cog sets it to an output.
B. A pin is an output if any active cog sets it to an output.

If a cog is disabled, its direction register is treated as if were cleared to 0, causing it to exert
no influence on I/O pin directions and states.

Note that because of the “wired-OR” nature of the I/O pins, no electrical contention between
cogs is possible, yet they can all still access I/O pins simultaneously. It is up to the
application developer to ensure that no two cogs cause logical contention on the same I/O pin
during run time.

Using DIRA
Set or clear bits in DIRA to affect the direction of I/O pins as desired. For example:

 DIRA := %00000000_00000000_10110000_11110011

The above code sets the entire DIRA register (all 32 bits at once) to a value that makes I/O pins
15, 13, 12, 7, 6, 5, 4, 1 and 0 to outputs and the rest to inputs.

Using the post-clear (~) and post-set (~~) unary operators, the cog can set all I/O pins to
inputs, or outputs, respectively; it’s not usually desirable to set all I/O pins to outputs,
however. For example:

 DIRA~ 'Clear DIRA register (all I/Os are inputs)

—and—

 DIRA~~ 'Set DIRA register (all I/Os are outputs)

The first example above clears the entire DIRA register (all 32 bits at once) to zero; all I/Os P0
through P31 to inputs. The second example above sets the entire DIRA register (all 32 bits at
once) to ones; all I/Os P0 through P31 to outputs.

To affect only one I/O pin (one bit), include the optional Pin(s) field. This treats the DIRA
register as an array of 32 bits.

 DIRA[5]~~ 'Set DIRA bit 5 (P5 to output)

This sets P5 to an output. All other bits of DIRA (and thus all other corresponding I/O pins)
remain in their previous state.

Propeller Manual v1.1 · Page 105

DIRA, DIRB – Spin Language Reference

Page 106 · Propeller Manual v1.1

The DIRA register supports a special form of expression, called a range-expression, which
allows you to affect a group of I/O pins at once, without affecting others outside the specified
range. To affect multiple, contiguous I/O pins at once, use a range expression (like x..y) in
the Pin(s) field.

 DIRA[5..3]~~ 'Set DIRA bits 5 through 3 (P5-P3 to output)

This sets P5, P4 and P3 to outputs; all other bits of DIRA remain in their previous state. Here’s
another example:

 DIRA[5..3] := %110 'Set P5 and P4 to output, P3 to input

The above example sets DIRA bits 5, 4 and 3 equal to 1, 1, and 0, respectively, leaving all
other bits in their previous state. Consequently, P5 and P4 are now outputs and P3 is an
input.

IMPORTANT: The order of the values in a range-expression affects how it is used. For
example, the following swaps the order of the range-expression of the previous example.

 DIRA[3..5] := %110 'Set P3 and P4 to output, P5 to input

Here, DIRA bits 3, 4 and 5 are set equal to 1, 1, and 0, respectively, making P3 and P4 outputs
and P5 an input.

This is a powerful feature of range-expressions, but if care is not taken, it can also cause
strange, unintentional results.

Normally DIRA is only written to but it can also be read from to retrieve the current I/O pin
directions. The following assumes Temp is a variable created elsewhere:

 Temp := DIRA[7..4] 'Get direction of P7 through P4

The above sets Temp equal to DIRA bits 7, 6, 5, and 4; i.e., the lower 4 bits of Temp are now
equal to DIRA7:4 and the other bits of Temp are cleared to zero.

2: Spin Language Reference – FILE

Propeller Manual v1.1 · Page 107

FILE
Directive: Import external file as data.

DAT
 FILE "FileName"

• FileName is the name, without extension, of the desired data file. Upon compile, a file
with this name is searched for in the editor tabs, the working directory and the library
directory. FileName can contain any valid filename characters; disallowed characters
are \, /, :, *, ?, ", <, >, and |.

Explanation
The FILE directive is used to import an external data file (usually a binary file) into the DAT
block of an object. The data can then be accessed by the object just like any regular DAT
block data.

T

Using FILE
FILE is used in DAT blocks similar to how BYTE would be used, except that following it is a
filename in quotes instead of data values. For example:

DAT
 Str byte "This is a data string.", 0
 Data file "Datafile.dat"

In this example, the DAT block is made up of a byte string followed by the data from a file
called Datafile.dat. Upon compile, the Propeller Tool will search through the editor tabs, the
working directory or the library directory for a file called Datafile.dat and will load its data
into the first byte following the zero-terminated string, Str. Methods can access the imported
data using the

T

BYTE, WORD or LONG declarations as they would normal data. For example:

PUB GetData | Index, Temp
 Index := 0
 repeat
 Temp := byte[Data][Index++] 'Read data into Temp 1 byte at a time
 <do something with Temp> 'Perform task with value in Temp
 while Temp > 0 'Loop until end found

This example will read the imported data, one byte at a time, until it finds a byte equal to 0.

FLOAT – Spin Language Reference

Page 108 · Propeller Manual v1.1

FLOAT
Directive: Convert an integer constant expression to a compile-time floating-point value.

((CON ┆ VAR ┆ OBJ ┆ PUB ┆ PRI ┆ DAT))
 FLOAT (IntegerConstant)
Returns: Resolved value of integer constant expression as a floating-point number.

• IntegerConstant is the desired integer constant expression to be used as a constant
floating-point value.

Explanation
FLOAT is one of three directives (T FLOAT, ROUND and TRUNC) used for floating-point constant
expressions. The FLOATT directive converts a constant integer value to a constant floating-
point value.

Using FLOAT
While most constants are 32-bit integer values, the Propeller compiler supports 32-bit
floating-point values and constant expressions for compile-time use. Note that this is for
constant expressions only, not run-time variable expressions.

For typical floating-point constant declarations, the expression must be shown as a floating-
point value in one of three ways: 1) as an integer value followed by a decimal point and at
least one digit, 2) as an integer with an E followed by an exponent value, or 3) both 1 and 2.
For example:

 CON
 OneHalf = 0.5
 Ratio = 2.0 / 5.0
 Miles = 10e5

The above code creates three floating-point constants. OneHalf is equal to 0.5, Ratio is equal
to 0.4 and Miles is equal to 1,000,000.

Notice that in the above example, every component of every expression is shown as a
floating-point value. Now take a look at the following example:

 CON
 Two = 2
 Ratio = Two / 5.0

2: Spin Language Reference – FLOAT

Propeller Manual v1.1 · Page 109

Here, Two is defined as an integer constant and Ratio appears to be defined as a floating-point
constant. This causes an error on the Ratio line because, for floating-point constant
expressions, every value within the expression must be a floating-point value; you cannot mix
integer and floating-point values like Ratio = 2 / 5.0.

You can, however, use the FLOAT directive to convert an integer value to a floating-point
value, such as in the following:

T

 CON
 Two = 2
 Ratio = float(Two) / 5.0

The FLOAT directive in this example converts the integer constant, Two, into the floating-point
form of that value so that it can be used in the floating-point expression.

T

About Floating Point
The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with
a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

Floating-point constant expressions can be defined and used for many compile-time purposes,
but for run-time floating-point operations, the FloatMath, FloatString, Float32, and
Float32Full objects provide math functions compatible with single-precision numbers.

See Constant Assignment ‘=’ in the Operators section on page 148, ROUND on page 198, and
TRUNC on page 209, as well as the FloatMath, FloatString, Float32, and Float32Full objects
for more information.

_FREE – Spin Language Reference

_FREE
Constant: Pre-defined, one-time settable constant for specifying the size of an application’s
free space.

CON
 _FREE = Expression

• Expression is an integer expression that indicates the number of longs to reserve for
free space.

Explanation
_FREE is a pre-defined, one-time settable optional constant that specifies the required free
memory space of an application. This value is added to _STACK, if specified, to determine the
total amount of free/stack memory space to reserve for a Propeller Application. Use _FREE if
an application requires a minimum amount of free memory in order to run properly. If the
resulting compiled application is too large to allow the specified free memory, an error
message will be displayed. For example:

CON
 _FREE = 1000

The _FREE declaration in the above CON block indicates that the application needs to have at
least 1,000 longs of free memory left over after compilation. If the resulting compiled
application does not have that much room left over, an error message will indicate by how
much it was exceeded. This is a good way to prevent successful compiles of an application
that will fail to run properly due to lack of memory.

Note that only the top object file can set the value of _FREE. Any child object’s _FREE
declarations will be ignored.

Page 110 · Propeller Manual v1.1

2: Spin Language Reference – FRQA, FRQB

FRQA, FRQB
Register: Counter A and Counter B frequency registers.

((PUB ┆ PRI))
 FRQA
((PUB ┆ PRI))
 FRQB
Returns: Current value of Counter A or Counter B Frequency Register, if used as a source
variable.

Explanation
FRQA and FRQB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The FRQA register contains the value that is
accumulated into the PHSA register. The FRQB register contains the value that is accumulated
into the PHSB register. See CTRA, CTRB on page 95 for more information.

Using FRQA and FRQB
FRQA and FRQB can be read/written just like any other register or pre-defined variable. For
example:

 FRQA := $00001AFF

The above code sets FRQA to $00001AFF. Depending on the CTRMODE field of the CTRA
register, this value in FRQA may be added into the PHSA register at a frequency determined by
the System Clock and the primary and/or secondary I/O pins. See CTRA, CTRB on page 95 for
more information.

Propeller Manual v1.1 · Page 111

IF – Spin Language Reference

Page 112 · Propeller Manual v1.1

IF
Command: Test condition(s) and execute a block of code if valid (positive logic).

((PUB ┆ PRI))
 IF Condition(s)
 IfStatement(s)
 〈 ELSEIF Condition(s)
 ElseIfStatement(s) 〉…
 〈 ELSEIFNOT Condition(s)
 ElseIfNotStatement(s) 〉…
 〈 ELSE
 ElseStatement(s) 〉

• Condition(s) is one or more Boolean expressions to test.
• IfStatement(s) is a block of one or more lines of code to execute when the IF’s

Condition(s) is true.
• ElseIfStatement(s) is an optional block of one or more lines of code to execute when all

the previous Condition(s) are invalid and the ELSEIF’s Condition(s) is true.
• ElseIfNotStatement(s) is an optional block of one or more lines of code to execute when

all the previous Condition(s) are invalid and the ELSEIFNOT’s Condition(s) is false.
• ElseStatement(s) is an optional block of one or more lines of code to execute when all

the previous Condition(s) are invalid.

Explanation
IF is one of the three major conditional commands (IF, IFNOT, and CASE) that conditionally
executes a block of code. IF can optionally be combined with one or more ELSEIF
commands, one or more ELSEIFNOT commands, and/or an T ELSE command to form
sophisticated conditional structures.

IF tests Condition(s) and, if true, executes IfStatement(s). If Condition(s) is false, the
following optional ELSEIF Condition(s), and/or ELSEIFNOT Condition(s), are tested, in order,
until a valid condition line is found, then the associated ElseIfStatement(s), or
ElseIfNotStatement(s), block is executed. The optional ElseStatement(s) block is executed if
no previous valid condition lines are found.

A “valid” condition is one that evaluates to TRUE for a positive conditional statement (IF or
ELSEIF) or evaluates to FALSE for a negative conditional statement (ELSEIFNOT).

2: Spin Language Reference – IF
Indention is Critical
IMPORTANT: Indention is critical. The Spin language relies on indention (of one space or
more) on lines following conditional commands to determine if they belong to that command
or not. To have the Propeller Tool indicate these logically grouped blocks of code on-screen,
you can press Ctrl + I to turn on block-group indicators. Pressing Ctrl + I again will disable
that feature. See the Propeller Tool Help for a complete list of shortcut keys.

Simple IF Statement
The most common form of the IF conditional command performs an action if, and only if, a
condition is true. This is written as an IF statement followed by one or more indented lines of
code. For example:

 if X > 10 'If X is greater than 10
 !outa[0] 'Toggle P0
 !outa[1] 'Toggle P1

This example tests if X is greater than 10; if it is, I/O pin 0 is toggled. Whether or not the IF
condition was true, I/O pin P1 is toggled next.

Since the !outa[0] line is indented from the IF line, it belongs to the IfStatement(s) block
and is executed only if the IF condition is true. The next line, !outa[1], is not indented from
the IF line, so it is executed next whether or not the IF’s Condition(s) was true. Here’s
another version of the same example:

 if X > 10 'If X is greater than 10
 !outa[0] 'Toggle P0
 !outa[1] 'Toggle P1
 waitcnt(2_000 + cnt) 'Wait for 2,000 cycles

This example is very similar to the first, except there are now two lines of code indented from
the IF statement. In this case, if X is greater than 10, P0 is toggled then P1 is toggled and
finally the waitcnt line is executed. If, however, X was not greater than 10, the !outa[0] and
!outa[1] lines are skipped (since they are indented and part of the IfStatement(s) block) and
the waitcnt line is executed (since it is not indented; it is not part of the IfStatement(s) block).

Combining Conditions
The Condition(s) field is evaluated as one single Boolean condition, but it can be made up of
more than one Boolean expression by combining them with the AND and OR operators; see
pages 167-168. For example:

Propeller Manual v1.1 · Page 113

IF – Spin Language Reference
 if X > 10 AND X < 100 'If X greater than 10 and less than 100

This IF statement would be true if, and only if, X is greater than 10 and X is also less than 100.
In other words, it’s true if X is in the range 11 to 99. Sometimes statements like these can be
a little difficult to read. To make it easier to read, parentheses can be used to group each sub-
condition, such as with the following.

 if (X > 10) AND (X < 100)'If X greater than 10 and less than 100

Using IF with ELSE
The second most common form of the IF conditional command performs an action if a
condition is true or a different action if that condition is false. This is written as an IF
statement followed by its IfStatement(s) block, then an ELSE followed by its ElseStatement(s)
block, as shown below:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 else 'Else, X <= 100
 !outa[1] 'Toggle P1

Here, if X is greater than 100, I/O pin 0 is toggled, otherwise, X must be less than or equal to
100, and I/O pin 1 is toggled. This IF...ELSE construct, as written, always performs either a
toggle on P0 or a toggle on P1; never both, and never neither.

Remember, the code that logically belongs to the IfStatement(s) or the ElseStatement(s) must
be indented from the IF or the ELSE, respectively, by at least one space. Also note that the
ELSE must be lined up horizontally with the IF statement; they must both begin on the same
column or the compiler will not know that the ELSE goes with that IF.

For every IF statement, there can be zero or one ELSE component. ELSE must be the last
component in an IF statement, appearing after any potential ELSEIFs.

Using IF with ELSEIF
The third form of the IF conditional command performs an action if a condition is true or a
different action if that condition is false but another condition is true, etc. This is written as
an IF statement followed by its IfStatement(s) block, then one or more ELSEIF statements
followed by their respective ElseIfStatement(s) blocks. Here’s an example:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 elseif X == 90 'Else If X = 90

Page 114 · Propeller Manual v1.1

2: Spin Language Reference – IF
 !outa[1] 'Toggle P1

Here, if X is greater than 100, I/O pin 0 is toggled, otherwise, if X equals 90, I/O pin 1 is
toggled, and if neither of those conditions were true, neither P0 nor P1 is toggled. This is a
slightly shorter way of writing the following code:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 else 'Otherwise,
 if X == 90 'If X = 90
 !outa[1] 'Toggle P1

Both of these examples perform the same actions, but the first is shorter and is usually
considered easier to read. Note that the ELSEIF, just like the ELSE, must be lined up (start in
the same column) as the IF that it is associated with.

Each IF conditional statement can have zero or more ELSEIF statements associated with it.
Look at the following:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 elseif X == 90 'Else If X = 90
 !outa[1] 'Toggle P1
 elseif X > 50 'Else If X > 50
 !outa[2] 'Toggle P2

We have three conditions and three possible actions here. Just like the previous example, if X
is greater than 100, P0 is toggled, otherwise, if X equals 90, P1 is toggled, but if neither of
those conditions were true and X is greater than 50, P2 is toggled. If none of those conditions
were true, then none of those actions would occur.

There is an important concept to note about this example. If X is 101 or higher, P0 is toggled,
or if X is 90, P1 is toggled, or if X is 51 to 89, or 91 to 100, P2 is toggled. This is because the
IF and ELSEIF conditions are tested, one at a time, in the order they are listed and only the
first condition that is true has its block of code executed; no further conditions are tested after
that. This means that if we had rearranged the two ELSEIFs so that the “X > 50” were checked
first, we’d have a bug in our code.

Propeller Manual v1.1 · Page 115

IF – Spin Language Reference

Page 116 · Propeller Manual v1.1

We did this below:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 elseif X > 50 'Else If X > 50
 !outa[2] 'Toggle P2
 elseif X == 90 'Else If X = 90 <-- ERROR, ABOVE COND.
 !outa[1] 'Toggle P1 <-- SUPERSEDES THIS AND
 ' THIS CODE NEVER RUNS

The above example contains an error because, while X could be equal to 90, the elseif X ==
90 statement would never be tested because the previous one, elseif X > 50, would be tested
first, and since it is true, its block is executed and no further conditions of that IF structure
are tested. If X were 50 or less, the last ELSEIF condition is tested, but of course, it will never
be true.

Using IF with ELSEIF and ELSE
Another form of the IF conditional command performs one of many different actions if one
of many different conditions is true, or an alternate action if none of the previous conditions
were true. This is written as with an IF, one or more ELSEIFs, and finally an ELSE. Here’s an
example:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 elseif X == 90 'Else If X = 90
 !outa[1] 'Toggle P1
 elseif X > 50 'Else If X > 50
 !outa[2] 'Toggle P2
 else 'Otherwise,
 !outa[3] 'Toggle P3

This is just like the example above, except that if none of the IF or ELSEIF conditions are true,
P3 is toggled.

The ELSEIFNOT Condition
The ELSEIFNOT condition behaves exactly like ELSEIF except that it uses negative logic; it
executes its ElseIfNotStatement(s) block only if its Condition(s) expression evaluates to
FALSE. Multiple ELSEIFNOT and ELSEIF conditions can be combined in a single IF conditional
command, in any order, between the IF and the optional ELSE.

2: Spin Language Reference – IFNOT

Propeller Manual v1.1 · Page 117

IFNOT
Command: Test condition(s) and execute a block of code if valid (negative logic).

((PUB ┆ PRI))
 IFNOT Condition(s)
 IfNotStatement(s)
 〈 ELSEIF Condition(s)
 ElseIfStatement(s) 〉…
 〈 ELSEIFNOT Condition(s)
 ElseIfNotStatement(s) 〉…
 〈 ELSE
 ElseStatement(s) 〉

• Condition(s) is one or more Boolean expressions to test.
• IfNotStatement(s) is a block of one or more lines of code to execute when the IFNOT’s

Condition(s) is false.
T

• ElseIfStatement(s) is an optional block of one or more lines of code to execute when all
the previous Condition(s) are invalid and the ELSEIF’s Condition(s) is true.

• ElseIfNotStatement(s) is an optional block of one or more lines of code to execute when
all the previous Condition(s) are invalid and the ELSEIFNOT’s Condition(s) is false.

• ElseStatement(s) is an optional block of one or more lines of code to execute when all
the previous Condition(s) are invalid.

Explanation
IFNOT is one of the three major conditional commands (T IF, IFNOTT, and CASE) that conditionally
executes a block of code. IFNOT is the complementary (negative) form of T IF.

IFNOT tests Condition(s) and, if false, executes IfNotStatement(s). If Condition(s) is true, the
following optional

T

ELSEIF Condition(s), and/or ELSEIFNOT Condition(s), are tested, in order,
until a valid condition line is found, then the associated ElseIfStatement(s), or
ElseIfNotStatement(s), block is executed. The optional ElseStatement(s) block is executed if
no previous valid condition lines are found.

A “valid” condition is one that evaluates to FALSE for a negative conditional statement (IFNOT,
or ELSEIFNOT) or evaluates to TRUE for a positive conditional statement (ELSEIF).

See IF on page 112 for information on the optional components of IFNOT. T

INA, INB – Spin Language Reference

INA, INB
Register: Input Registers for 32-bit Ports A and B.

((PUB ┆ PRI))
 INA 〈[Pin(s)]〉
((PUB ┆ PRI))
 INB 〈[Pin(s)]〉 (Reserved for future use)
Returns: Current state of I/O Pin(s) for Port A or B.

• Pin(s) is an optional expression, or a range-expression, that specifies the I/O pin, or
pins, to access in Port A (0-31) or Port B (32-63). If given as a single expression,
only the pin specified is accessed. If given as a range-expression (two expressions in
a range format; x..y) the contiguous pins from the start to end expressions are
accessed.

Explanation
INA and INB are two of six registers (DIRA, DIRB, INA, INB, OUTA and OUTB) that directly affect
the I/O pins. The INA register contains the current states for each of the 32 I/O pins in Port A;
bits 0 through 31 correspond to P0 through P31. The INB register contains the current states
for each of the 32 I/O pins in Port B; bits 0 through 31 correspond to P32 through P63.

NOTE: INB is reserved for future use; the Propeller P8X32A does not include Port B I/O pins
so only INA is discussed below.

INA is read-only and is not really implemented as a register but rather is just an address that,
when accessed as a source item in an expression, reads the Port A I/O pins directly at that
moment. In the result, a low (0) bit indicates the corresponding I/O pin senses ground, and a
high (1) bit indicates the corresponding I/O pin senses VDD (3.3 volts). Since the Propeller
is a CMOS device, the I/O pins sense anything above ½ VDD to be high, so a high means the
pin senses approximately 1.65 volts or higher.

Each cog has access to all I/O pins at any given time. Essentially, all I/O pins are directly
connected to each cog so that there is no hub-related mutually exclusive access involved.
Each cog has its own INA pseudo-register that gives it the ability to read the I/O pins states
(low or high) at any time. The actual I/O pins’ values are read, regardless of their designated
input or output direction.

Page 118 · Propeller Manual v1.1

2: Spin Language Reference – INA, INB

Propeller Manual v1.1 · Page 119

Note because of the “wired-OR” nature of the I/O pins, no electrical contention between cogs
is possible, yet they can all still access I/O pins simultaneously. It is up to the application
developer to ensure that no two cogs cause logical contention on the same I/O pin during run
time. Since all cogs share all I/O pins, a cog could use INA to read pins it is using as well as
the pins that are in use by one or more other cogs.

Using INA
Read INA to get the state of I/O pins at that moment. The following example assumes Temp
was created elsewhere.

 Temp := INA 'Get state of P0 through P31

This example reads the states of all 32 I/O pins of Port A into Temp.

Using the optional Pin(s) field, the cog can read one I/O pin (one bit) at a time. For example:

 Temp := INA[16] 'Get state of P16

The above line reads I/O pin 16 and stores its state (0 or 1) in the lowest bit of Temp; all other
bits of Temp are cleared.

In Spin, the INA register supports a special form of expression, called a range-expression,
which allows you to read a group of I/O pins at once, without reading others outside the
specified range. To read multiple, contiguous I/O pins at once, use a range expression (like
x..y) in the Pin(s) field.

 Temp := INA[18..15] 'Get states of P18:P15

Here, the lowest four bits of Temp (3, 2, 1, and 0) are set to the states of I/O pins 18, 17, 16,
and 15, respectively, and all other bits of Temp are cleared to 0.

IMPORTANT: The order of the values in a range-expression affects how it is used. For
example, the following swaps the order of the range from the previous example.

 Temp := INA[15..18] 'Get states of P15:P18

Here, Temp bits 3, 2, 1, and 0 are set to the states of I/O pins 15, 16, 17, and 18, respectively.

This is a powerful feature of range-expressions, but if care is not taken it can also cause
strange, unintentional results.

LOCKCLR – Spin Language Reference

Page 120 · Propeller Manual v1.1

LOCKCLR
Command: Clear lock to false and get its previous state.

((PUB ┆ PRI))
 LOCKCLR (ID)
Returns: Previous state of lock (TRUE or FALSE).

• ID is the ID (0 – 7) of the lock to clear to false.

Explanation
LOCKCLR is one of four lock commands (LOCKNEW, LOCKRET, LOCKSET, and T LOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKCLR clears lock
ID to FALSE and retrieves the previous state of that lock (TRUE or FALSE).

See About Locks, page 122, and Suggested Rules for Locks, page 123 for information on the
typical use of locks and the LOCKxxx commands.

The following assumes that a cog (either this one or another) has already checked out a lock
using LOCKNEW and shared the ID with this cog, which saved it as SemID. It also assumes this
cog has an array of longs called LocalData.

PUB ReadResource | Idx
 repeat until not lockset(SemID) 'wait until we lock the resource
 repeat Idx from 0 to 9 'read all 10 longs of resource
 LocalData[Idx] := long[Idx]
 lockclr(SemID) 'unlock the resource

PUB WriteResource | Idx
 repeat until not lockset(SemID) 'wait until we lock the resource
 repeat Idx from 0 to 9 'write all 10 longs to resource
 long[Idx] := LocalData[Idx]
 lockclr(SemID) 'unlock the resource

Both of these methods, ReadResource and WriteResource, follow the same rules before and
after accessing the resource. First, they wait indefinitely at the first REPEAT loop until it has
locked the resource; i.e., it has successfully “set” the associated lock. If LOCKSET returns TRUE,
the condition “until not lockset…” is FALSE, meaning that some other cog is currently
accessing the resource, so that first repeat loop tries again. If LOCKSET returns T FALSE, the

2: Spin Language Reference – LOCKCLR

Propeller Manual v1.1 · Page 121

condition “until not lockset…” is true, meaning we have “locked the resource” and the first
repeat loop ends. The second REPEAT loop in each method reads or writes the resource, via
the long[Idx] and LocalData[Idx] statements. The last line of each method, lockclr(SemID),
clears the resource’s associated lock to FALSE, logically unlocking or releasing the resource
for others to use.

See LOCKNEW, page 122; LOCKRET, page 125; and LOCKSET, page 126 for more information.

LOCKNEW – Spin Language Reference

Page 122 · Propeller Manual v1.1

LOCKNEW
Command: Check out a new lock and get its ID.

((PUB ┆ PRI))
 LOCKNEW
Returns: ID (0-7) of the lock checked out, or -1 if none were available.

Explanation
LOCKNEW is one of four lock commands (LOCKNEW, LOCKRET, T LOCKSETT, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKNEW checks out a
unique lock, from the Hub, and retrieves the ID of that lock. If no locks were available,
LOCKNEW returns -1.

About Locks
A lock is a semaphore mechanism that is used to communicate between two or more entities.
In the Propeller chip, a lock is simply one of eight global bits in a protected register within
the Hub. The Hub maintains an inventory of which locks are in use and their current states.
Cogs can check out, set, clear, and return locks as needed during run time to indicate whether
a custom shared item, such as a block of memory, is available or not. Since locks are
managed by the Hub only one cog can affect them at a time, making this an effective control
mechanism.

In applications where two or more cogs are sharing the same memory, a tool such as a lock
may be required to prevent catastrophic collisions from occurring. The Hub prevents such
collisions from occurring on elemental data (such a byte, word or long) at every moment in
time, but it cannot prevent “logical” collisions on blocks of multiple elements (such as a
block of bytes, words, longs or any combination of these). For example, if two or more cogs
are sharing a single byte of main memory, each one is guaranteed exclusive access to that
byte by nature of the Hub. But if those two cogs share multiple bytes of main memory, the
Hub can not prevent one cog from writing a few of those bytes while another cog is reading
all of them; all cogs’ interactions with those bytes may be interleaved in time. In this case,
the developer should design each process (in each cog that shares this memory) so that they
cooperatively share the memory block in a non-destructive way. Locks serve as flags that
notify each cog when a memory block is safe to manipulate or not.

2: Spin Language Reference – LOCKNEW

Propeller Manual v1.1 · Page 123

Using LOCKNEW
A user-defined, mutually exclusive resource should be initially set up by a cog, then that
same cog should use LOCKNEW to check out a unique lock in which to manage that resource
and pass the ID of that lock to any other cogs that require it. For example:

VAR
 byte SemID

PUB SetupSharedResource
 <code to set up user-defined, shared resource here>
 if (SemID := locknew) == -1
 <error, no locks available>
 else
 <share SemID's value with other cogs>

The example above calls LOCKNEW and stores the result in SemID. If that result is -1, an error
occurs. If the SemID is not -1, then a valid lock was checked out and that SemID needs to be
shared with other cogs along with the address of the resource that SemID is used for. The
method used to communicate the SemID and resource address depends on the application, but
typically they are both passed as parameters to the Spin method that is launched into a cog, or
as the PAR parameter when launching an assembly routine into a cog. See COGNEW, page 78.

Suggested Rules for Locks
The following are the suggested rules for using locks.

• Objects needing a lock to manage a user-defined, mutually exclusive resource should
check out a lock using LOCKNEW and save the ID returned, we’ll call it SemID here.
Only one cog should check out this lock. The cog that checked out the lock must
communicate SemID to all other cogs that will use the resource.

• Any cog that needs to access the resource must first successfully set the lock SemID.
A successful “set” is when LOCKSET(SemID) returns FALSE; i.e., the lock was not
already set. If LOCKSET returned TRUE, then another cog must be accessing the
resource; you must wait and try again later to get a successful “set”.

T

• The cog that has achieved a successful “set” can manipulate the resource as
necessary. When done, it must clear the lock via LOCKCLR(SemID) so another cog can
have access to the resource. In a well-behaved system, the result of LOCKCLR can be
ignored here since this cog is the only one with the logical right to clear it.

LOCKNEW – Spin Language Reference

Page 124 · Propeller Manual v1.1

• If a resource is no longer needed, or becomes non-exclusive, the associated lock
should be returned to the lock pool via LOCKRET(SemID). Usually this is done by the
same cog that checked out the lock originally.

Applications should be written such that locks are not accessed with LOCKSET or LOCKCLR
unless they are currently checked out.

Note that user-defined resources are not actually locked by either the Hub or the checked-out
lock. The lock feature only provides a means for objects to cooperatively lock those
resources. It’s up to the objects themselves to decide on, and abide by, the rules of lock use
and what resource(s) will be governed by them. Additionally, the Hub does not directly
assign a lock to the cog that called LOCKNEW, rather it simply marks it as being “checked out”
by a cog; any other cog can “return” locks to the pool of available locks. Also, any cog can
access any lock through the LOCKCLR and LOCKSET commands even if those locks were never
checked out. Doing such things is generally not recommended because of the havoc it can
cause with other, well-behaved objects in the application.

See LOCKRET, page ; LOCKCLRT 125 , page 120; and LOCKSET, page 126 for more information.

2: Spin Language Reference – LOCKRET

Propeller Manual v1.1 · Page 125

LOCKRET
Command: Release lock back to lock pool, making it available for future LOCKNEW requests.

((PUB ┆ PRI))
 LOCKRET (ID)

• ID is the ID (0 – 7) of the lock to return to the lock pool.

Explanation
LOCKRET is one of four lock commands (T LOCKNEW, LOCKRETT, LOCKSET, and T LOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKRET returns a
lock, by ID, back to the Hub’s lock pool so that it may be reused by other cogs at a later time.
For example:

 LOCKRET(2)

This example returns Lock 2 back to the Hub. This doesn’t prevent cogs from accessing
Lock 2 afterwards, it only allows the Hub to reassign it to cogs that call LOCKNEW in the future.
Applications should be written such that locks are not accessed with LOCKSET or LOCKCLR
unless they are currently checked out.

See About Locks, page 122, and Suggested Rules for Locks, page 123 for information on the
typical use of locks and the LOCKxxx commands.

Note that user-defined resources are not actually locked by either the Hub or the checked-out
lock. The lock feature only provides a means for objects to cooperatively lock those
resources. It’s up to the objects themselves to decide on, and abide by, the rules of lock use
and what resource(s) will be governed by them. Additionally, the Hub does not directly
assign a lock to the cog that called LOCKNEW, rather it simply marks it as being “checked out”
by a cog; any other cog can “return” locks to the pool of available locks. Also, any cog can
access any lock through the LOCKCLR and LOCKSET commands even if those locks were never
checked out. Doing such things is generally not recommended because of the havoc it can
cause with other, well-behaved objects in the application.

See LOCKNEW, page 122; LOCKCLR, page 120; and LOCKSET, page126 for more information.

LOCKSET – Spin Language Reference

Page 126 · Propeller Manual v1.1

LOCKSET
Command: Set lock to true and get its previous state.

((PUB ┆ PRI))
 LOCKSET (ID)
Returns: Previous state of lock (TRUE or FALSE).

• ID is the ID (0 – 7) of the lock to set to TRUE.

Explanation
LOCKSET is one of four lock commands (T LOCKNEW, LOCKRETT, LOCKSET, and T LOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKSET sets lock ID
to TRUE and retrieves the previous state of that lock (TRUE or FALSE).

See About Locks, page 122, and Suggested Rules for Locks, page 123 for information on the
typical use of locks and the LOCKxxx commands.

The following assumes that a cog (either this one or another) has already checked out a lock
using LOCKNEW and shared the ID with this cog, which saved it as SemID. It also assumes this
cog has an array of longs called LocalData.

PUB ReadResource | Idx
 repeat until not lockset(SemID) 'wait until we lock the resource
 repeat Idx from 0 to 9 'read all 10 longs of resource
 LocalData[Idx] := long[Idx]
 lockclr(SemID) 'unlock the resource

PUB WriteResource | Idx
 repeat until not lockset(SemID) 'wait until we lock the resource
 repeat Idx from 0 to 9 'write all 10 longs to resource
 long[Idx] := LocalData[Idx]
 lockclr(SemID) 'unlock the resource

Both of these methods, ReadResource and WriteResource, follow the same rules before and
after accessing the resource. First, they wait indefinitely at the first REPEAT loop until it has
locked the resource; i.e., it has successfully “set” the associated lock. If LOCKSET returns TRUE,
the condition “until not lockset…” is false, meaning that some other cog is currently
accessing the resource, so that first REPEAT loop tries again. If LOCKSET returns T FALSE, the

2: Spin Language Reference – LOCKSET

Propeller Manual v1.1 · Page 127

condition “until not lockset…” is true, meaning we have “locked the resource” and the first
REPEATT loop ends. The second REPEAT loop in each method reads or writes the resource, via
the long[Idx] and LocalData[Idx] statements. The last line of each method,
lockclr(SemID), clears the resource’s associated lock to FALSE, logically unlocking or
releasing the resource for others to use.

See LOCKNEW, page 122; LOCKRET, page 125; and LOCKCLR, page 120 for more information.

LONG – Spin Language Reference

Page 128 · Propeller Manual v1.1

LONG
Designator: Declare long-sized symbol, long aligned/sized data, or read/write a long of main
memory.

VAR
 LONG Symbol 〈[Count]〉
DAT

 〈Symbol〉 LONG Data 〈[Count]〉
((PUB ┆ PRI))
 LONG [BaseAddress] 〈[Offset]〉

• Symbol is the desired name for the variable (Syntax 1) or data block (Syntax 2).
• Count is an optional expression indicating the number of long-sized elements for

Symbol (Syntax 1) or the number of long-sized entries of Data (Syntax 2) to store in
a data table.

• Data is a constant expression or comma-separated list of constant expressions.
• BaseAddress is an expression describing the long-aligned address of main memory to

read or write. If Offset is omitted, BaseAddress is the actual address to operate on. If
Offset is specified, BaseAddress + Offset * 4 is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate on.
Offset is in units of longs.

Explanation
LONG is one of three multi-purpose declarations (BYTE, WORD, and LONG) that declares or
operates on memory. LONG can be used to:

1) declare a long-sized (32-bit) symbol or a multi-long symbolic array in a VAR block, or
2) declare long-aligned, and/or long-sized, data in a DAT block, or T

3) read or write a long of main memory at a base address with an optional offset.

Range of Long
Memory that is long-sized (32 bits) can contain a value that is one of 232 possible
combinations of bits (i.e., one of 4,294,967,296 combinations). The Spin language performs
all mathematic operations using 32-bit signed math, meaning every long value is considered
to be in the range -2,147,483,648 to +2,147,483,647. However, the actual numeric value
contained within a long is subject to how a computer and user interpret it. In Propeller
Assembly a long value can be treated as both signed and unsigned.

jmartin
Improved

jmartin
New

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

2: Spin Language Reference – LONG

Propeller Manual v1.1 · Page 129

Long Variable Declaration (Syntax 1)
In VAR blocks, syntax 1 of LONG is used to declare global, symbolic variables that are either
long-sized, or are any array of longs. For example:

VAR
 long Temp 'Temp is a long (2 words, 4 bytes)
 long List[25] 'List is a long array

The above example declares two variables (symbols), Temp and List. Temp is simply a single,
long-sized variable. The line under the Temp declaration uses the optional Count field to
create an array of 25 long-sized variable elements called List. Both Temp and List can be
accessed from any PUB or PRI method within the same object that this VAR block was declared;
they are global to the object. An example of this is below.

PUB SomeMethod
 Temp := 25_000_000 'Set Temp to 25,000,000
 List[0] := 500_000 'Set first element of List to 500,000
 List[1] := 9_000 'Set second element of List to 9,000
 List[24] := 60 'Set last element of List to 60

For more information about using LONG in this way, refer to the VAR section’s Variable
Declarations (Syntax 1) on page 210, and keep in mind that LONG is used for the Size field in
that description.

Long Data Declaration (Syntax 2)
In DAT blocks, syntax 2 of LONG is used to declare long-aligned, and/or long-sized data that is
compiled as constant values in main memory. DAT blocks allow this declaration to have an
optional symbol preceding it, which can be used for later reference (see DAT

T

, page 99). For
example:

DAT
 MyData long 640_000, $BB50 'Long-aligned/sized data
 MyList byte long $FF995544, long 1_000 'Byte-aligned/long-sized

The above example declares two data symbols, MyData and MyList. MyData points to the start
of long-aligned and long-sized data in main memory. MyData’s values, in main memory, are
640,000 and $0000BB50, respectively. MyList uses a special DAT block syntax of LONG that
creates a byte-aligned but long-sized set of data in main memory. MyList’s values, in main
memory, are $FF995544 and 1,000, respectively. When accessed a byte at a time, MyList

LONG – Spin Language Reference
contains $44, $55, $99, $FF, 232 and 3, 0 and 0 since the data is stored in little-endian
format.

Note: MyList could have been defined as word-aligned, long-sized data if the “byte”
reference were replaced with “word”.

This data is compiled into the object and resulting application as part of the executable code
section and may be accessed using the read/write form, syntax 3, of LONG (see below). For
more information about using LONG in this way, refer to the DAT section’sDeclaring
Data(Syntax 1) on page 100, and keep in mind that LONG is used for the Size field in that
description.

Data items may be repeated by using the optional Count field. For example:

DAT
 MyData long 640_000, $BB50[3]

The above example declares a long-aligned, long-sized data table, called MyData, consisting of
the following four values: 640000, $BB50, $BB50, $BB50. There were three occurrences of
$BB50 due to the [3] in the declaration immediately after it.

Reading/Writing Longs of Main Memory (Syntax 3)
In PUB and PRI blocks, syntax 3 of LONG is used to read or write long-sized values of main
memory. This is done by writing expressions that refer to main memory using the form:
long[BaseAddress][Offset]. Here’s an example.

PUB MemTest | Temp
 Temp := LONG[@MyData][1] 'Read long value
 long[@MyList][0] := Temp + $01234567 'Write long value

DAT
 MyData long 640_000, $BB50 'Long-sized/aligned data
 MyList byte long $FF995544, long 1_000 'Byte-sized/aligned
 'long data

In this example, the DAT block (bottom of code) places its data in memory as shown in Figure
2-2. The first data element of MyData is placed at memory address $18. The last data element
of MyData is placed at memory address $1C, with the first element of MyList immediately
following it at $20. Note that the starting address ($18) is arbitrary and is likely to change as
the code is modified or the object itself is included in another application.

Page 130 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

2: Spin Language Reference – LONG

Data as longs — 640,000 $BB50 $FF995544 1,000

Long Address —
(Long Offset) —
[Long Symbol] —

$18
(0)

[MyData]

$24
(3)

$20
(2)

$1C
(1)

Data as bytes — 0 196 9 0 $50 $BB $00 $00 $44 $55 $99 $FF 232 3 0 0

Figure 2-2: Main Memory Long-Sized Data Structure and Addressing

$18
(-8)

$19
(-7)

$1A
(-6)

$1B
(-5)

$1C
(-4)

$1D
(-3)

$1F
(-1)

$20
(0)

[MyList]

$21
(1)

$22
(2)

$23
(3)

$24
(4)

$25
(5)

$26
(6)

$27
(7)

$1E
(-2)

Byte Address —
(Byte Offset) —
[Byte Symbol] —

Near the top of the code, the first executable line of the MemTest method,
Temp := long[@MyData][1], reads a long-sized value from main memory. It sets local
variable Temp to $BB50; the value read from main memory address $1C. The address $1C
was determined by the address of the symbol MyData ($18) plus long offset 1 (4 bytes). The
following progressive simplification demonstrates this.

long[@MyData][1] long[$18][1] long[$18 + (1*4)] long[$1C]

The next line, long[@MyList][0] := Temp + $01234567, writes a long-sized value to main
memory. It sets the value at main memory address $20 to $012400BC. The address $20 was
calculated from the address of the symbol MyList ($20) plus long offset 0 (0 bytes).

long[@MyList][0] long[$20][0] long[$20 + (0*4)] long[$20]

The value $012400BC was derived from the current value of Temp plus $012400BC; $BB50 +
$01234567 equals $012400BC.

Addressing Main Memory
As Figure 2-2 suggests, main memory is really just a set of contiguous bytes (see “data as
bytes” row) that can also be read as longs (4-byte sets) when done properly. In fact, the
above example shows that even the addresses are calculated in terms of bytes. This concept
is a consistent theme for any commands that use addresses.

Main memory is ultimately addressed in terms of bytes regardless of the size of value you are
accessing; byte, word, or long. This is advantageous when thinking about how bytes, words,

Propeller Manual v1.1 · Page 131

jmartin
New

LONG – Spin Language Reference
and longs relate to each other, but it may prove problematic when thinking of multiple items
of a single size, like longs.

For this reason, the LONG designator has a very handy feature to facilitate addressing from a
long-centric perspective. Its BaseAddress field when combined with the optional Offset field
operates in a base-aware fashion.

Imagine accessing longs of memory from a known starting point (the BaseAddress). You
may naturally think of the next long or longs as being a certain distance from that point (the
Offset). While those longs are indeed a certain number of “bytes” beyond a given point, it’s
easier to think of them as a number of “longs” beyond a point (i.e., the 4th long, rather than
the long that starts beyond the 12th byte). The LONG designator treats it properly by taking the
Offset value (units of longs), multiplies it by 4 (number of bytes per long), and adds that
result to the BaseAddress to determine the correct long of memory to read. It also clears the
lowest two bits of BaseAddress to ensure the address referenced is a long-aligned one.

So, when reading values from the MyData list, long[@MyData][0] reads the first long value and
long[@MyData][1] reads the second.

If the Offset field were not used, the above statements would have to be something like
long[@MyData], and long[@MyData+4], respectively. The result is the same, but the way it’s
written may not be as clear.

For more explanation of how data is arranged in memory, see the DAT section’s Declaring
Data(Syntax 1) on page 100.

An Alternative Memory Reference
There is yet another way to access the data from the code example above; you could
reference the data symbols directly. For example, these statements read the first two longs of
the MyData list:

Temp := MyData[0]
Temp := MyData[1]

So why wouldn’t you just use direct symbol references all the time? Consider the following
case:

Temp := MyList[0]
Temp := MyList[1]

Page 132 · Propeller Manual v1.1

jmartin
New

2: Spin Language Reference – LONG

Propeller Manual v1.1 · Page 133

Referring back to the example code above Figure 2-2 you might expect these two statements
to read the first and second longs of MyList; $FF995544 and 1000, respectively. Instead, it
reads the first and second “bytes” of MyList, $44 and $55, respectively.

What happened? Unlike MyData, the MyList entry is defined in the code as byte-sized and
byte-aligned data. The data does indeed consist of long-sized values, because each element is
preceded by LONG, but since the symbol for the list is declared as byte-sized, all direct
references to it will return individual bytes.

However, the LONG designator can be used instead, since the list also happens to be long-
aligned because of its position following MyData.

Temp := long[@MyList][0]
Temp := long[@MyList][1]

The above reads the first long, $FF995544, followed by the second long, 1000, of MyList.
This feature is very handy should a list of data need to be accessed as both bytes and longs at
various times in an application.

Other Addressing Phenomena
Both the LONG and direct symbol reference techniques demonstrated above can be used to
access any location in main memory, regardless of how it relates to defined data. Here are
some examples:

Temp := long[@MyList][-1] 'Read last long of MyData (before MyList)
Temp := long[@MyData][2] 'Read first long of MyList (after MyData)
Temp := MyList[-8] 'Read first byte of MyData
Temp := MyData[-2] 'Read long that is two longs before MyData

These examples read beyond the logical borders (start point or end point) of the lists of data
they reference. This may be a useful trick, but more often it’s done by mistake; be careful
when addressing memory, especially if you’re writing to that memory.

jmartin
New

LONGFILL – Spin Language Reference

Page 134 · Propeller Manual v1.1

LONGFILL
Command: Fill longs of main memory with a value.

((PUB ┆ PRI))
 LONGFILL(StartAddress, Value, Count)

• StartAddress is an expression indicating the location of the first long of memory to fill
with Value.

• Value is an expression indicating the value to fill longs with.
• Count is an expression indicating the number of longs to fill, starting with

StartAddress.

Explanation
LONGFILL is one of three commands (BYTEFILL, WORDFILL, and LONGFILL) used to fill blocks of
main memory with a specific value. LONGFILL fills Count longs of main memory with Value,
starting at location StartAddress.

Using LONGFILL
LONGFILL is a great way to clear large blocks of long-sized memory. For example:

VAR
 long Buff[100]

PUB Main
 longfill(@Buff, 0, 100) 'Clear Buff to 0

The first line of the Main method, above, clears the entire 100-long (400-byte) Buff array to
all zeros. LONGFILL is faster at this task than a dedicated REPEAT loop is. T

2: Spin Language Reference – LONGMOVE

LONGMOVE
Command: Copy longs from one region to another in main memory.

((PUB ┆ PRI))
 LONGMOVE (DestAddress, SrcAddress, Count)

• DestAddress is an expression specifying the main memory location to copy the first
long of source to.

• SrcAddress is an expression specifying the main memory location of the first long of
source to copy.

• Count is an expression indicating the number of longs of the source to copy to the
destination.

Explanation
LONGMOVE is one of three commands (BYTEMOVE, WORDMOVE, and LONGMOVE) used to copy blocks
of main memory from one area to another. LONGMOVE copies Count longs of main memory
starting from SrcAddress to main memory starting at DestAddress.

Using LONGMOVE
LONGMOVE is a great way to copy large blocks of long-sized memory. For example:

VAR
 long Buff1[100]
 long Buff2[100]

PUB Main
 longmove(@Buff2, @Buff1, 100) 'Copy Buff1 to Buff2

The first line of the Main method, above, copies the entire 100-long (400-byte) Buff1 array to
the Buff2 array. LONGMOVE is faster at this task than a dedicated REPEAT loop is.

Propeller Manual v1.1 · Page 135

LOOKDOWN, LOOKDOWNZ – Spin Language Reference

LOOKDOWN, LOOKDOWNZ
Command: Get the index of a value in a list.

((PUB ┆ PRI))
 LOOKDOWN (Value : ExpressionList)
((PUB ┆ PRI))
 LOOKDOWNZ (Value : ExpressionList)
Returns: One-based index position (LOOKDOWN) or a zero-based index position (LOOKDOWNZ) of
Value in ExpressionList, or 0 if Value not found.

• Value is an expression indicating the value to find in ExpressionList.
• ExpressionList is a comma-separated list of expressions. Quoted strings of characters

are also allowed; they are treated as a comma-separated list of characters.

Explanation
LOOKDOWN and LOOKDOWNZ are commands that retrieve indexes of values from a list of values.
LOOKDOWN returns the one-based index position (1..N) of Value from ExpressionList.
LOOKDOWNZ is just like LOOKDOWN except it returns the zero-based index position (0..N−1). For
both commands, if Value is not found in ExpressionList then 0 is returned.

Using LOOKDOWN or LOOKDOWNZ
LOOKDOWN and LOOKDOWNZ are useful for mapping a set of non-contiguous numbers (25, -103,
18, etc.) to a set of contiguous numbers (1, 2, 3, etc. –or– 0, 1, 2, etc.) where no algebraic
expression can be found to do so concisely. The following example assumes Print is a
method created elsewhere.

PUB ShowList | Index
 Print(GetIndex(25))
 Print(GetIndex(300))
 Print(GetIndex(2510))
 Print(GetIndex(163))
 Print(GetIndex(17))
 Print(GetIndex(8000))
 Print(GetIndex(3))

PUB GetIndex(Value): Index
 Index := lookdown(Value: 25, 300, 2_510, 163, 17, 8_000, 3)

Page 136 · Propeller Manual v1.1

2: Spin Language Reference – LOOKDOWN, LOOKDOWNZ

Propeller Manual v1.1 · Page 137

The GetIndex method in this example uses LOOKDOWN to find Value and returns the index
where it was found in the ExpressionList, or 0 if not found. The ShowList method calls
GetIndex repeatedly with different values and prints the resulting index on a display.
Assuming Print is a method that displays a value, this example will print 1, 2, 3, 4, 5, 6 and 7
on a display.

If LOOKDOWNZ were used instead of LOOKDOWN this example would print 0, 1, 2, 3, 4, 5, and 6 on
a display.

If Value is not found, LOOKDOWN, or LOOKDOWNZ, returns 0. So if one of the lines of the ShowList
method was, Print(GetIndex(50)), the display would show 0 at the time it was executed.

If using LOOKDOWNZ, keep in mind that it may return 0 if either Value was not found or Value is
at index 0. Make sure this will not cause an error in your code or use LOOKDOWN instead.

LOOKUP, LOOKUPZ – Spin Language Reference

Page 138 · Propeller Manual v1.1

LOOKUP, LOOKUPZ
Command: Get value from an indexed position within a list.

((PUB ┆ PRI))
 LOOKUP (Index : ExpressionList)
((PUB ┆ PRI))
 LOOKUPZ (Index : ExpressionList)
Returns: Value at the one-based Index position (LOOKUP) or zero-based Index position
(LOOKUPZ) of ExpressionList, or 0 if out-of-range.

• Index is an expression indicating the position of the desired value in ExpressionList.
For LOOKUP, Index is one-based (1..N). For LOOKUPZ, Index is zero-based (0..N-1).

• ExpressionList is a comma-separated list of expressions. Quoted strings of characters
are also allowed; they are treated as a comma-separated list of characters.

Explanation
LOOKUP and LOOKUPZ are commands that retrieve entries from a list of values. LOOKUP returns
the value from ExpressionList that is located in the one-based position (1..N) given by Index.
LOOKUPZ is just like LOOKUP except it uses a zero-based Index (0..N-1). For both commands, if
Index is out of range then 0 is returned.

Using LOOKUP or LOOKUPZ
LOOKUP and LOOKUPZ are useful for mapping a contiguous set of numbers (1, 2, 3, etc. –or– 0,
1, 2, etc.) to a set of non-contiguous numbers (45, -103, 18, etc.) where no algebraic
expression can be found to do so concisely. The following example assumes Print is a
method created elsewhere.

PUB ShowList | Index, Temp
 repeat Index from 1 to 7
 Temp := lookup(Index: 25, 300, 2_510, 163, 17, 8_000, 3)
 Print(Temp)

This example looks up all the values in LOOKUP’s ExpressionList and displays them. The
REPEAT loop counts with Index from 1 to 7. Each iteration of the loop, T LOOKUP uses Index to
retrieve a value from its list. If Index equals 1, the value 25 is returned. If Index equals 2, the
value 300 is returned. Assuming Print is a method that displays the value of Temp, this
example will print 25, 300, 2510, 163, 17, 8000 and 3 on a display.

2: Spin Language Reference – LOOKUP, LOOKUPZ

Propeller Manual v1.1 · Page 139

If LOOKUPZ is used, the list is zero-based (0..N-1) instead of one-based; an Index of 0 returns
25, Index of 1 returns 300, etc.

If Index is out of range 0 is returned. So, for LOOKUP, if the REPEAT statement went from 0 to
8, instead of 1 to 7, this example would print 0, 25, 300, 2510, 163, 17, 8000, 3 and 0 on a
display.

NEXT – Spin Language Reference

Page 140 · Propeller Manual v1.1

NEXT
Command: Skip remaining statements of REPEAT loop and continue with the next loop
iteration.

((PUB ┆ PRI))
 NEXT

Explanation
NEXTis one of two commands (NEXT and T QUIT) that affect REPEATT loops. NEXT causes any
further statements in the

T

REPEATT loop to be skipped and the next iteration of the loop to be
started thereafter.

Using NEXT
NEXT is typically used as an exception case, in a conditional statement, in REPEAT loops to
move immediately to the next iteration of the loop. For example, assume that X is a variable
created earlier and Print() is a method created elsewhere that prints a value on a display:

 repeat X from 0 to 9 'Repeat 10 times
 if X == 4
 next 'Skip if X = 4
 byte[$7000][X] := 0 'Clear RAM locations
 Print(X) 'Print X on screen

The above code iteratively clears RAM locations and prints the value of X on a display, but
with one exception. If X equals 4, the IF statement executes the NEXT command which causes
the loop to skip remaining lines and go right to the next iteration. This has the effect of
clearing RAM locations $7000 through $7003 and locations $7005 through $7009 and
printing 0, 1, 2, 3, 5, 6, 7, 8, 9 on the display.

T

The NEXT command can only be used within a REPEAT loop; an error will occur otherwise.

2: Spin Language Reference – OBJ

OBJ
Designator: Declare an Object Block.

OBJ
 Symbol 〈[Count]〉: "ObjectName" 〈 Symbol 〈[Count]〉: "ObjectName"〉…

• Symbol is the desired name for the object symbol.
• Count is an optional expression, enclosed in brackets, that indicates this is an array of

objects, with Count number of elements. When later referencing these elements, they
begin with element 0 and end with element Count-1.

• ObjectName is the filename, without extension, of the desired object. Upon compile,
an object with this filename is searched for in the editor tabs, the working directory
and the library directory. The object name can contain any valid filename characters;
disallowed characters are \, /, :, *, ?, ", <, >, and |.

Explanation
The Object Block is a section of source code that declares which objects are used and the
object symbols that represent them. This is one of six special declarations (CON, VAR, OBJ, PUB,
PRI, and DAT) that provide inherent structure to the Spin language.

Object declarations begin with OBJ on a line by itself followed by one or more declarations.
OBJ must start in column 1 (the leftmost column) of the line it is on and we recommend the
lines following be indented by at least one space. For example:

OBJ
 Num : "Numbers"
 Term : "TV_Terminal"

This example defines Num as an object symbol of type "Numbers" and Term as an object
symbol of type "TV_Terminal". Public and Private methods can then refer to these objects
using the object symbols as in the following example.

PUB Print | S
 S := Num.ToStr(LongVal, Num#DEC)
 Term.Str(@S)

This public method, Print, calls the Numbers’ ToStr method and also the TV_Terminal’s Str
method. It does this by using the Num and Term object symbols followed by the Object-

Propeller Manual v1.1 · Page 141

OBJ – Spin Language Reference

Page 142 · Propeller Manual v1.1

Method reference symbol (a period ‘.’) and finally the name of the method to call.
Num.ToStr, for instance, calls the Numbers object’s public ToStr method. Term.Str calls the
TV_Terminal’s public Str method. In this case the Num.ToStr has two parameters, in
parentheses, and Term.Str has one parameter.

Also notice that the second parameter of the Num.ToStr call is Num#DEC. The # symbol is the
Object-Constant reference symbol; it gives access to an object’s constants. In this case,
Num#DEC refers to the DEC (decimal format) constant in the Numbers object.

See Object-Method Reference ‘.’ and Object-Constant Reference ‘#’> in Table 2-16:
Symbols on page 207 for more information.

Multiple instances of an object can be declared with the same object symbol using array
syntax and can be accessed similar to arrays as well. For example:

OBJ
 PWM[2] : "PWM"
PUB GenPWM
 PWM[0].Start
 PWM[1].Start

This example declares PWM as an array of two objects (two instances of the same object). The
object itself just happens to be called “PWM” as well. The public method, GenPWM, calls the
Start method of each instance using indexes 0 and 1 with the object symbol array, PWM.

Both instances of the PWM object are compiled into the application such that there is one copy
of its program code (PUBs, PRIs, and DATs) and two copies of its variable blocks (T VARs). This
is because, for each instance, the code is the same but each instance needs its own variable
space so it can operate independent of the other.

An important point to consider with multiple instances of an object is that there is only one
copy of its DAT block because it may contain Propeller Assembly code. DAT blocks can also
contain initialized data and regions set aside for workspace purposes, all with symbolic
names. Since there is only one copy of it for multiple instances of an object, that area is
shared among all instances. This provides a convenient way to create shared memory
between multiple instances of a particular object.

Scope of Object Symbols
Object symbols defined in Object Blocks are global to the object in which they are defined
but are not available outside of that object. This means that these object symbols can be
accessed directly from anywhere within the object but their name will not conflict with
symbols defined in other parent or child objects.

2: Spin Language Reference – Operators

Operators
The Propeller chip features a powerful set of math and logic operators. A subset of these
operators is supported by the Propeller Assembly language; however, since the Spin language
has a use for every form of operator supported by the Propeller, this section describes every
operator in detail. Please see the Operators section on page 325 for a list of operators
available in Propeller Assembly.

Expression Workspace
The Propeller is a 32-bit device and, unless otherwise noted, expressions are always evaluated
using 32-bit, signed integer math. This includes intermediate results as well. If any
intermediate result overflows a 32-bit signed integer (above 2,147,483,647 or below
-2,147,483,648), the final result of the expression will not be as expected. A workspace of 32
bits provides lots of room for intermediate results but it is still wise to keep overflow
possibilities in mind.

If mathematic truncation is an issue, or if an expression requires real numbers rather than
integers, floating-point support can help. The compiler supports 32-bit floating-point values
and constant expressions with many of the same math operators as it does for integer constant
expressions. Note that this is for constant expressions only, not run time variable
expressions. For floating-point run-time expressions, the Propeller chip provides support
through the FloatMath object supplied with the software installation. See Constant
Assignment ‘=’, page 148; FLOAT, page 108; ROUND, page 198; and TRUNC, page 209, as well
as the FloatMath and FloatString objects for more information

Operator Attributes
The operators have the following important attributes, each of which is shown in the
following two tables and further explained afterwards:

• Unary / Binary

• Normal / Assignment

• Constant and/or Variable Expression

• Level of Precedence

Propeller Manual v1.1 · Page 143

Operators – Spin Language Reference
Table 2-9: Math and Logic Operators

Constant Expressions1 Operator Assignment
Usage Integer Float

Is
Unary Description, Page Number

= always n/a1 n/a1 Constant assignment (CON blocks only), 148
:= always n/a1 n/a1 Variable assignment (PUB/PRI blocks only), 149
+ += Add, 149
+ never Positive (+X); unary form of Add, 150
- -= Subtract, 150
- if solo Negate (-X); unary form of Subtract, 150
-- always Pre-decrement (--X) or post-decrement (X--), 151
++ always Pre-increment (++X) or post-increment (X++), 152
* *= Multiply and return lower 32 bits (signed), 153
** **= Multiply and return upper 32 bits (signed), 153
/ /= Divide (signed), 154
// //= Modulus (signed), 154
#> #>= Limit minimum (signed), 155
<# <#= Limit maximum (signed), 155
^^ if solo Square root, 156
|| if solo Absolute value, 156
~ always Sign-extend from bit 7 (~X) or post-clear to 0 (X~); all bits low, 156
~~ always Sign-extend from bit 15 (~~X) or post-set to -1 (X~~); all bits high, 157
~> ~>= Shift arithmetic right, 158
? always Random number forward (?X) or reverse (X?), 159
|< if solo Bitwise: Decode value (0 - 31) into single-high-bit long, 160
>| if solo Bitwise: Encode long into value (0 - 32) as high-bit priority, 160
<< <<= Bitwise: Shift left, 161
>> >>= Bitwise: Shift right, 161
<- <-= Bitwise: Rotate left, 162
-> ->= Bitwise: Rotate right, 162
>< ><= Bitwise: Reverse, 163
& &= Bitwise: AND, 164
| |= Bitwise: OR, 165
^ ^= Bitwise: XOR, 165
! if solo Bitwise: NOT, 166

AND AND= Boolean: AND (promotes non-0 to -1), 167
OR OR= Boolean: OR (promotes non-0 to -1), 168
NOT if solo Boolean: NOT (promotes non-0 to -1), 168
== === Boolean: Is equal, 169
<> <>= Boolean: Is not equal, 170
< <= Boolean: Is less than (signed), 171
> >= Boolean: Is greater than (signed), 171
=< =<= Boolean: Is equal or less (signed), 171
=> =>= Boolean: Is equal or greater (signed), 172
@ never Symbol address, 173
@@ never Object address plus symbol, 173

1 Assignment forms of operators are not allowed in constant expressions.
.

Page 144 · Propeller Manual v1.1

2: Spin Language Reference – Operators
Table 2-10: Operator Precedence Levels

Level Notes Operators Operator Names

Highest (0) Unary --, ++, ~, ~~, ?, @, @@ Inc/Decrement, Clear, Set, Random, Symbol/Object Address
1 Unary +, -, ^^, ||, |<, >|, ! Positive, Negate, Square Root, Absolute, Decode, Encode, Bitwise NOT
2 ->, <-, >>, <<, ~>, >< Rotate Right/Left, Shift Right/Left, Shift Arithmetic Right, Reverse
3 & Bitwise AND
4 |, ^ Bitwise OR, Bitwise XOR
5 *, **, /, // Multiply-Low, Multiply-High, Divide, Modulus
6 +, - Add, Subtract
7 #>, <# Limit Minimum/Maximum
8 <, >, <>, ==, =<, => Boolean: Less/Greater Than, Not Equal, Equal, Equal or Less/Greater
9 Unary NOT Boolean NOT

10 AND Boolean AND
11 OR Boolean OR

Lowest (12) =, :=, all other assignments Constant/Variable Assignment, assignment forms of Binary Operators

Unary / Binary
Each operator is either unary or binary in nature. Unary operators are those that operate on
only one operand. For example:

!Flag ' bitwise NOT of Flag
^^Total ' square root of Total

Binary operators are those that operate on two operands. For example:

X + Y ' add X and Y
Num << 4 ' shift Num left 4 bits

Note that the term “binary operator” means “two operands,” and has nothing to do with
binary digits. To distinguish operators whose function relates to binary digits, we’ll use the
term “bitwise” instead.

Normal / Assignment
Normal operators, like Add ‘+’ and Shift Left ‘<<’, operate on their operand(s) and provide
the result for use by the rest of the expression, without affecting the operand or operands
themselves. Those that are assignment operators, however, write their result to either the
variable they operated on (unary), or to the variable to their immediate left (binary), in
addition to providing the result for use by the rest of the expression.

Propeller Manual v1.1 · Page 145

Operators – Spin Language Reference
Here are assignment operator examples:

Count++ ' (Unary) evaluate Count + 1
' and write result to Count

Data >>= 3 ' (Binary) shift Data right 3 bits
' and write result to Data

Binary operators have special forms that end in equal ‘=’ to make them assignment operators.
Unary operators do not have a special assignment form; some always assign while others
assign only in special situations. See Table 2-9 above and the operator’s explanation, for
more information.

Most assignment operators can only be used within methods (PUB and PRI blocks). The only
exception is the constant assignment operator ‘=’ which can only be used in CON blocks.

Constant and/or Variable Expression
Operators which have the integer-constant-expression attribute can be used both at run time
in variable expressions, and at compile time in constant expressions. Operators that have the
float-constant-expression attribute can be used in compile-time constant expressions.
Operators without either of the constant-expression attributes can only be used at run time in
variable expressions. Most operators have a normal, non-assignment form that allows them
to be used in both constant and variable expressions.

Level of Precedence
Each operator has an assigned level of precedence that determines when it will take action in
relation to other operators within the same expression. For example, it is commonly known
that Algebraic rules require multiply and divide operations to be performed before add and
subtract operations. The multiply and divide operators are said to have a “higher level of
precedence” than add and subtract. Additionally, multiply and divide are commutable; both
are on the same precedence level, so their operations result in the same value regardless of the
order it is performed (multiply first, then divide, or vice versa). Commutative operators are
always evaluated left to right except where parentheses override that rule.

The Propeller chip applies the order-of-operations rules as does Algebra: expressions are
evaluated left-to-right, except where parentheses and differing levels of precedence exist.

Following these rules, the Propeller will evaluate:

X = 20 + 8 * 4 – 6 / 2

Page 146 · Propeller Manual v1.1

jmartin
New

2: Spin Language Reference – Operators
...to be equal to 49; that is, 8 * 4 = 32, 6 / 2 = 3, and 20 + 32 – 3 = 49. If you wish the
expression to be evaluated differently, use parentheses to enclose the necessary portions of
the expression.

For example:

X = (20 + 8) * 4 – 6 / 2

This will evaluate the expression in parentheses first, the 20 + 8, causing the expression to
now result in 109, instead of 49.

Table 2-10 indicates each operator’s level of precedence from highest (level 0) to lowest
(level 12). Operators with a higher precedence are performed before operators of a lower
precedence; multiply before add, absolute before multiply, etc. The only exception is if
parentheses are included; they override every precedence level.

Intermediate Assignments
The Propeller chip’s expression engine allows for, and processes, assignment operators at
intermediate stages. This is called “intermediate assignments” and it can be used to perform
complex calculations in less code. For example, the following equation relies heavily on X,
and X + 1.

X := X - 3 * (X + 1) / ||(X + 1)

The same statement could be rewritten, taking advantage of the intermediate assignment
property of the increment operator:

X := X++ - 3 * X / ||X

Assuming X started out at -5, both of these statements evaluate to -2, and both store that value
in X when done. The second statement, however, does it by relying on an intermediate
assignment (the X++ part) in order to simplify the rest of the statement. The Increment
operator ‘++’ is evaluated first (highest precedence) and increments X’s -5 to -4. Since this is
a “post increment” (see Increment, pre- or post- ‘+ +’, page 152) it first returns X’s original
value, -5, to the expression and then writes the new value, -4, to X. So, the “X++ - 3…” part
of the expression becomes “-5 – 3…” Then the absolute, multiply, and divide operators are
evaluated, but the value of X has been changed, so they use the new value, -4, for their
operations:

-5 – 3 * -4 / ||-4 → -5 – 3 * -4 / 4 → -5 – 3 * -1 → -5 – -3 = -2

Occasionally, the use of intermediate assignments can compress multiple lines of expressions
into a single expression, resulting in slightly smaller code size and slightly faster execution.

Propeller Manual v1.1 · Page 147

Operators – Spin Language Reference
The remaining pages of this section further explain each math and logic operator shown in
Table 2-9 in the same order shown.

Constant Assignment ‘=’
The Constant Assignment operator is used only within CON blocks, to declare compile-time
constants. For example,

CON
 _xinfreq = 4096000
 WakeUp = %00110000

This code sets the symbol _xinfreq to 4,096,000 and the symbol WakeUp to %00110000.
Throughout the rest of the program the compiler will use these numbers in place of their
respective symbols. See CON, page 84.

These declarations are constant expressions, so many of the normal operators can be used to
calculate a final constant value at compile time. For example, it may be clearer to rewrite the
above example as follows:

CON
 _xinfreq = 4096000
 Reset = %00100000
 Initialize = %00010000
 WakeUp = Reset & Initialize

Here, WakeUp is still set to %00110000 at compile time, but it is now more obvious to future
readers that the WakeUp symbol contains the binary codes for a Reset and an Initialize
sequence for that particular application.

The above examples create 32-bit signed integer constants; however, it is also possible to
create 32-bit floating-point constants. To do so, the expression must be expressed as a
floating-point value in one of three ways: 1) as an integer value followed by a decimal point
and at least one digit, 2) as an integer with an E followed by an exponent value, or 3) both 1
and 2.

For example:

CON
 OneHalf = 0.5
 Ratio = 2.0 / 5.0
 Miles = 10e5

Page 148 · Propeller Manual v1.1

2: Spin Language Reference – Operators

Propeller Manual v1.1 · Page 149

The above code creates three floating-point constants. OneHalf is equal to 0.5, Ratio is equal
to 0.4 and Miles is equal to 1,000,000. Note that if Ratio were defined as 2 / 5 instead of 2.0
/ 5.0, the expression would be treated as an integer constant and the result would be an integer
constant equal to 0. For floating-point constant expressions, every value within the
expression must be a floating-point value; you cannot mix integer and floating-point values
like Ratio = 2 / 5.0. You can, however, use the FLOAT declaration to convert an integer value
to a floating-point value, such as Ratio = FLOAT(2) / 5.0.

T

The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with
a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

For run-time floating-point operations, the FloatMath and FloatString objects provide math
functions compatible with single-precision numbers.

See FLOAT, page 108; ROUND, page 198; TRUNC, page 209, as well as the FloatMath and
FloatString objects for more information.

Variable Assignment ‘:=’
The Variable Assignment operator is used only within methods (PUB and PRI blocks), to
assign a value to a variable. For example,

Temp := 21
Triple := Temp * 3

At run time this code would set the Temp variable equal to 21 and set Triple to 21 * 3, which
is 63.

As with other assignment operators, the Variable Assignment operator can be used within
expressions to assign intermediate results, such as:

Triple := 1 + (Temp := 21) * 3

This example first sets Temp to 21, then multiplies Temp by 3 and adds 1, finally assigning the
result, 64, to Triple.

Add ‘+’, ‘+=’
The Add operator adds two values together. Add can be used in both variable and constant
expressions. Example:

X := Y + 5

Operators – Spin Language Reference
Add has an assignment form, +=, that uses the variable to its left as both the first operand and
the result destination.

For example:

X += 10 'Short form of X := X + 10

Here, the value of X is added to 10 and the result is stored back in X. The assignment form of
Add may also be used within expressions for intermediate results; see Intermediate
Assignments, page 147.

Positive ‘+’ (unary form of Add)
Positive is the unary form of Add and can be used similar to Negate except that it is never an
assignment operator. Positive is essentially ignored by the compiler, but is handy when the
sign of operands is important to emphasize. For example:

Val := +2 - A

Subtract ‘-’, ‘-=’
The Subtract operator subtracts two values. Subtract can be used in both variable and
constant expressions. Example:

X := Y - 5

Subtract has an assignment form, -=, that uses the variable to its left as both the first operand
and the result destination. For example,

X -= 10 'Short form of X := X - 10

Here, 10 is subtracted from the value of X and the result is stored back in X. The assignment
form of subtract may also be used within expressions for intermediate results; see
Intermediate Assignments, page 147.

Negate ‘-’ (unary form of Subtract)
Negate is the unary form of Subtract. Negate toggles the sign of the value on its right; a
positive value becomes negative and a negative value becomes positive. For example:

Val := -2 + A

Negate becomes an assignment operator when it is the sole operator to the left of a variable
on a line by itself. For example:

-A

Page 150 · Propeller Manual v1.1

2: Spin Language Reference – Operators
This would negate the value of A and store the result back to A.

Decrement, pre- or post- ‘- -’
The Decrement operator is a special, immediate operator that decrements a variable by one
and assigns the new value to that same variable. It can only be used in run-time variable
expressions. Decrement has two forms, pre-decrement and post-decrement, depending on
which side of the variable it appears on. The pre-decrement form appears to the left of a
variable and the post-decrement form appears to the right of a variable. This is extremely
useful in programming since there are many situations that call for the decrementing of a
variable right before or right after the use of that variable’s value. For example:

Y := --X + 2

The above shows the pre-decrement form; it means “decrement before providing the value for
the next operation”. It decrements the value of X by one, writes that result to X and provides
that result to the rest of the expression. If X started out as 5 in this example, --X would store 4
in X, then the expression, 4 + 2 is evaluated, finally writing the result, 6, into Y. After this
statement, X equals 4 and Y equals 6.

Y := X-- + 2

The above shows the post-decrement form; it means “decrement after providing the value for
the next operation”. It provides the current value of X for the next operation in the
expression, then decrements the value of X by one and writes that result to X. If X began as 5
in this example, X-- would provide the current value for the expression (5 + 2) to be
evaluated later, then would store 4 in X. The expression 5 + 2 is then evaluated and the result,
7, is stored into Y. After this statement, X equals 4 and Y equals 7.

Since Decrement is always an assignment operator, the rules of Intermediate Assignments
(see page 147) apply here. Assume X started out as 5 for the following examples.

Y := --X + X

Here, X would first be set to 4, then 4 + 4 is evaluated and Y is set to 8.

Y := X-- + X

Here, X’s current value, 5, is saved for the next operation (the Add) and X itself is
decremented to 4, then 5 + 4 is evaluated and Y is set to 9.

Propeller Manual v1.1 · Page 151

Operators – Spin Language Reference

Increment, pre- or post- ‘+ +’
The Increment operator is a special, immediate operator that increments a variable by one and
assigns the new value to that same variable. It can only be used in run-time variable
expressions. Increment has two forms, pre-increment and post-increment, depending on
which side of the variable it appears on. The pre-increment form appears to the left of a
variable and the post-increment form appears to the right of a variable. This is extremely
useful in programming since there are many situations that call for the incrementing of a
variable right before or right after the use of that variable’s value. For example:

Y := ++X - 4

The above shows the pre-increment form; it means “increment before providing the value for
the next operation”. It increments the value of X by one, writes that result to X and provides
that result to the rest of the expression. If X started out as 5 in this example, ++X would store
6 in X, then the expression, 6 - 4 is evaluated, finally writing the result, 2, into Y. After this
statement, X equals 6 and Y equals 2.

Y := X++ - 4

The above shows the post-increment form; it means “increment after providing the value for
the next operation”. It provides the current value of X for the next operation in the
expression, then increments the value of X by one and writes that result to X. If X started out
as 5 in this example, X++ would provide the current value for the expression (5 - 4) to be
evaluated later, then would store 6 in X. The expression 5 - 4 is then evaluated and the result,
1, is stored into Y. After this statement, X equals 6 and Y equals 1.

Since Increment is always an assignment operator, the rules of Intermediate Assignments (see
page 147) apply here. Assume X started out as 5 for the following examples.

Y := ++X + X

Here, X would first be set to 6, then 6 + 6 is evaluated and Y is set to 12.

Y := X++ + X

Here, X’s current value, 5, is saved for the next operation (the Add) and X itself is incremented
to 6, then 5 + 6 is evaluated and Y is set to 11.

Page 152 · Propeller Manual v1.1

2: Spin Language Reference – Operators

Multiply, Return Low ‘*’, ‘*=’
This operator is also called Multiply-Low, or simply Multiply. It can be used in both variable
and constant expressions. When used with variable expressions or integer constant
expressions, Multiply Low multiplies two values together and returns the lower 32 bits of the
64-bit result. When used with floating-point constant expressions, Multiply Low multiplies
two values together and returns the 32-bit single-precision floating-point result. Example:

X := Y * 8

Multiply-Low has an assignment form, *=, that uses the variable to its left as both the first
operand and the result destination. For example,

X *= 20 'Short form of X := X * 20

Here, the value of X is multiplied by 20 and the lowest 32 bits of the result is stored back in X.
The assignment form of Multiply-Low may also be used within expressions for intermediate
results; see Intermediate Assignments, page 147.

Multiply, Return High ‘**’, ‘**=’
This operator is also called Multiply-High. It can be used in both variable and integer
constant expressions, but not in floating-point constant expressions. Multiply High multiplies
two values together and returns the upper 32 bits of the 64-bit result. Example:

X := Y ** 8

If Y started out as 536,870,912 (229) then Y ** 8 equals 1; the value in the upper 32 bits of the
result.

Multiply-High has an assignment form, **=, that uses the variable to its left as both the first
operand and the result destination. For example,

X **= 20 'Short form of X := X ** 20

Here, the value of X is multiplied by 20 and the upper 32 bits of the result is stored back in X.
The assignment form of Multiply-High may also be used within expressions for intermediate
results; see Intermediate Assignments, page 147.

Propeller Manual v1.1 · Page 153

Operators – Spin Language Reference

Divide ‘/’, ‘/=’
Divide can be used in both variable and constant expressions. When used with variable
expressions or integer constant expressions, it divides one value by another and returns the
32-bit integer result. When used with floating-point constant expressions, it divides one
value by another and returns the 32-bit single-precision floating-point result. Example:

X := Y / 4

Divide has an assignment form, /=, that uses the variable to its left as both the first operand
and the result destination. For example,

X /= 20 'Short form of X := X / 20

Here, the value of X is divided by 20 and the integer result is stored back in X. The
assignment form of Divide may also be used within expressions for intermediate results; see
Intermediate Assignments, page 147.

Modulus ‘//’, ‘//=’
Modulus can be used in both variable and integer constant expressions, but not in floating-
point constant expressions. Modulus divides one value by another and returns the 32-bit
integer remainder. Example:

X := Y // 4

If Y started out as 5 then Y // 4 equals 1, meaning the division of 5 by 4 results in a real
number whose fractional component equals ¼, or .25.

Modulus has an assignment form, //=, that uses the variable to its left as both the first
operand and the result destination. For example,

X //= 20 'Short form of X := X // 20

Here, the value of X is divided by 20 and the 32-bit integer remainder is stored back in X. The
assignment form of Modulus may also be used within expressions for intermediate results;
see Intermediate Assignments, page 147.

Page 154 · Propeller Manual v1.1

2: Spin Language Reference – Operators

Limit Minimum ‘#>’, ‘#>=’
The Limit Minimum operator compares two values and returns the highest value. Limit
Minimum can be used in both variable and constant expressions. Example:

X := Y - 5 #> 100

The above example subtracts 5 from Y and limits the result to a minimum value to 100. If Y is
120 then 120 – 5 = 115; it is greater than 100 so X is set to 115. If Y is 102 then 102 – 5 = 97;
it is less than 100 so X is set to 100 instead.

Limit Minimum has an assignment form, #>=, that uses the variable to its left as both the first
operand and the result destination. For example,

X #>= 50 'Short form of X := X #> 50

Here, the value of X is limited to a minimum value of 50 and the result is stored back in X.
The assignment form of Limit Minimum may also be used within expressions for
intermediate results; see Intermediate Assignments, page 147.

Limit Maximum ‘<#’, ‘<#=’
The Limit Maximum operator compares two values and returns the lowest value. Limit
Maximum can be used in both variable and constant expressions. Example:

X := Y + 21 <# 250

The above example adds 21 to Y and limits the result to a maximum value to 250. If Y is 200
then 200 + 21 = 221; it is less than 250 so X is set to 221. If Y is 240 then 240 + 21 = 261; it is
greater than 250 so X is set to 250 instead.

Limit Maximum has an assignment form, <#=, that uses the variable to its left as both the first
operand and the result destination. For example,

X <#= 50 'Short form of X := X <# 50

Here, the value of X is limited to a maximum value of 50 and the result is stored back in X.
The assignment form of Limit Minimum may also be used within expressions for
intermediate results; see Intermediate Assignments, page 147.

Propeller Manual v1.1 · Page 155

Operators – Spin Language Reference

Square Root ‘^^’
The Square Root operator returns the square root of a value. Square Root can be used in both
variable and constant expressions. When used with variable expressions or integer constant
expressions, Square Root returns the 32-bit truncated integer result. When used with
floating-point constant expressions, Square Root returns the 32-bit single-precision floating-
point result. Example:

X := ^^Y

Square Root becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

^^Y

This would store the square root of the value of Y back into Y.

Absolute Value ‘||’
The Absolute Value operator, also called Absolute, returns the absolute value (the positive
form) of a number. Absolute Value can be used in both variable and constant expressions.
When used with variable expressions or integer constant expressions, Absolute Value returns
the 32-bit integer result. When used with floating-point constant expressions, Absolute Value
returns the 32-bit single-precision floating-point result. Example:

X := ||Y

If Y is -15, the absolute value, 15, would be stored into X.

Absolute Value becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

||Y

This would store the absolute value of Y back into Y.

Sign-Extend 7 or Post-Clear ‘~’
This operator is a special, immediate operator that has a dual purpose depending on which
side of the variable it appears on. It can only be used in run-time variable expressions. The
Sign-Extend 7 form of the operator appears to the left of a variable and the Post-Clear form
appears to the right of a variable.

The following is an example of the Sign-Extend 7 operator form:

Page 156 · Propeller Manual v1.1

2: Spin Language Reference – Operators
Y := ~X + 25

The Sign-Extend 7 operator in this example extends the sign of the value, X in this case, from
bit 7 up to bit 31. A 32-bit signed integer is stored in twos-complement form and the most
significant bit (31) indicates the sign of the value (positive or negative). There may be times
where calculations on simple data result in byte-sized values that should be treated as a
signed integer in the range of -128 to +127. When you need to perform further calculations
with those byte-sized values, use the Sign-Extend 7 operator to convert the number into the
proper 32-bit signed integer form. In the above example, assume X represents the value -20,
which in 8-bit twos-complement form is actually the value 236 (%11101100). The ~X portion
of the expression extends the sign bit from bit 7 all the way up to bit 31, converting the
number to the proper 32-bit twos-complement form of -20 (%11111111 11111111 11111111
11101100). Adding that sign-extended value to 25 results in 5, the intended result, whereas it
would have resulted in 261 without the proper sign extension.

The following is an example of the Post-Clear operator form.

Y := X~ + 2

The Post-Clear operator in this example clears the variable to 0 (all bits low) after providing
its current value for the next operation. In this example if X started out as 5, X~ would provide
the current value for the expression (5 + 2) to be evaluated later, then would store 0 in X. The
expression 5 + 2 is then evaluated and the result, 7, is stored into Y. After this statement, X
equals 0 and Y equals 7.

Since Sign-Extend 7 and Post-Clear are always assignment operators, the rules of
Intermediate Assignments apply to them (see page 147).

Sign-Extend 15 or Post-Set ‘~~’
This operator is a special, immediate operator that has a dual purpose depending on which
side of the variable it appears on. It can only be used in run-time variable expressions. The
Sign-Extend 15 form of the operator appears to the left of a variable and the Post-Set form
appears to the right of a variable.

The following is an example of the Sign-Extend 15 operator form:

Y := ~~X + 50

The Sign-Extend 15 operator in this example extends the sign of the value, X in this case,
from bit 15 up to bit 31. A 32-bit signed integer is stored in twos-complement form and the
most significant bit (31) indicates the sign of the value (positive or negative). There may be

Propeller Manual v1.1 · Page 157

Operators – Spin Language Reference
times where calculations on simple data result in word-sized values that should be treated as a
signed integer in the range of -32768 to +32767. When you need to perform further
calculations with those word-sized values, use the Sign-Extend 15 operator to convert the
number into the proper 32-bit signed integer form. In the above example, assume X
represents the value -300, which in 16-bit twos-complement form is actually the value 65,236
(%11111110 11010100). The ~~X portion of the expression extends the sign bit from bit 15
all the way up to bit 31, converting the number to the proper 32-bit twos-complement form of
-300 (%11111111 11111111 11111110 11010100). Adding that sign-extended value to 50
results in -250, the intended result, whereas it would have resulted in 65,286 without the
proper sign extension.

The following is an example of the Post-Set operator form.

Y := X~~ + 2

The Post-Set operator in this example sets the variable to -1 (all bits high) after providing its
current value for the next operation. In this example if X started out as 6, X~~ would provide
the current value for the expression (6 + 2) to be evaluated later, then would store -1 in X.
The expression 6 + 2 is then evaluated and the result, 8, is stored into Y. After this statement,
X equals -1 and Y equals 8.

Since Sign-Extend 15 and Post-Set are always assignment operators, the rules of Intermediate
Assignments apply to them (see page 147).

Shift Arithmetic Right ‘~>’, ‘~>=’
The Shift Arithmetic Right operator is just like the Shift Right operator except that it
maintains the sign, like a divide by 2, 4, 8, etc on a signed value. Shift Arithmetic Right can
be used in variable and integer constant expressions, but not in floating-point constant
expressions. Example:

X := Y ~> 4

The above example shifts Y right by 4 bits, maintaining the sign. If Y is -3200 (%11111111
11111111 11110011 10000000) then -3200 ~> 4 = -200 (%11111111 11111111 11111111
00111000). If the same operation had been done with the Shift Right operator instead, the
result would have been 268,435,256 (%00001111 11111111 11111111 00111000).

Shift Arithmetic Right has an assignment form, ~>=, that uses the variable to its left as both
the first operand and the result destination. For example,

X ~>= 2 'Short form of X := X ~> 2

Page 158 · Propeller Manual v1.1

2: Spin Language Reference – Operators
Here, the value of X is shifted right 2 bits, maintaining the sign, and the result is stored back
in X. The assignment form of Shift Arithmetic Right may also be used within expressions for
intermediate results; see Intermediate Assignments, page 147.

Random ‘?’
The Random operator is a special, immediate operator that uses a variable’s value as a seed to
create a pseudo random number and assigns that number to the same variable. It can only be
used in run-time variable expressions. Random has two forms, forward and reverse,
depending on which side of the variable it appears on. The forward form appears to the left
of a variable and the reverse form appears to the right of a variable.

Random generates pseudo-random numbers ranging from -2,147,483,648 to +2,147,483,647.
It’s called “pseudo-random” because the numbers appear random, but are really generated by
a logic operation that uses a “seed” value as a tap into a sequence of over 4 billion essentially
random numbers. If the same seed value is used again, the same sequence of numbers is
generated. The Propeller chip’s Random output is reversible; in fact, specifically it is a 32-bit
maximum-length, four-tap LFSR (Linear Feedback Shift Register) with taps in both the LSB
(Least Significant Bit, rightmost bit) and the MSB (Most Significant Bit, leftmost bit)
allowing for bi-directional operation.

Think of the pseudo-random sequence it generates as simply a static list of over 4 billion
numbers. Starting with a particular seed value and moving forward results in a list of a
specific set of numbers. If, however, you took that last number generated and used it as the
first seed value moving backward, you would end up with a list of the same numbers as
before, but in the reverse order. This is handy in many applications.

Here’s an example:

?X

The above shows the Random forward form; it uses X’s current value to retrieve the next
pseudo-random number in the forward direction and stores that number back in X. Executing
?X again results in yet a different number, again stored back into X.

X?

The above shows the Random reverse form; it uses X’s current value to retrieve the next
pseudo-random number in the reverse direction and stores that number back in X. Executing
X? again results in yet a different number, again stored back into X.

Since Random is always an assignment operator, the rules of Intermediate Assignments apply
to it (see page 147).

Propeller Manual v1.1 · Page 159

Operators – Spin Language Reference

Bitwise Decode ‘|<’
The Bitwise Decode operator decodes a value (0 – 31) into a 32-bit long value with a single
bit set high corresponding to the bit position of the original value. Bitwise Decode can be
used in variable and integer constant expressions, but not in floating-point constant
expressions. Example:

Pin := |<PinNum

The above example sets Pin equal to the 32-bit value whose single high-bit corresponds to the
position indicated by PinNum.

If PinNum is 3, Pin is set equal to %00000000 00000000 00000000 00001000.

If PinNum is 31, Pin is set equal to %10000000 00000000 00000000 00000000.

There are many uses for Bitwise Decode, but one of the most useful is to convert from an I/O
pin number to the 32-bit pattern that describes that pin number in relation to the I/O registers.
For example, Bitwise Decode is very handy for the mask parameter of the WAITPEQ and
WAITPNE commands.

Bitwise Decode becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

|<PinNum

This would store the decoded value of PinNum back into PinNum.

Bitwise Encode ‘>|’
The Bitwise Encode operator encodes a 32-bit long value into the value (0 – 32) that
represents the highest bit set, plus 1. Bitwise Encode can be used in variable and integer
constant expressions, but not in floating-point constant expressions. Example:

PinNum := >|Pin

The above example sets PinNum equal to the number of the highest bit set in Pin, plus 1.

If Pin is %00000000 00000000 00000000 00000000, PinNum is set equal to 0; no bits are set.

If Pin is %00000000 00000000 00000000 10000000, PinNum is set equal to 8; bit 7 is set.

If Pin is %10000000 00000000 00000000 00000000, PinNum is set equal to 32; bit 31 is set.

If Pin is %00000000 00010011 00010010 00100000, PinNum is set equal to 21; bit 20 is the
highest bit set.

Page 160 · Propeller Manual v1.1

2: Spin Language Reference – Operators

Bitwise Shift Left ‘<<’, ‘<<=’
The Bitwise Shift Left operator shifts the bits of the first operand left by the number of bits
indicated in the second operand. The original MSBs (leftmost bits) drop off and the new
LSBs (rightmost bits) are set to zero. Bitwise Shift Left can be used in both variable and
integer constant expressions, but not in floating-point constant expressions. Example:

X := Y << 2

If Y started out as:

%10000000 01110000 11111111 00110101

...the Bitwise Shift Left operator would shift that value left by two bits, setting X to:

%00000001 11000011 11111100 11010100

Since the nature of binary is base-2, shifting a value left is like multiplying that value by
powers of two, 2b, where b is the number of bits shifted.

Bitwise Shift Left has an assignment form, <<=, that uses the variable to its left as both the
first operand and the result destination. For example,

X <<= 4 'Short form of X := X << 4

Here, the value of X is shifted left four bits and is stored back in X. The assignment form of
Bitwise Shift Left may also be used within expressions for intermediate results; see
Intermediate Assignments, page 147.

Bitwise Shift Right ‘>>’, ‘>>=’
The Bitwise Shift Right operator shifts the bits of the first operand right by the number of bits
indicated in the second operand. The original LSBs (rightmost bits) drop off and the new
MSBs (leftmost bits) are set to zero. Bitwise Shift Right can be used in both variable and
integer constant expressions, but not in floating-point constant expressions. Example:

X := Y >> 3

If Y started out as:

%10000000 01110000 11111111 00110101

...the Bitwise Shift Right operator would shift that value right by three bits, setting X to:

%00010000 00001110 00011111 11100110

Propeller Manual v1.1 · Page 161

Operators – Spin Language Reference
Since the nature of binary is base-2, shifting a value right is like performing an integer divide
of that value by powers of two, 2b, where b is the number of bits shifted.

Bitwise Shift Right has an assignment form, >>=, that uses the variable to its left as both the
first operand and the result destination. For example,

X >>= 2 'Short form of X := X >> 2

Here, the value of X is shifted right two bits and is stored back in X. The assignment form of
Bitwise Shift Right may also be used within expressions for intermediate results; see
Intermediate Assignments, page 147.

Bitwise Rotate Left ‘<-’, ‘<-=’
The Bitwise Rotate Left operator is similar to the Bitwise Shift Left operator, except that the
MSBs (leftmost bits) are rotated back around to the LSBs (rightmost bits). Bitwise Rotate
Left can be used in both variable and integer constant expressions, but not in floating-point
constant expressions. Example:

X := Y <- 4

If Y started out as:

%10000000 01110000 11111111 00110101

the Bitwise Rotate Left operator would rotate that value left by four bits, moving the original
four MSBs to the four new LSBs, and setting X to:

%00000111 00001111 11110011 01011000

Bitwise Rotate Left has an assignment form, <-=, that uses the variable to its left as both the
first operand and the result destination. For example,

X <-= 1 'Short form of X := X <- 1

Here, the value of X is rotated left one bit and is stored back in X. The assignment form of
Bitwise Rotate Left may also be used within expressions for intermediate results; see
Intermediate Assignments, page 147.

Bitwise Rotate Right ‘->’, ‘->=’
The Bitwise Rotate Right operator is similar to the Bitwise Shift Right operator, except that
the LSBs (rightmost bits) are rotated back around to the MSBs (leftmost bits). Bitwise Rotate
Right can be used in both variable and integer constant expressions, but not in floating-point
constant expressions. Example:

Page 162 · Propeller Manual v1.1

2: Spin Language Reference – Operators
X := Y -> 5

If Y started out as:

%10000000 01110000 11111111 00110101

...the Bitwise Rotate Right operator would rotate that value right by five bits, moving the
original five LSBs to the five new MSBs, and setting X to:

%10101100 00000011 10000111 11111001

Bitwise Rotate Right has an assignment form, ->=, that uses the variable to its left as both the
first operand and the result destination. For example,

X ->= 3 'Short form of X := X -> 3

Here, the value of X is rotated right three bits and is stored back in X. The assignment form of
Bitwise Rotate Right may also be used within expressions for intermediate results; see
Intermediate Assignments, page 147.

Bitwise Reverse ‘><’, ‘><=’
The Bitwise Reverse operator returns least-significant bits from the first operand in their
reverse order. The total number of least-significant bits to be reversed is indicated by the
second operand. All other bits to the left of the reversed bits are zeros in the result. Bitwise
Reverse can be used in both variable and integer constant expressions, but not in floating-
point constant expressions. Example:

X := Y >< 6

If Y started out as:

%10000000 01110000 11111111 00110101

...the Bitwise Reverse operator would return the six LSBs in reverse order with all other bits
zero, setting X to:

%00000000 00000000 00000000 00101011

Bitwise Reverse has an assignment form, ><=, that uses the variable to its left as both the first
operand and the result destination. For example,

X ><= 8 'Short form of X := X >< 8

Propeller Manual v1.1 · Page 163

jmartin
Improved

Operators – Spin Language Reference
Here, the eight LSBs of the value of X are reversed, all other bits are set to zero and the result
is stored back in X. The assignment form of Bitwise Reverse may also be used within
expressions for intermediate results; see Intermediate Assignments, page 147.

Note that specifying 0 as the number of bits to reverse is the same as specifying 32.

Bitwise AND ‘&’, ‘&=’
The Bitwise AND operator performs a bitwise AND of the bits of the first operand with the
bits of the second operand. Bitwise AND can be used in both variable and integer constant
expressions, but not in floating-point constant expressions.

Each bit of the two operands is subject to the following logic:

Table 2-11: Bitwise AND Truth Table
Bit States Result

0 0 0
0 1 0
1 0 0
1 1 1

Example:

X := %00101100 & %00001111

The above example ANDs %00101100 with %00001111 and writes the result, %00001100,
to X.

Bitwise AND has an assignment form, &=, that uses the variable to its left as both the first
operand and the result destination. For example,

X &= $F 'Short form of X := X & $F

Here, the value of X is ANDed with $F and the result is stored back in X. The assignment
form of Bitwise AND may also be used within expressions for intermediate results; see
Intermediate Assignments, page 147.

Be careful not to get Bitwise AND ‘&’ confused with Boolean AND ‘AND’. Bitwise AND is
for bit manipulation while Boolean AND is for comparison purposes (see page 167).

Page 164 · Propeller Manual v1.1

jmartin
New

2: Spin Language Reference – Operators

Bitwise OR ‘|’, ‘|=’
The Bitwise OR operator performs a bitwise OR of the bits of the first operand with the bits
of the second operand. Bitwise OR can be used in both variable and integer constant
expressions, but not in floating-point constant expressions. Each bit of the two operands is
subject to the following logic:

Table 2-12: Bitwise OR Truth Table
Bit States Result

0 0 0
0 1 1
1 0 1
1 1 1

Example:

X := %00101100 | %00001111

The above example ORs %00101100 with %00001111 and writes the result, %00101111, to
X.

Bitwise OR has an assignment form, |=, that uses the variable to its left as both the first
operand and the result destination. For example,

X |= $F 'Short form of X := X | $F

Here, the value of X is ORed with $F and the result is stored back in X. The assignment form
of Bitwise OR may also be used within expressions for intermediate results; see Intermediate
Assignments, page 147.

Be careful not to get Bitwise OR ‘|’confused with Boolean OR ‘OR’. Bitwise OR is for bit
manipulation while Boolean OR is for comparison purposes (see page 168).

Bitwise XOR ‘^’, ‘^=’
The Bitwise XOR operator performs a bitwise XOR of the bits of the first operand with the
bits of the second operand. Bitwise XOR can be used in both variable and integer constant
expressions, but not in floating-point constant expressions.

Each bit of the two operands is subject to the following logic:

Propeller Manual v1.1 · Page 165

Operators – Spin Language Reference
Table 2-13: Bitwise XOR Truth Table

Bit States Result
0 0 0
0 1 1
1 0 1
1 1 0

Example:

X := %00101100 ^ %00001111

The above example XORs %00101100 with %00001111 and writes the result, %00100011,
to X.

Bitwise XOR has an assignment form, ^=, that uses the variable to its left as both the first
operand and the result destination. For example,

X ^= $F 'Short form of X := X ^ $F

Here, the value of X is XORed with $F and the result is stored back in X. The assignment
form of Bitwise XOR may also be used within expressions for intermediate results; see
Intermediate Assignments, page 147.

Bitwise NOT ‘!’
The Bitwise NOT ‘!’ operator performs a bitwise NOT (inverse, or one’s-complement) of the
bits of the operand that follows it. Bitwise NOT can be used in both variable and integer
constant expressions, but not in floating-point constant expressions.

Each bit of the two operands is subject to the following logic:

Table 2-14: Bitwise NOT Truth Table
Bit State Result

0 1
1 0

Example:

X := !%00101100

Page 166 · Propeller Manual v1.1

jmartin
Improved

2: Spin Language Reference – Operators
The above example NOTs %00101100 and writes the result, %11010011, to X.

Bitwise NOT becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

!Flag

This would store the inverted value Flag back into Flag.

Be careful not to get Bitwise NOT ‘!’confused with Boolean NOT ‘NOT’. Bitwise NOT is for
bit manipulation while Boolean NOT is for comparison purposes (see page 168).

Boolean AND ‘AND’, ‘AND=’
The Boolean AND ‘AND’ operator compares two operands and returns TRUE (-1) if both values
are TRUE (non-zero), or returns FALSE (0) if one or both operands are FALSE (0). Boolean AND
can be used in both variable and constant expressions.

Example:

X := Y AND Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if both Y and Z are non-zero, or FALSE (0) if either Y or Z is zero. During the comparison, it
promotes each of the two values to -1 if they are non-zero, making any value, other than 0, a -
1, so that the comparison becomes: “If Y is true and Z is true…”

Quite often this operator is used in combination with other comparison operators, such as in
the following example.

IF (Y == 20) AND (Z == 100)

This example evaluates the result of Y == 20 against that of Z == 100, and if both are true, the
Boolean AND operator returns TRUE (-1).

Boolean AND has an assignment form, AND=, that uses the variable to its left as both the first
operand and the result destination. For example,

X AND= True 'Short form of X := X AND True

Here, the value of X is promoted to TRUE if it is non-zero, then is compared with TRUE and the
Boolean result (TRUE / FALSE, -1 / 0) is stored back in X. The assignment form of Boolean
AND may also be used within expressions for intermediate results; see Intermediate
Assignments, page 147.

Propeller Manual v1.1 · Page 167

Operators – Spin Language Reference
Be careful not to get Boolean AND ‘AND’ confused with Bitwise AND ‘&’. Boolean AND is
for comparison purposes while Bitwise AND is for bit manipulation (see page 164).

Boolean OR ‘OR’, ‘OR=’
The Boolean OR ‘OR’ operator compares two operands and returns TRUE (-1) if either value is
TRUE (non-zero), or returns FALSE (0) if both operands are FALSE (0). Boolean OR can be used
in both variable and constant expressions. Example:

X := Y OR Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if either Y or Z is non-zero, or FALSE (0) if both Y and Z are zero. During the comparison, it
promotes each of the two values to -1 if they are non-zero, making any value, other than 0, a -
1, so that the comparison becomes: “If Y is true or Z is true…”

Quite often this operator is used in combination with other comparison operators, such as in
the following example.

IF (Y == 1) OR (Z > 50)

This example evaluates the result of Y == 1 against that of Z > 50, and if either are true, the
Boolean OR operator returns TRUE (-1).

Boolean OR has an assignment form, OR=, that uses the variable to its left as both the first
operand and the result destination. For example,

X OR= Y 'Short form of X := X OR Y

Here, the value of X is promoted to TRUE if it is non-zero, then is compared with Y (also
promoted to TRUE if non-zero) and the Boolean result (TRUE / FALSE, -1 / 0) is stored back in X.
The assignment form of Boolean OR may also be used within expressions for intermediate
results; see Intermediate Assignments, page 147.

Be careful not to get Boolean OR ‘OR’ confused with Bitwise OR‘|’. Boolean OR is for
comparison purposes while Bitwise OR is for bit manipulation (see page 165).

Boolean NOT ‘NOT’
The Boolean NOT ‘NOT’ operator returns TRUE (-1) if the operand is FALSE (0), or returns
FALSE (0) if the operand is TRUE (non-zero). Boolean NOT can be used in both variable and
constant expressions. Example:

X := NOT Y

Page 168 · Propeller Manual v1.1

2: Spin Language Reference – Operators

Propeller Manual v1.1 · Page 169

The above example returns the Boolean opposite of Y; TRUE (-1) if Y is zero, or FALSE (0) if Y
is non-zero. During the comparison, it promotes the value of Y to -1 if it is non-zero, making
any value, other than 0, a -1, so that the comparison becomes: “If NOT true” or “If NOT
false”

Quite often this operator is used in combination with other comparison operators, such as in
the following example.

IF NOT ((Y > 9) AND (Y < 21))

This example evaluates the result of (Y > 9 AND Y < 21), and returns the Boolean opposite of
the result; TRUE (-1) if Y is in the range 10 to 20, in this case.

Boolean NOT becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

NOT Flag

This would store the Boolean opposite of Flag back into Flag.

Be careful not to get Boolean NOT ‘NOT’ confused with Bitwise NOT‘T !’. Boolean NOT is
for comparison purposes while Bitwise NOT is for bit manipulation (see page). 166

Boolean Is Equal ‘==’, ‘===’
The Boolean operator Is Equal compares two operands and returns TRUE (-1) if both values
are the same, or returns FALSE (0), otherwise. Is Equal can be used in both variable and
constant expressions. Example:

X := Y == Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is the same value as Z, or FALSE (0) if Y is not the same value as Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y == 1)

Here, the Is Equal operator returns TRUE if Y equals 1.

Is Equal has an assignment form, ===, that uses the variable to its left as both the first operand
and the result destination. For example,

X === Y 'Short form of X := X == Y

Operators – Spin Language Reference
Here, X is compared with Y, and if they are equal, X is set to TRUE (-1), otherwise X is set to
FALSE (0). The assignment form of Is Equal may also be used within expressions for
intermediate results; see Intermediate Assignments, page 147.

Boolean Is Not Equal ‘<>’, ‘<>=’
The Boolean operator Is Not Equal compares two operands and returns True (-1) if the values
are not the same, or returns FALSE (0), otherwise. Is Not Equal can be used in both variable
and constant expressions. Example:

X := Y <> Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is not the same value as Z, or FALSE (0) if Y is the same value as Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y <> 25)

Here, the Is Not Equal operator returns TRUE if Y is not 25.

Is Not Equal has an assignment form, <>=, that uses the variable to its left as both the first
operand and the result destination. For example,

X <>= Y 'Short form of X := X <> Y

Here, X is compared with Y, and if they are not equal, X is set to TRUE (-1), otherwise X is set to
FALSE (0). The assignment form of Is Not Equal may also be used within expressions for
intermediate results; see Intermediate Assignments, page 147.

Boolean Is Less Than ‘<’, ‘<=’
The Boolean operator Is Less Than compares two operands and returns TRUE (-1) if the first
value is less than the second value, or returns FALSE (0), otherwise. Is Less Than can be used
in both variable and constant expressions. Example:

X := Y < Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is less than the value of Z, or FALSE (0) if Y is equal to or greater than the value of Z.

 This operator is often used in conditional expressions, such as in the following example.

IF (Y < 32)

Page 170 · Propeller Manual v1.1

2: Spin Language Reference – Operators
Here, the Is Less Than operator returns TRUE if Y is less than 32.

Is Less Than has an assignment form, <=, that uses the variable to its left as both the first
operand and the result destination. For example,

X <= Y 'Short form of X := X < Y

Here, X is compared with Y, and if X is less than Y, X is set to TRUE (-1), otherwise X is set to
FALSE (0). The assignment form of Is Less Than may also be used within expressions for
intermediate results; see Intermediate Assignments, page 147.

Boolean Is Greater Than ‘>’, ‘>=’
The Boolean operator Is Greater Than compares two operands and returns TRUE (-1) if the
first value is greater than the second value, or returns FALSE (0), otherwise. Is Greater Than
can be used in both variable and constant expressions. Example:

X := Y > Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is greater than the value of Z, or FALSE (0) if Y is equal to or less than the value of Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y > 50)

Here, the Is Greater Than operator returns TRUE if Y is greater than 50.

Is Greater Than has an assignment form, >=, that uses the variable to its left as both the first
operand and the result destination. For example,

X >= Y 'Short form of X := X > Y

Here, X is compared with Y, and if X is greater than Y, X is set to TRUE (-1), otherwise X is set to
FALSE (0). The assignment form of Is Greater Than may also be used within expressions for
intermediate results; see Intermediate Assignments, page 147.

Boolean Is Equal or Less ‘=<’, ‘=<=’
The Boolean operator Is Equal or Less compares two operands and returns TRUE (-1) if the
first value is equal to or less than the second value, or returns FALSE (0), otherwise. Is Equal
or Less can be used in both variable and constant expressions. Example:

X := Y =< Z

Propeller Manual v1.1 · Page 171

Operators – Spin Language Reference
The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is equal to or less than the value of Z, or FALSE (0) if Y is greater than the value of Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y =< 75)

Here, the Is Equal or Less operator returns TRUE if Y is equal to or less than 75.

Is Equal or Less has an assignment form, =<=, that uses the variable to its left as both the first
operand and the result destination. For example,

X =<= Y 'Short form of X := X =< Y

Here, X is compared with Y, and if X is equal to or less than Y, X is set to TRUE (-1), otherwise X
is set to FALSE (0). The assignment form of Is Equal or Less may also be used within
expressions for intermediate results; see Intermediate Assignments, page 147.

Boolean Is Equal or Greater ‘=>’, ‘=>=’
The Boolean operator Is Equal or Greater compares two operands and returns TRUE (-1) if the
first value is equal to greater than the second value, or returns FALSE (0), otherwise. Is Equal
or Greater can be used in both variable and constant expressions. Example:

X := Y => Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is equal to or greater than the value of Z, or FALSE (0) if Y is less than the value of Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y => 100)

Here, the Is Equal or Greater operator returns TRUE if Y is equal to or greater than 100.

Is Equal or Greater has an assignment form, =>=, that uses the variable to its left as both the
first operand and the result destination. For example,

X =>= Y 'Short form of X := X => Y

Here, X is compared with Y, and if X is equal to or greater than Y, X is set to TRUE (-1),
otherwise X is set to FALSE (0). The assignment form of Is Equal or Greater may also be used
within expressions for intermediate results; see Intermediate Assignments, page 147.

Page 172 · Propeller Manual v1.1

2: Spin Language Reference – Operators

Propeller Manual v1.1 · Page 173

Symbol Address ‘@’
The Symbol Address operator returns the address of the symbol following it. Symbol
Address can be used in variable and integer constant expressions, but not in floating-point
constant expressions. Example:

BYTE[@Str] := "A"

In the above example, the Symbol Address operator returns the address of the Str symbol,
which is then used by the BYTE memory array reference to store the character "A" at that
address.

Symbol Address is often used to pass the address of strings and data structures, defined in a
DAT block, to methods that operate on them. T

It is important to note that this is a special operator that behaves differently in variable
expressions than it does in constant expressions. At run time, like our example above shows,
it returns the absolute address of the symbol following it. This run-time, absolute address
consists of the object’s program base address plus the symbol’s offset address.

In constant expressions, it only returns the symbol’s offset within the object. It cannot return
the absolute address, effective at run time, because that address changes depending on the
object’s actual address at run time. To properly use the Symbol Address in a constant, such
as a table of data, see the Object Address Plus Symbol operator, below.

Object Address Plus Symbol ‘@@’
The Object Address Plus Symbol operator returns the value of the symbol following it plus
the current object’s program base address. Object Address Plus Symbol can only be used in
variable expressions.

This operator is useful when creating a table of offset addresses, then at run time, using those
offsets to reference the absolute run-time addresses they represent. For example, a DAT block
may contain a number of strings to which you want both direct and indirect access. Here’s an
example

T

DAT block containing strings.

DAT
 Str1 byte "Hello.", 0
 Str2 byte "This is an example", 0
 Str3 byte "of strings in a DAT block.",0

Operators – Spin Language Reference

Page 174 · Propeller Manual v1.1

At run time we can access those strings directly, using @Str1, @Str2, and @Str3, but accessing
them indirectly is troublesome because each string is of a different length; making it difficult
to use any of them as a base for indirect address calculations.

The solution might seem to be within reach by simply making another table of the addresses
themselves, as in:

DAT
 StrAddr word @Str1, @Str2, @Str3

This creates a table of words, starting at StrAddr, where each word contains the address of a
unique string. Unfortunately, for compile-time constants (like those of the StrAddr table), the
address returned by @ is only the compile-time offset address, rather than the run-time
absolute address, of the symbol. To get the true, run-time address, we need to add the
object’s program base address to the symbol’s offset address. That is what the Object
Address Plus Symbol operator does. Example:

REPEAT Idx FROM 0 TO 2
 PrintStr(@@StrAddr[Idx])

The above example increments Idx from 0 through 2. The StrAddr[Idx] statement retrieves
the compile-time offset of the string stored in element Idx of the StrAddr table. The @@
operator in front of the StrAddr[Idx] statement adds the object’s base address to the
compile-time offset value that was retrieved, resulting in a valid run-time address of the
string. The PrintStr method, whose code is not shown in this example, can use that address
to process each character of the string.

2: Spin Language Reference – OUTA, OUTB

OUTA, OUTB
Register: Output registers for 32-bit Ports A and B.

((PUB ┆ PRI))
 OUTA 〈[Pin(s)]〉
((PUB ┆ PRI))
 OUTB 〈[Pin(s)]〉 (Reserved for future use)
Returns: Current value of output Pin(s) for Port A or B, if used as a source variable.

• Pin(s) is an optional expression, or a range-expression, that specifies the I/O pin, or
pins, to access in Port A (0-31) or Port B (32-63). If given as a single expression,
only the pin specified is accessed. If given as a range-expression (two expressions in
a range format; x..y) the contiguous pins from the start to end expressions are
accessed.

Explanation
OUTA and OUTB are two of six registers (DIRA, DIRB, INA, INB, OUTA and OUTB) that directly affect
the I/O pins. The OUTA register holds the output states for each of the 32 I/O pins in Port A;
bits 0 through 31 correspond to P0 through P31. The OUTB register holds the output states for
each of the 32 I/O pins in Port B; bits 0 through 31 correspond to P32 through P63.

NOTE: OUTB is reserved for future use; the Propeller P8X32A does not include Port B I/O
pins so only OUTA is discussed below.

OUTA is used to both set and get the current output states of one or more I/O pins in Port A. A
low (0) bit sets the corresponding I/O pin to ground. A high (1) bit sets the corresponding I/O
pin VDD (3.3 volts). All the OUTA register’s bits default to zero (0) upon cog startup.

Each cog has access to all I/O pins at any given time. Essentially, all I/O pins are directly
connected to each cog so that there is no hub-related mutually exclusive access involved.
Each cog maintains its own OUTA register that gives it the ability to set any I/O pin’s output
state (low or high). Each cog’s output states is OR’d with that of the other cogs’ output states
and the resulting 32-bit value becomes the output states of Port A pins P0 through P31. The
result is that each I/O pin’s output state is the “wired-OR” of the entire cog collective. See
I/O Pins on page 26 for more information.

Propeller Manual v1.1 · Page 175

OUTA, OUTB – Spin Language Reference
Note that each cog’s output states are made up of the OR’d states of its internal I/O hardware
(Output Register, Video Generator, etc.) and that is all AND’d with its Direction Register’s
states.

An I/O pin actually outputs low or high, as specified by the cog’s output states, if, and only if,
that pin’s bit in that same cog’s direction register (DIRA) is high (1). Otherwise, that cog
specifies the pin to be an input and its output state is ignored.

This configuration can easily be described in the following simple rules:

A. A pin outputs low only if all active cogs that set it to output also set it to low.
B. A pin outputs high if any active cog sets it to an output and also sets it high.

If a cog is disabled, its direction register is treated as if were cleared to 0, causing it to exert
no influence on I/O pin directions and states.

Note because of the “wired-OR” nature of the I/O pins, no electrical contention between cogs
is possible, yet they can all still access I/O pins simultaneously. It is up to the application
developer to ensure that no two cogs cause logical contention on the same I/O pin during run
time.

Using OUTA
Set or clear bits in OUTA to affect the output state of I/O pins as desired. Make sure to also set
the corresponding bits of DIRA to make that pin an output. For example:

 DIRA := %00000100_00110000_00000001_11110000
 OUTA := %01000100_00110000_00000001_10010000

The DIRA line above sets the I/O pins 26, 21, 20, 8, 7, 6, 5 and 4 to outputs and the rest to
inputs. The OUTA line sets I/O pins 30, 26, 21, 20, 8, 7, and 4 to high, the rest to low. The
result is that I/O pins 26, 21, 20, 8, 7, and 4 output high and I/O pins 6 and 5 output low. I/O
pin 30 is set to an input direction (according to DIRA) so the high in bit 30 of OUTA is ignored
and the pin remains an input according to this cog.

Using the optional Pin(s) field, and the post-clear (~) and post-set (~~) unary operators, the
cog can affect one I/O pin (one bit) at a time. The Pin(s) field treats the I/O pin registers as
an array of 32 bits. For example:

 DIRA[10]~~ 'Set P10 to output
 OUTA[10]~ 'Make P10 low
 OUTA[10]~~ 'Make P10 high

Page 176 · Propeller Manual v1.1

2: Spin Language Reference – OUTA, OUTB

Propeller Manual v1.1 · Page 177

The first line in the code above sets I/O pin 10 to output. The second line clears P10’s output
latch bit, making P10 output low (ground). The third line sets P10’s output latch bit, making
P10 output high (VDD).

In Spin, the OUTA register supports a special form of expression, called a range-expression,
which allows you to affect a group of I/O pins at once, without affecting others outside the
specified range. To affect multiple, contiguous I/O pins at once, use a range expression (like
x..y) in the Pin(s) field.

 DIRA[12..8]~~ 'Set DIRA12:8 (P12-P8 to output)
 OUTA[12..8] := %11001 'Set P12:8 to 1, 1, 0, 0, and 1

The first line, “DIRA…,” sets P12, P11, P10, P9 and P8 to outputs; all other pins remain in
their previous state. The second line, “OUTA…,” sets P12, P11, and P8 to output high, and P10
and P9 to output low.

IMPORTANT: The order of the values in a range-expression affects how it is used. For
example, the following swaps the order of the range from the previous example.

 DIRA[8..12]~~ 'Set DIRA8:12 (P8-P12 to output)
 OUTA[8..12] := %11001 'Set OUTA8:12 to 1, 1, 0, 0, and 1

Here, DIRA bits 8 through 12 are set to high (like before) but OUTA bits 8, 9, 10, 11 and 12 are
set equal to 1, 1, 0, 0, and 1, respectively, making P8, P9 and P12 output high and P10 and
P11 output low.

This is a powerful feature of range-expressions, but if care is not taken it can also cause
strange, unintentional results.

Normally OUTA is only written to but it can also be read from to retrieve the current I/O pin
output latch states. This is ONLY the cog’s output latch states, not necessarily the actual
output states of the Propeller chip’s I/O pins, as they can be further affected by other cogs or
even this cog’s other I/O hardware (Video Generator, Count A, etc.). The following assumes
Temp is a variable created elsewhere:

 Temp := OUTA[15..13] 'Get output latch state of P15 to P13

The above sets Temp equal to OUTA bits 15, 14, and 13; i.e.: the lower 3 bits of Temp are now
equal to OUTA15:13 and the other bits of Temp are cleared to zero.

PAR – Spin Language Reference

Page 178 · Propeller Manual v1.1

PAR
Register: Cog Boot Parameter register.

((PUB ┆ PRI))
 PAR
Returns: Address value passed during launch of assembly code with COGINIT or COGNEW.

Explanation
The PAR register contains the address value passed into the Parameter field of a COGINIT or
COGNEW command; see COGINIT, page 76 and COGNEW, page 78. The PAR register’s contents are
used by Propeller Assembly code to locate and operate on memory shared between Spin code
and assembly code.

Since the PAR register is intended to contain an address upon cog launch, the value stored into
it via COGINIT and T COGNEW is limited to 14 bits: a 16-bit word with the lower two bits cleared
to zero.

Using PAR
PAR is affected by Spin code and is used by assembly code as a memory pointer mechanism to
point to shared main memory between the two. Either the COGINIT or T COGNEW command, when
launching Propeller Assembly into a cog, affects the PAR register. For example:

VAR
 long Shared 'Shared variable (Spin & Assy)

PUB Main | Temp
 cognew(@Process, @Shared) 'Launch assy, pass Shared addr
 repeat
 <do something with Shared vars>

DAT
 org 0
Process mov Mem, PAR 'Retrieve shared memory addr
:loop <do something>
 wrlong ValReg, Mem 'Move ValReg value to Shared
 jmp #:loop
Mem res 1
ValReg res 1

jmartin
Improved

2: Spin Language Reference – PAR

Propeller Manual v1.1 · Page 179

In the example above, the Main method launches the Process assembly routine into a new cog
with COGNEW. The second parameter of COGNEW is used by Main to pass the address of a
variable, Shared. The assembly routine, Process, retrieves that address value from its PAR
register and stores it locally in Mem. Then it performs some task, updating its local ValReg
register (created at the end of the DAT block) and finally updates the Shared variable via
wrlong ValReg, Mem.

T

In Propeller Assembly, the PAR register is read-only so it should only be accessed as a source
(s-field) value (i.e., mov dest, source).

jmartin
New

PHSA, PHSB – Spin Language Reference

PHSA, PHSB
Register: Counter A and Counter B Phase Registers.

((PUB ┆ PRI))
 PHSA
((PUB ┆ PRI))
 PHSB
Returns: Current value of Counter A or Counter B Phase Register, if used as a source
variable.

Explanation
PHSA and PHSB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The PHSA and PHSB registers contain values that can
be directly read or written by the cog, but may also be accumulating with the value of FRQA
and FRQB, respectively, on potentially every System Clock cycle. See CTRA on page 95 for
more information.

Using PHSA and PHSB
PHSA and PHSB can be read/written like other registers or pre-defined variables. For example:

 PHSA := $1FFFFFFF

The above code sets PHSA to $1FFFFFFF. Depending on the CTRMODE field of the CTRA
register, this value may remain the same, or may automatically increment by the value in FRQA
at a frequency determined by the System Clock and the primary and/or secondary I/O pins.
See CTRA, CTRB on page 95 for more information.

Note that in Propeller Assembly, the PHSA and PHSB registers cannot be used in a read-modify-
write operation in the destination field of an instruction. Instead, separate read, modify, and
write operations (instructions) must be performed.

Keep in mind that writing to PHSA or PHSB directly overrides both the current accumulated
value and any potential accumulation scheduled for the same moment the write is performed.

Page 180 · Propeller Manual v1.1

jmartin
New

2: Spin Language Reference – PRI

PRI
Designator: Declare a Private Method Block.

((PUB ┆ PRI))
 PRI Name 〈(Param 〈, Param〉…)〉 〈:RValue〉 〈| LocalVar 〈[Count]〉〉 〈,LocalVar 〈[Count]〉〉…
 SourceCodeStatements

• Name is the desired name for the private method.
• Param is a parameter name (optional). Methods can contain zero or more comma-

delimited parameters, enclosed in parentheses. Param must be globally unique, but
other methods may also use the same symbol name. Each parameter is essentially a
long variable and can be treated as such.

• RValue is a name for the return value of the method (optional). This becomes an alias
to the method’s built-in RESULT variable. RValue must be globally unique, but other
methods may also use the same symbol name. The RValue (and/or RESULT variable)
is initialized to zero (0) upon each call to the method.

• LocalVar is a name for a local variable (optional). LocalVar must be globally unique,
but other methods may also use the same symbol name. All local variables are of
size long (four bytes) and are left uninitialized upon each call to the method.
Methods can contain zero or more comma-delimited local variables.

• Count is an optional expression, enclosed in brackets, that indicates this is a local
array variable, with Count number of elements; each being a long in size. When later
referencing these elements, they begin with element 0 and end with element Count-1.

• SourceCodeStatements is one or more lines of executable source code, indented by at
least one space, that perform the function of the method.

Explanation
PRI is the Private Method Block declaration. A Private Method is a section of source code
that performs a specific function then returns a result value. This is one of six special
declarations (CON, VAR, OBJ, PUB, PRI, and DAT) that provide inherent structure to the Spin
language.

Every object can contain a number of private (PRI) and public (PUB) methods. Private
methods can only be accessed from inside of the object and serve to perform vital, protected
functions, for the object. Private methods are like Public methods in every way except that
they are declared with PRI, instead of PUB, and are not accessible from outside the object.
Please see PUB, Page 182, for more information.

Propeller Manual v1.1 · Page 181

PUB – Spin Language Reference

PUB
Designator: Declare a Public Method Block.

((PUB ┆ PRI))
 PUB Name 〈(Param 〈,Param〉…)〉 〈:RValue〉 〈| LocalVar 〈[Count]〉〉 〈,LocalVar 〈[Count]〉〉…
 SourceCodeStatements

• Name is the desired name for the public method.
• Param is a parameter name (optional). Methods can contain zero or more comma-

delimited parameters, enclosed in parentheses. Param must be globally unique, but
other methods may also use the same symbol name. Each parameter is essentially a
long variable and can be treated as such.

• RValue is a name for the return value of the method (optional). This becomes an alias
to the method’s built-in RESULT variable. RValue must be globally unique, but other
methods may also use the same symbol name. The RValue (and/or RESULT variable)
is initialized to zero (0) upon each call to the method.

• LocalVar is a name for a local variable (optional). LocalVar must be globally unique,
but other methods may also use the same symbol name. All local variables are of
size long (four bytes) and are left uninitialized upon each call to the method.
Methods can contain zero or more comma-delimited local variables.

• Count is an optional expression, enclosed in brackets, that indicates this is a local
array variable, with Count number of elements; each being a long in size. When later
referencing these elements, they begin with element 0 and end with element Count-1.

• SourceCodeStatements is one or more lines of executable source code, indented by at
least one space, that perform the function of the method.

Explanation
PUB is the Public Method Block declaration. A Public Method is a section of source code that
performs a specific function then returns a result value. This is one of six special declarations
(CON, VAR, OBJ, PUB, PRI, and DAT) that provide inherent structure to the Spin language.

Every object can contain a number of public (PUB) and private (PRI) methods. Public methods
can be accessed outside of the object itself and serve to make up the interface to the object.

The PUB and PRI declarations don’t return a value themselves, but the public and private
methods they represent always return a value when called from elsewhere in the code.

Page 182 · Propeller Manual v1.1

2: Spin Language Reference – PUB

Propeller Manual v1.1 · Page 183

Public Method Declaration
Public Method declarations begin with PUB, in column 1 of a line, followed a unique name
and an optional set of parameters, a result variable, and local variables.

Example:

PUB Init
 <initialization code>

PUB MotorPos : Position
 Position := <code to retrieve motor position>

PUB MoveMotor(Position, Speed) : Success | PosIndex
 <code that moves motor to Position at Speed and returns True/False>

This example contains three public methods, Init, MotorPos and MoveMotor. The Init
method has no parameters and declares no return value or local variables. The MotorPos
method has no parameters but declares a return value called Position. The MoveMotor
method has two parameters, Position and Speed, a return value, Success, and a local variable,
PosIndex.

All executable statements that belong to a PUB method appear underneath its declaration,
indented by at least one space.

The Return Value
Whether or not a PUB declaration specifies an RValue , there is always an implied return value
that defaults to zero (0). There is a pre-defined name for this return value within every PUB
method, called RESULT. At any time within a method, RESULT can be updated like any other
variable and, upon exiting the method, the current value of RESULT will be passed back to the
caller. In addition, if a RESULT is declared for the method, that name can be used
interchangeably with the built-in

T

RESULTT variable. For instance, the MotorPos method above
sets “Position := …” and could also have used “Result := …” for the same effect. Despite
this, it is considered good practice to give a descriptive name to the return value (in the PUB
declaration) for any method whose return value is significant. Likewise, it is good practice to
leave the return value unnamed (in the PUB declaration) for any method whose return value is
unimportant and unused.

PUB – Spin Language Reference
Parameters and Local Variables
Parameters and local variables are all longs (four bytes). In fact, parameters are really just
variables that are initialized to the corresponding values specified by the caller of the method.
Local variables, however, are not initialized; they contain random data whenever the method
is called.

All parameters are passed into a method by value, not by reference, so any changes to the
parameters themselves are not reflected outside of the method. For example, if we called
MoveMotor using a variable called Pos for the first parameter, it may look something like this:

Pos := 250
MoveMotor(Pos, 100)

When the MoveMotor method is executed, it receives the value of Pos in its Position
parameter, and the value 100 in its Speed parameter. Inside the MoveMotor method, it can
change Position and Speed at any time, but the value of Pos (the caller’s variable) remains at
250.

If a variable must be altered by a routine, the caller must pass the variable by reference;
meaning it must pass the address of the variable instead of the value of the variable, and the
routine must treat that parameter as the address of a memory location in which to operate on.
The address of a variable, or other register-based symbol, can be retrieved by using the
Symbol Address operator, ‘@’. For example,

Pos := 250
MoveMotor(@Pos, 100)

The caller passed the address of Pos for the first parameter to MoveMotor. What MoveMotor
receives in its Position parameter is the address of the caller’s Pos variable. The address is
just a number, like any other, so the MoveMotor method must be designed to treat it as an
address, rather than a value. The MoveMotor method then must use something like:

PosIndex := LONG[Position]

...to retrieve the value of the caller’s Pos variable, and something like:

LONG[Position] := <some expression>

...to modify the caller’s Pos variable, if necessary.

Passing a value by reference with the Symbol Address operator is commonly used when
providing a string variable to a method. Since string variables are really just byte arrays,

Page 184 · Propeller Manual v1.1

2: Spin Language Reference – PUB

Propeller Manual v1.1 · Page 185

there is no way to pass them to a method by value; doing so would result in the method
receiving only the first character. Even if a method does not need to modify a string, or other
logical array, the array in question still needs to be passed by reference because there are
multiple elements to be accessed.

Optimized Addressing
In the compiled Propeller Application, the first eight (8) longs that make up the parameters,
the RESULT variable, and the local variables are addressed using an optimized encoding
scheme. This means accessing the first eight longs (parameters, RESULT, and local variables)
takes slightly less time than accessing the ninth, or later, longs. To optimize execution speed,
ensure that all local longs used by the method's most repetitive routines are among the first
eight. A similar mechanism applies to global variables; see the VAR

T

 section, page 212, for
more information.

Exiting a Method
A method is exited either when execution reaches the last statement within the method or
when it reaches a RETURN or ABORT command. A method may have only one exit point (the
last executable statement), or may have many exit points (any number of RETURN or ABORT
commands in addition to the last executable statement). The RETURN and ABORT commands
can also be used to set the RESULT variable upon exit; for more information see RETURN, page
196, and ABORT, page . T 47

jmartin
New

QUIT – Spin Language Reference

Page 186 · Propeller Manual v1.1

QUIT
Command: Exit from REPEAT loop immediately. T

((PUB ┆ PRI))
 QUIT

Explanation
QUIT is one of two commands (NEXT and QUIT) that affect T REPEAT loops. QUIT causes a REPEAT T
loop to terminate immediately.

Using QUIT
QUIT is typically used as an exception case, in a conditional statement, in REPEAT loops to
terminate the loop prematurely. For example, assume that DoMore and SystemOkay are
methods created elsewhere that each return Boolean values:

 repeat while DoMore 'Repeat while more to do
 !outa[0] 'Toggle status light
 <do something> 'Perform some task
 if !SystemOkay
 quit 'If system failure, exit
 <more code here> 'Perform other tasks

The above code toggles a status light on P0 and performs other tasks while the DoMore method
returns TRUE. However, if the SystemOkay method returns FALSE partway through the loop, the
IF statement executes the QUIT command which causes the loop to terminate immediately.

The QUIT command can only be used within a REPEAT loop; an error will occur otherwise.

2: Spin Language Reference – REBOOT

Propeller Manual v1.1 · Page 187

REBOOT
Command: Reset the Propeller chip.

((PUB ┆ PRI))
 REBOOT

Explanation
This is a software controlled reset, but acts like just like a hardware reset via the RESn pin.

Use REBOOT if you want to reset the Propeller chip to its power-up state. All the same
hardware-based, power-up/reset delays, as well as the boot-up processes, are applied as if the
Propeller had been reset via the RESn pin or a power cycle.

T

REPEAT – Spin Language Reference

REPEAT
Command: Execute code block repetitively.

((PUB ┆ PRI))
 REPEAT 〈Count〉
 Statement(s)
((PUB ┆ PRI))
 REPEAT Variable FROM Start TO Finish 〈STEP Delta〉
 Statement(s)
((PUB ┆ PRI))
 REPEAT ((UNTIL┆ WHILE)) Condition(s)
 Statement(s)
((PUB ┆ PRI))
 REPEAT
 Statement(s)
 ((UNTIL┆ WHILE)) Condition(s)

• Count is an optional expression indicating the finite number of times to execute
Statement(s). If Count is omitted, syntax 1 creates an infinite loop made up of
Statement(s).

• Statement(s) is an optional block of one or more lines of code to execute repeatedly.
Omitting Statement(s) is rare, but may be useful in syntax 3 and 4 if Condition(s)
achieves the needed effects.

• Variable is a variable, usually user-defined, that will be iterated from Start to Finish,
optionally by Delta units per iteration. Variable can be used in Statement(s) to
determine or utilize the iteration count.

• Start is an expression that determines the starting value of Variable in syntax 2. If
Start is less than Finish, Variable will be incremented each iteration; it will be
decremented otherwise.

• Finish is an expression that determines the ending value of Variable in syntax 2. If
Finish is greater than Start, Variable will be incremented each iteration; it will be
decremented otherwise.

• Delta is an optional expression that determines the units in which to
increment/decrement Variable each iteration (syntax 2). If omitted, Variable is
incremented/decremented by 1 each iteration.

Page 188 · Propeller Manual v1.1

2: Spin Language Reference – REPEAT

Propeller Manual v1.1 · Page 189

• Condition(s) is one or more Boolean expression(s) used by syntax 3 and 4 to continue
or terminate the loop. When preceded by UNTIL, Condition(s) terminates the loop
when true. When preceded by WHILE, Conditions(s) terminates the loop when FALSE.

Explanation
REPEAT is the very flexible looping structure for Spin code. It can be used to create any type
of loop, including: infinite, finite, with/without loop counter, and conditional zero-to-
many/one-to-many loops.

T

Indention is Critical
IMPORTANT: Indention is critical. The Spin language relies on indention (of one space or
more) on lines following conditional commands to determine if they belong to that command
or not. To have the Propeller Tool indicate these logically grouped blocks of code on-screen,
you can press Ctrl + I to turn on block-group indicators. Pressing Ctrl + I again will disable
that feature. See the Propeller Tool Help for a complete list of shortcut keys.

Infinite Loops (Syntax 1)
Truthfully, any of the four forms of REPEAT can be made into infinite loops, but the form used
most often for this purpose is syntax 1 without the Count field. For example:

 repeat 'Repeat endlessly
 !outa[25] 'Toggle P25
 waitcnt(2_000 + cnt) 'Pause for 2,000 cycles

This code repeats the !outa[25] and waitcnt(2_000 + cnt) lines endlessly. Both lines are
indented from the REPEAT so they belong to the REPEAT loop.

Since Statement(s) is really an optional part of REPEAT, the REPEAT command by itself can be
used as an endless loop that does nothing but keep the cog active. This can be intentional, but
sometimes is unintentional due to improper indention. For example:

T

 repeat 'Repeat endlessly
 !outa[25] 'Toggle P25 <-- This is never run

The above example is erroneous; the last line is never executed because the REPEAT above it is
an endless loop that has no Statement(s); there is nothing indented immediately below it, so
the cog simply sits in an endless loop at the REPEAT line that does nothing but keep the cog
active and consuming power.

REPEAT – Spin Language Reference
Simple Finite Loops (Syntax 1)
Most loops are finite in nature; they execute a limited number of iterations only. The
simplest form is syntax 1 with the Count field included.

For example:

 repeat 10 'Repeat 10 times
 !outa[25] 'Toggle P25
 byte[$7000]++ 'Increment RAM location $7000

The above code toggles P25 ten times, then increments the value in RAM location $7000.

Note that the Count field may be any numeric expression but the expression is evaluated only
once, the first time the loop is entered. This means that any changes to the expression’s
variables within the loop will not affect the number of iterations of the loop. The next
example assumes the variable Index was created previously.

 Index := 10 'Set loop to repeat 10 times
 repeat Index 'Repeat Index times
 !outa[25] 'Toggle P25
 Index := 20 'Change Index to 20

In the above example, Index is 10 upon entering the REPEAT loop the first time. Each time
through the loop, however, Index is set to 20, but the loop continues to execute only 10 times.

Counted Finite Loops (Syntax 2)
Quite often it is necessary to count the loop iterations so the loop’s code can perform
differently based on that count. The REPEAT command makes it easy to do this with syntax 2.
The next example assumes the variable Index was created previously.

 repeat Index from 0 to 9 'Repeat 10 times
 byte[$7000][Index]++ 'Increment RAM locations $7000 to $7009

Like the previous example, the code above loops 10 times, but each time it adjusts the
variable Index. The first time through the loop, Index will be 0 (as indicated by the “from 0”)
and each iteration afterwards Index will be 1 higher than the previous (as indicated by the “to
9”): ..1, 2, 3…9. After the tenth iteration, Index will be incremented to 10 and the loop will
terminate, causing the next code following the REPEAT loop structure to execute, if any exists.
The code in the loop uses Index as an offset to affect memory, byte[$7000][Index]++; in this
case it is incrementing each of the byte-sized values in RAM locations $7000 to $7009 by 1,
one at a time.
Page 190 · Propeller Manual v1.1

jmartin
New

2: Spin Language Reference – REPEAT

Propeller Manual v1.1 · Page 191

The REPEAT command automatically determines whether the range suggested by Start and
Finish is increasing or decreasing. Since the above example used 0 to 9, the range is an
increasing range; adjusting Index by +1 every time. To get the count to go backwards,
simply reverse the Start and Finish values, as in:

 repeat Index from 9 to 0 'Repeat 10 times
 byte[$7000][Index]++ 'Increment RAM $7009 down through $7000

This example also loops 10 times, but counts with Index from 9 down to 0; adjusting Index
by -1 each time. The contents of the loop still increments the values in RAM, but from
locations $7009 down to $7000. After the tenth iteration, Index will equal -1.

Since the Start and Finish fields can be expressions, they can contain variables. The next
example assumes that S and F are variables created previously.

 S := 0
 F := 9
 repeat 2 'Repeat twice
 repeat Index from S to F 'Repeat 10 times
 byte[$7000][Index]++ 'Increment RAM locations 7000..$7009
 S := 9
 F := 0

The above example uses a nested loop. The outer loop (the first one) repeats 2 times. The
inner loop repeats with Index from S to F, which were previously set to 0 and 9, respectively.
The inner loop increments the values in RAM locations $7000 to $7009, in that order,
because the inner loop is counting iterations from 0 to 9. Then, the inner loop terminates
(with Index being set to 10) and the last two lines set S to 9 and F to 0, effectively swapping
the Start and Finish values. Since this is still inside the outer loop, the outer loop then
executes its contents again (for the second time) causing the inner loop to repeat with Index
from 9 down to 0. The inner loop increments the values in RAM locations $7009 to $7000,
in that order (reverse of the previous time) and terminates with Index equaling -1. The last
two lines set S and F again, but the outer loop does not repeat a third time.

REPEAT loops don’t have to be limited to incrementing or decrementing by 1 either. If the T

REPEATT command uses the optional STEP Delta syntax, it will increment or decrement the
Variable by the Delta amount. In the syntax 2 form, REPEAT is actually always using a Delta
value, but when the “

T

STEP Delta” component is omitted, it uses either +1 or -1 by default,
depending on the range of Start and Finish. The following example includes the optional
Delta value to increment by 2.

 repeat Index from 0 to 8 step 2 'Repeat 5 times

REPEAT – Spin Language Reference

Page 192 · Propeller Manual v1.1

 byte[$7000][Index]++ 'Increment even RAM $7000 to $7008

Here, REPEAT loops five times, with Index set to 0, 2, 4, 6, and 8, respectively. This code
effectively increments every other RAM location (the even numbered locations) from $7000
to $7008 and terminates with Index equaling 10.

The Delta field can be positive or negative, regardless of the natural ascending/descending
range of the Start and Finish values, and can even be adjusted within the loop to achieve
interesting effects. For example, assuming Index and D are previously defined variables, the
following code sets Index to the following sequence: 5, 6, 6, 5, 3.

 D := 2
 repeat Index from 5 to 10 step D
 --D

This loop started out with Index at 5 and a Delta (D) of +2. But each iteration of the loop
decrements D by one, so at the end of iteration 1, Index = 5 and D = +1. Iteration 2 has Index
= 6 and D = 0. Iteration 3 has Index = 6 and D = -1. Iteration 4 has Index = 5 and D = -2.
Iteration 5 has Index = 3 and D = -3. The loop then terminates because Index plus Delta (3 + -
3) is outside the range of Start to Finish (5 to 10).

Conditional Loops (Syntax 3 and 4)
The final forms of REPEAT, syntax 3 and 4, are finite loops with conditional exits and have
flexible options allowing for the use of either positive or negative logic and the creation of
zero-to-many or one-to-many iteration loops. These two forms of

T

REPEATT are usually referred
to as “repeat while” or “repeat until” loops.

Let’s look at the REPEAT form described by syntax 3. It consists of the T REPEAT command
followed immediately by either WHILE or UNTIL then Condition(s) and finally, on the lines
below it, optional Statement(s). Since this form tests Condition(s) at the start of every
iteration, it creates a zero-to-many loop; the Statement(s) block will execute zero or more
times, depending on the Condition(s). For example, assume that X is a variable created
earlier:

 X := 0
 repeat while X < 10 'Repeat while X is less than 10
 byte[$7000][X] := 0 'Increment RAM value
 X++ 'Increment X

This example first sets X to 0, then repeats the loop while X is less than 10. The code inside
the loop clears RAM locations based on X (starting at location $7000) and increments X.

2: Spin Language Reference – REPEAT

Propeller Manual v1.1 · Page 193

After the 10th iteration of the loop, X equals 10, making the condition while X < 10 false and
the loop terminates.

This loop is said to use “positive” logic because it continues “WHILE” a condition is true. It
could also be written with “negative” logic using UNTIL, instead. Such as:

 X := 0
 repeat until X > 9 'Repeat until X is greater than 9
 byte[$7000][X] := 0 'Increment RAM value
 X++ 'Increment X

The above example performs the same way as the previous, but the REPEAT loop uses negative
logic because it continues “

T

UNTIL” a condition is true; i.e: it continues while a condition is
false.

In either example, if X was equal to 10 or higher before the first iteration of the REPEAT loop,
the condition would cause the loop to never execute at all, which is why we call it a zero-to-
many loop.

The REPEAT form described by syntax 4 is very similar to syntax 3, but the condition is tested
at the end of every iteration, making it a one-to-many loop. For example:

 X := 0
 repeat
 byte[$7000][X] := 0 'Increment RAM value
 X++ 'Increment X
 while X < 10 'Repeat while X is less than 10

This works the same as the previous examples, looping 10 times, except that the condition is
not tested until the end of each iteration. However, unlike the previous examples, even if X
was equal to 10 or higher before the first iteration, the loop would run once then terminate,
which is why we call it a one-to-many loop.

Other REPEAT Options
There are two other commands that affect the behavior of REPEAT loops: T NEXT and QUIT. See
the NEXT (page) and 140 QUIT (page) commands for more information. 186

RESULT – Spin Language Reference

Page 194 · Propeller Manual v1.1

RESULT
Variable: The return value variable for methods.

((PUB ┆ PRI))
 RESULT

Explanation
The RESULT variable is a pre-defined local variable for each PUB and PRI method. RESULT
holds the method’s return value; the value passed back to the caller of the method, when the
method is terminated.

T

When a public or private method is called, its built-in RESULT variable is initialized to zero
(0). If that method does not alter RESULT, or does not call RETURN or ABORT with a value
specified, then zero will be the return value upon that method’s termination.

T

Using RESULT
In the example below, the DoSomething method sets RESULT equal to 100 at its end. The Main
method calls DoSomething and sets its local variable, Temp, equal to the result; so that when
DoSomething exits, Temp will be set to 100

T

PUB Main | Temp
 Temp := DoSomething 'Call DoSomething, set Temp to return value

PUB DoSomething
 <do something here>
 result := 100 'Set result to 100

You can also provide an alias name for a method’s RESULT variable in order to make it more
clear what the method returns. This is highly recommended since it makes a method’s intent
more easily discerned. For example:

PUB GetChar : Char
 <do something>
 Char := <retrieved character> 'Set Char (result) to the character

The above method, GetChar, declares Char as an alias for its built-in RESULT variable; see PUB,
page 182 or PRI, page 181, for more information. The GetChar method then performs some
task to get a character then it sets Char to the value of the retrieved character. It could have

2: Spin Language Reference – RESULT

Propeller Manual v1.1 · Page 195

also used “result := …” to set the return value since either statement affects the method’s
return value.

Either the RESULT variable, or the alias provided for it, may be modified multiple times within
the method before exiting since they both affect

T

RESULT and only the last value of RESULT will
be used upon exiting.

RETURN – Spin Language Reference

Page 196 · Propeller Manual v1.1

RETURN
Command: Exit from PUB/PRI method with optional return Value.

((PUB ┆ PRI))
 RETURN 〈Value〉
Returns: Either the current RESULT value, or Value if provided.

• Value is an optional expression whose value is to be returned from the PUB or PRI
method.

Explanation
RETURN is one of two commands (ABORT and RETURN) that terminate a PUB or PRI method’s
execution. RETURN causes a return from a PUB or PRI method with normal status; meaning it
pops the call stack once and returns to the caller of this method, delivering a value in the
process.

Every PUB or PRI method has an implied RETURN at its end, but RETURN can also be manually
entered in one or more places within the method to create multiple exit points.

When RETURN appears without the optional Value, it returns the current value of the PUB/PRI’s
built-in RESULT variable. If the Value field was entered, however, the T PUB or PRI returns with
that Value instead.

About the Call Stack
When methods are called, simply by referring to them from other methods, there must be
some mechanism in place to store where to return to once the called method is completed.
This mechanism is a called a “stack” but we’ll use the term “call stack” here. It is simply
RAM memory used to store return addresses, return values, parameters and intermediate
results. As more and more methods are called, the call stack logically gets longer. As more
and more methods are returned from (via RETURN or by reaching the end of the method) the
call stack gets shorter. This is called “pushing” onto the stack and “popping” off of the stack,
respectively.

The RETURN command pops the most recent data off the call stack to facilitate returning to the
immediate caller; the one who directly called the method that just returned.

2: Spin Language Reference – RETURN

Propeller Manual v1.1 · Page 197

Using RETURN
The following example demonstrates two uses of RETURN. Assume that
DisplayDivByZeroError is a method defined elsewhere.

PUB Add(Num1, Num2)
 Result := Num1 + Num2 'Add Num1 + Num2
 return

PUB Divide(Dividend, Divisor)
 if Divisor == 0 'Check if Divisor = 0
 DisplayDivByZeroError 'If so, display error
 return 0 'and return with 0
 return Dividend / Divisor 'Otherwise return quotient

The Add method sets its built-in RESULT variable equal to Num1 plus Num2, then executes
RETURN. The RETURN causes Add to return the value of RESULT to the caller. Note that this
RETURN was not really required because the Propeller Tool Compiler will automatically put it
in at the end of any methods that don’t have one.

The Divide method checks the Divisor value. If Divisor equals zero, it calls a
DisplayDivByZeroError method and then executes return 0, which immediately causes the
method to return with the value 0. If, however, the Divisor was not equal to zero, it executes
return Dividend / Divisor, which causes the method to return with the result of the
division. This is an example where the last RETURN was used to perform the calculation and
return the result all in one step rather than separately affecting the built-in RESULT variable
beforehand.

ROUND – Spin Language Reference

ROUND
Directive: Round a floating-point constant to the nearest integer.

((CON ┆ VAR ┆ OBJ ┆ PUB ┆ PRI ┆ DAT))
 ROUND (FloatConstant)
Returns: Nearest integer to original floating-point constant value.

• FloatConstant is the floating-point constant expression to be rounded to the nearest
integer.

Explanation
ROUND is one of three directives (FLOAT, ROUND and TRUNC) used for floating-point constant
expressions. ROUND returns an integer constant that is the closest integer value to the given
floating-point constant expression. Fractional values of ½ (.5) or higher are rounded up to the
nearest whole number while lower fractions are rounded down.

Using ROUND
ROUND can be used to round floating-point constants up or down to the nearest integer value.
Note that this is for compile-time constant expressions only, not run-time variable
expressions. For example:

 CON
 OneHalf = 0.5
 Smaller = 0.4999
 Rnd1 = round(OneHalf)
 Rnd2 = round(Smaller)
 Rnd3 = round(Smaller * 10.0) + 4

The above code creates two floating-point constants, OneHalf and Smaller, equal to 0.5 and
0.4999, respectively. The next three constants, Rnd1, Rnd2 and Rnd3, are integer constants
that are based on OneHalf and Smaller using the ROUND directive. Rnd1 = 1, Rnd2 = 0, and
Rnd3 = 9.

About Floating-Point Constants
The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with

Page 198 · Propeller Manual v1.1

2: Spin Language Reference – ROUND

Propeller Manual v1.1 · Page 199

a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

Floating-point constant expressions can be defined and used for many compile-time purposes,
but for run-time floating-point operations, the FloatMath and FloatString objects provide
math functions compatible with single-precision numbers.

See the Constant Assignment ‘=’ in the Operators section on page 148, FLOAT on page 108,
and TRUNC on page 209, as well as the FloatMath and FloatString objects for more
information.

SPR – Spin Language Reference

SPR
Register: Special Purpose Register array; provides indirect access to cog’s special registers.

((PUB ┆ PRI))
 SPR [Index]
Returns: Value in special purpose register at Index.

• Index is an expression that specifies the index (0-15) of the special purpose register to
access (PAR through VSCL).

Explanation
SPR is an array of the 16 special purpose registers in the cog. Element 0 is the PAR register
and element 15 is the VSCL register. See Table 2-15 below. SPR provides an indirect method
of accessing the cog’s special purpose registers.

Table 2-15: Cog RAM Special Purpose Registers

Name Index Type Description
PAR 0 Read-Only Boot Parameter
CNT 1 Read-Only System Counter
INA 2 Read-Only Input States for P31 - P0
INB 3 Read-Only Input States for P63- P321
OUTA 4 Read/Write Output States for P31 - P0
OUTB 5 Read/Write Output States for P63 – P321
DIRA 6 Read/Write Direction States for P31 - P0
DIRB 7 Read/Write Direction States for P63 - P321
CTRA 8 Read/Write Counter A Control
CTRB 9 Read/Write Counter B Control
FRQA 10 Read/Write Counter A Frequency
FRQB 11 Read/Write Counter B Frequency
PHSA 12 Read/Write Counter A Phase
PHSB 13 Read/Write Counter B Phase
VCFG 14 Read/Write Video Configuration
VSCL 15 Read/Write Video Scale

Note 1: Reserved for future use

Page 200 · Propeller Manual v1.1

2: Spin Language Reference – SPR

Propeller Manual v1.1 · Page 201

Using SPR
SPR can be used like any other long-sized array. The following assumes Temp is a variable
defined elsewhere.

 spr[4] := %11001010 'Set outa register
 Temp := spr[2] 'Get ina value

This example sets the OUTA register (index 4 of SPR) to %11001010 and then sets Temp equal to
the INA register (index 2 of SPR).

_STACK – Spin Language Reference

_STACK
Constant: Pre-defined, one-time settable constant for specifying the size of an application’s
stack space.

CON
 _STACK = Expression

• Expression is an integer expression that indicates the number of longs to reserve for
stack space.

Explanation
_STACK is a pre-defined, one-time settable optional constant that specifies the required stack
space of an application. This value is added to _FREE if specified, to determine the total
amount of stack/free memory space to reserve for a Propeller application. Use _STACK if an
application requires a minimum amount of stack space in order to run properly. If the
resulting compiled application is too large to allow the specified stack space, an error
message will be displayed. For example:

CON
 _STACK = 3000

The _STACK declaration in the above CON block indicates that the application needs to have at
least 3,000 longs of stack space left over after compilation. If the resulting compiled
application does not have that much room left over, an error message will indicate by how
much it was exceeded. This is a good way to prevent successful compiles of an application
that will fail to run properly due to lack of memory.

Note that only the top object file can set the value of _STACK. Any child object’s _STACK
declarations will be ignored. The stack space reserved by this constant is used by the
application’s main cog to store temporary data such as call stacks, parameters, and
intermediate expression results.

Page 202 · Propeller Manual v1.1

2: Spin Language Reference – STRCOMP

STRCOMP
Command: Compare two strings for equality.

((PUB ┆ PRI))
 STRCOMP (StringAddress1, StringAddress2)
Returns: TRUE if both strings are equal, FALSE otherwise.

• StringAddress1 is an expression specifying the starting address of the first string to
compare.

• StringAddress2 is an expression specifying the starting address of the second string to
compare.

Explanation
STRCOMP is one of two commands (STRCOMP and STRSIZE) that retrieve information about a
string. STRCOMP compares the contents of the string at StringAddress1 to the contents of the
string at StringAddress2, up to the zero-terminator of each string, and returns TRUE if both
strings are equivalent, FALSE otherwise. This comparison is case-sensitive.

Using STRCOMP
The following example assumes PrintStr is a method created elsewhere.

PUB Main
 if strcomp(@Str1, @Str2)
 PrintStr(string("Str1 and Str2 are equal"))
 else
 PrintStr(string("Str1 and Str2 are different"))

DAT
 Str1 byte "Hello World", 0
 Str2 byte "Testing.", 0

The above example has two zero-terminated strings in the DAT block, Str1 and Str2. The
Main method calls STRCOMP to compare the contents of each string. Assuming PrintStr is a
method that displays a string, this example prints “Str1 and Str2 are different” on the display.

Propeller Manual v1.1 · Page 203

STRCOMP – Spin Language Reference

Page 204 · Propeller Manual v1.1

Zero-Terminated Strings
The STRCOMP command requires the strings being compared to be zero-terminated; a byte
equal to 0 must immediately follow each string. This practice is quite common and is
recommended since most string-handling methods rely on zero terminators.

2: Spin Language Reference – STRING

Propeller Manual v1.1 · Page 205

STRING
Directive: Declare in-line string constant and get its address.

((PUB ┆ PRI))
 STRING (StringExpression)
Returns: Address of in-line string constant.

• StringExpression is the desired string expression to be used for temporary, in-line
purposes.

Explanation
The DAT block is used often to create strings or string buffers that are reusable for various
purposes, but there are occasions when a string is needed for temporary purposes like
debugging or one-time uses in an object. The

T

STRING directive is meant for those one-time
uses; it compiles an in-line, zero-terminated string into memory and returns the address of
that string.

Using STRING
The STRING directive is very good for creating one-time-use strings and passing the address of
that string to other methods. For example, assuming PrintStr is a method created elsewhere.

PrintStr(string("This is a test string."))

The above example uses the STRING directive to compile a string, “This is a test string.”, into
memory and return the address of that string as the parameter for the fictitious PrintStr
method.

If a string needs to be used in more than one place in code, it is better to define it in the DAT
block so the address can be used multiple times.

T

STRSIZE – Spin Language Reference

STRSIZE
Command: Get size of string.

((PUB ┆ PRI))
 STRSIZE (StringAddress)
Returns: Size (in bytes) of zero-terminated string.

• StringAddress is an expression specifying the starting address of the string to measure.

Explanation
STRSIZE is one of two commands (STRCOMP and STRSIZE) that retrieve information about a
string. STRSIZE measures the length of a string at StringAddress, in bytes, up to, but not
including, a zero-termination byte.

Using STRSIZE
The following example assumes Print is a method created elsewhere.

PUB Main
 Print(strsize(@Str1))
 Print(strsize(@Str2))

DAT
 Str1 byte "Hello World", 0
 Str2 byte "Testing.", 0

The above example has two zero-terminated strings in the DAT block, Str1 and Str2. The
Main method calls STRSIZE to get the length of each string. Assuming Print is a method that
displays a value, this example prints 11 and 8 on the display.

Zero-Terminated Strings
The STRSIZE command requires the string being measured to be zero-terminated; a byte equal
to 0 must immediately follow the string. This practice is quite common and is recommended
since most string-handling methods rely on zero terminators.

Page 206 · Propeller Manual v1.1

2: Spin Language Reference – Symbols

Symbols
The symbols in Table 2-16 below serve one or more special purposes in Spin code. For
Propeller Assembly symbols, see Symbols, page 360. Each symbol’s purpose is described
briefly with references to other sections that describe it directly or use it in examples.

Table 2-16: Symbols

Symbol Purpose(s)

% Binary indicator: used to indicate that a value is being expressed in binary (base-2). See
Value Representations on page 45.

%% Quaternary indicator: used to indicate a value is being expressed in quaternary (base-4).
See Value Representations on page 45.

$ Hexadecimal indicator: used to indicate a value is being expressed in hexadecimal
(base-16). See Value Representations on page 45.

"
String designator: used to begin and end a string of text characters. Usually used in Object
blocks (page 141), Data blocks (page 99), or in Public/Private blocks with the STRING
directive (page 205).

@
Symbol Address Indicator: used immediately before a symbol to indicate the address of that
symbol is to be used, rather than the value at that symbol’s location. See Symbol Address
‘@’ on page 173.

@@
Object Address Plus Symbol Indicator: used immediately before a symbol to indicate the
value of that symbol should be added to the object’s base address. See Object Address
Plus Symbol ‘@@’ on page 173.

_
1) Delimiter: used as a group delimiter in constant values (where a comma ‘,’ or period ‘.’

may normally be used as a number group delimiter). See Value Representations on
page 45.

2) Underscore: used as part of a symbol. See Symbol Rules on page 45.

1) Object-Constant reference: used to reference a sub-object’s constants. See the CON
section’s Scope of Constants, page 89, and OBJ, page 141.

2) Enumeration Set: used in a CON block to set the start of an enumerated set of
symbols. See the CON section’s Enumerations (Syntax 2 and 3) on page 87.

.
1) Object-Method reference: used to reference a sub-object’s methods. See OBJ, page

141.
2) Decimal point: used in floating-point constant expressions. See CON, page 84.

..
Range indicator: indicates a range from one expression to another for CASE
statements or an I/O register index. See OUTA, OUTB on page 175, INA, INB on page
118, and DIRA, DIRB on page 104.

(Table continues on next page.)

Propeller Manual v1.1 · Page 207

jmartin
Improved

jmartin
New

jmartin
New

Symbols – Spin Language Reference

Page 208 · Propeller Manual v1.1

Table 2-16: Symbols (continued)

Symbol Purpose(s)

:

1) Return value separator: appears immediately before a symbolic return value on a PUB
or PRI declaration. See PUB on page 182, PRI on page 181, and RESULTT on page
194.

2) Object assignment: appears in an object reference declaration in an OBJ block. See
OBJ, page 141.

3) Case statement separator: appears immediately after the match expressions in a CASE
structure. See CASE, page 59.

|
1) Local variable separator: appears immediately before a list of local variables on a PUB

or PRI declaration. See PUB, page 182 and PRI, page 181.
2) Bitwise OR: used in expressions. See Bitwise OR ‘|’, ‘|=’ on page 165.

\
Abort trap: appears immediately before a method call that could potentially abort. See
ABORT on page . T 47

,
List delimiter: used to separate items in lists. See LOOKUP, LOOKUPZ on page 138,
LOOKDOWN, LOOKDOWNZ on page 136, and the DAT section’s on
page .

T Declaring Data(Syntax 1)
100

()
Parameter list designators: used to surround method parameters. See PUB, page 182 and
PRI, page 181.

[]
Array index designators: used to surround indexes on variable arrays or main memory
references. See VAR, page 210; BYTE, page 51; WORD, page 227; and LONG, page 128.

' Code comment designator: used to enter single-line code comments (non-compiled text) for
code viewing purposes. See “Using the Propeller Tool” in the software’s Help file.

''
Document comment designator: used to enter single-line document comments (non-
compiled text) for documentation viewing purposes. See “Using the Propeller Tool” in the
software’s Help file.

{ } In-line/multi-line code comment designators: used to enter multi-line code comments (non-
compiled text) for code viewing purposes.

{{ }}
In-line/multi-line document comment designators: used to enter multi-line document
comments (non-compiled text) for documentation viewing purposes. See “Using the
Propeller Tool” in the software’s Help file.

2: Spin Language Reference – TRUNC

TRUNC
Directive: Remove, “truncate,” the fractional portion from a floating-point constant.

((CON ┆ VAR ┆ OBJ ┆ PUB ┆ PRI ┆ DAT))
 TRUNC (FloatConstant)
Returns: Integer that is the given floating-point constant value truncated at the decimal point.

• FloatConstant is the floating-point constant expression to be truncated to an integer.

Explanation
TRUNC is one of three directives (FLOAT, ROUND and TRUNC) used for floating-point constant
expressions. TRUNC returns an integer constant that is the given floating-point constant
expression with the fractional portion removed.

Using TRUNC
TRUNC can be used to retrieve the integer portion of a floating-point constant. For example:

 CON
 OneHalf = 0.5
 Bigger = 1.4999
 Int1 = trunc(OneHalf)
 Int2 = trunc(Bigger)
 Int3 = trunc(Bigger * 10.0) + 4

The above code creates two floating-point constants, OneHalf and Bigger, equal to 0.5 and
1.4999, respectively. The next three constants, Int1, Int2 and Int3, are integer constants that
are based on OneHalf and Bigger using the TRUNC directive. Int1 = 0, Int2 = 1, and Int3 = 18.

About Floating-Point Constants
The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with
a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

Floating-point constant expressions can be defined and used for many compile-time purposes,
but for run-time floating-point operations, the FloatMath and FloatString objects provide
math functions compatible with single-precision numbers. See the Constant Assignment ‘=’
in the Operators section on page 148, FLOAT on page 108, and ROUND on page 198, as well the
FloatMath and FloatString objects for more information.

Propeller Manual v1.1 · Page 209

VAR – Spin Language Reference

VAR
Designator: Declare a Variable Block.

VAR
 Size Symbol 〈[Count]〉 〈 Size Symbol 〈 [Count]〉〉...
VAR
 Size Symbol 〈[Count]〉 〈 , Symbol 〈 [Count]〉〉...

• Size is the desired size of the variable, BYTE, WORD or LONG.
• Symbol is the desired name for the variable.
• Count is an optional expression, enclosed in brackets, that indicates this is an array

variable, with Count number of elements; each being of size byte, word or long.
When later referencing these elements, they begin with element 0 and end with
element Count-1.

Explanation
VAR is the Variable Block declaration. The Variable Block is a section of source code that
declares global variable symbols. This is one of six special declarations (CON, VAR, OBJ, PUB,
PRI, and DAT) that provide inherent structure to the Spin language.

Variable Declarations (Syntax 1)
The most common form of variable declarations begins with VAR on a line by itself followed
by one or more declarations. VAR must start in column 1 (the leftmost column) of the line it is
on and the lines following it must be indented by at least one space.

VAR
 byte Str[10]
 word Code
 long LargeNumber

This example defines Str as a byte array of 10 elements, Code as a word (two bytes) and
LargeNumber as a long (four bytes). Public and Private methods in the same object can refer
to these variables in ways similar to the following:

Page 210 · Propeller Manual v1.1

2: Spin Language Reference – VAR
PUB SomeMethod
 Code := 60000
 LargeNumber := Code * 250
 GetString(@Str)
 if Str[0] == "A"
 <more code here>

Notice that Code and LargeNumber are used directly by expressions. The Str reference in the
GetString method’s parameter list looks different; it has an @, the Symbol Address operator,
preceding it. This is because our fictitious GetString method needs to write back to the Str
variable. If we had said GetString(Str), then the first byte of Str, element 0, would have
been passed to GetString. By using the Symbol Address operator, @, we caused the address of
Str to be passed to GetString instead; GetString can use that address to write to Str’s
elements. Lastly, we use Str[0] in the condition of an IF statement to see if the first byte is
equal to the character "A". Remember, the first element of an array is always zero (0).

Variable Declarations (Syntax 2)
A variation on Syntax 1 allows for comma-delimited variables of the same size. The
following is, similar to the above example, but we declare two words, Code and Index.

VAR
 byte Str[10]
 word Code, Index
 long LargeNumber

Range of Variables
The range and nature of each type of variable is as follows:

• BYTE – 8 bits (unsigned); 0 to 255.

• WORD – 16 bits (unsigned); 0 to 65,535.

• LONG – 32 bits (signed); -2,147,483,648 to +2,147,483,647.

For more details regarding their range and usage, see BYTE on page 51, WORD on page 227, and
LONG on page 128.

Propeller Manual v1.1 · Page 211

jmartin
New

VAR – Spin Language Reference

Page 212 · Propeller Manual v1.1

Organization of Variables
During compilation of an object, all declarations in its collective VAR blocks are grouped
together by type. The variables in RAM are arranged with all the longs first, followed by all
words, and finally by all bytes. This is done so that RAM space is allocated efficiently
without unnecessary gaps. Keep this in mind when writing code that accesses variables
indirectly based on relative positions to each other.

Optimized Addressing
In the compiled Propeller Application, the first eight (8) global long-sized variables are
addressed using an optimized encoding scheme. This means accessing the first eight global
long variables takes slightly less time than accessing the ninth, or later, long variables. Word
and byte variables do not have an optimized addressing scheme. To optimize execution
speed, ensure that all global variables used by the application's most repetitive loops are
among the first eight longs. A similar mechanism applies to local variables; see the PUB
section, page 185, for more information.

Scope of Variables
Symbolic variables defined in VAR blocks are global to the object in which they are defined
but not outside of that object. This means that these variables can be accessed directly by any
public and private method within the object but those variable names will not conflict with
symbols defined in other parent or child objects.

Note that public and private methods also have the ability to declare their own local variables.
See PUB, page 182, and PRI, page 181.

Global variables are not accessible outside of an object unless the address of that variable is
passed into, or back to, another object through a method call.

Scope Extends Beyond a Single Cog
The scope of global variables is not limited to a single cog either. An object’s public and
private methods naturally have access to its global variables regardless of what cog they are
running on. If the object launches some of its methods into multiple cogs, each of those
methods, and thus the cogs they are running on, have access to those variables.

This feature allows a single object to easily manage aspects of multiple processes in a
centralized way. For example, a sophisticated object may take advantage of this to instantly
affect “global” settings used by every multi-processed code entity that it created.

Of course, care should be used to ensure that multiple processing on the same block of
variables does not create undesirable situations. See LOCKNEW on page 122 for examples.

jmartin
New

jmartin
New

jmartin
Improved

jmartin
New

2: Spin Language Reference – VCFG

VCFG
Register: Video Configuration Register.

((PUB ┆ PRI))
 VCFG
Returns: Current value of cog’s Video Configuration Register, if used as a source variable.

Explanation
VCFG is one of two registers (VCFG and VSCL) that affect the behavior of a cog’s Video
Generator. Each cog has a video generator module that facilitates transmitting video image
data at a constant rate. The VCFG register contains the configuration settings of the video
generator, as shown in Table 2-17.

Table 2-17: VCFG Register
VCFG Bits

31 30..29 28 27 26 25..23 22..12 11..9 8 7..0
- VMode CMode Chroma1 Chroma0 AuralSub - VGroup - VPins

In Propeller Assembly, the VMode field through AuralSub fields can conveniently be written
using the MOVI instruction, the VGroup field can be written with the MOVD instruction, and the
VPins field can be written with the MOVS instruction.

VMode
The 2-bit VMode (video mode) field selects the type and orientation of video output, if any,
according to Table 2-18.

Table 2-18: The Video Mode Field
VMode Video Mode

00 Disabled, no video generated.
01 VGA mode; 8-bit parallel output on VPins7:0
10 Composite Mode 1; broadcast on VPins 7:4, baseband on VPins 3:0
11 Composite Mode 2; baseband on VPins 7:4, broadcast on VPins 3:0

Propeller Manual v1.1 · Page 213

VCFG – Spin Language Reference
CMode
The CMode (color mode) field selects two or four color mode. 0 = two-color mode; pixel
data is 32 bits by 1 bit and only colors 0 or 1 are used. 1 = four-color mode; pixel data is 16
bits by 2 bits, and colors 0 through 3 are used.

Chroma1
The Chroma1 (broadcast chroma) bit enables or disables chroma (color) on the broadcast
signal. 0 = disabled, 1 = enabled.

Chroma0
The Chroma0 (baseband chroma) bit enables or disables chroma (color) on the baseband
signal. 0 = disabled, 1 = enabled.

AuralSub
The AuralSub (aural sub-carrier) field selects the source of the FM aural (audio) sub-carrier
frequency to be modulated on. The source is the PLLA of one of the cogs, identified by
AuralSub’s value.

Table 2-19: The AuralSub Field
AuralSub Sub-Carrier Frequency Source

000 Cog 0’s PLLA
001 Cog 1’s PLLA
010 Cog 2’s PLLA
011 Cog 3’s PLLA
100 Cog 4’s PLLA
101 Cog 5’s PLLA
110 Cog 6’s PLLA
111 Cog 7’s PLLA

Page 214 · Propeller Manual v1.1

2: Spin Language Reference – VCFG

Propeller Manual v1.1 · Page 215

VGroup
The VGroup (video output pin group) field selects which group of eight I/O pins to output
video on.

Table 2-20: The VGroup Field
VGroup Pin Group

000 Group 0: P7..P0
001 Group 1: P15..P8
010 Group 2: P23..P16
011 Group 3: P31..P24

100-111 <reserved for future use>

VPins
The VPins (video output pins) field is a mask applied to the pins of VGroup that indicates
which pins to output video signals on.

Table 2-21: The VPins Field
VPins Effect

00001111 Drive Video on lower 4 pins only; composite
11110000 Drive Video on upper 4 pins only; composite
11111111 Drive video on all 8 pins; VGA

Using VCFG
VCFG can be read/written like other registers or pre-defined variables. For example:

 VCFG := %0_10_1_0_1_000_00000000000_001_0_00001111

This sets the video configuration register to enable video in composite mode 1 with 4 colors,
baseband chroma (color) enabled, on pin group 1, lower 4 pins (which is pins P11:8).

VCSL – Spin Language Reference

VSCL
Register: Video Scale Register.

((PUB ┆ PRI))
 VSCL
Returns: Current value of cog’s Video Scale Register, if used as a source variable.

Explanation
VSCL is one of two registers (VCFG and VSCL) that affect the behavior of a cog’s Video
Generator. Each cog has a video generator module that facilitates transmitting video image
data at a constant rate. The VSCL register sets the rate at which video data is generated.

Table 2-22: VSCL Register
VSCL Bits

31..20 19..12 11..0
− PixelClocks FrameClocks

PixelClocks
The 8-bit PixelClocks field indicates the number of clocks per pixel; the number of clocks
that should elapse before each pixel is shifted out by the video generator module. These
clocks are the PLLA clocks, not the System Clock.

FrameClocks
The 12-bit FrameClocks field indicates the number of clocks per frame; the number of clocks
that should elapse before each frame is shifted out by the video generator module. These
clocks are the PLLA clocks, not the System Clock. A frame is one long of pixel data
(delivered via the WAITVID command). Since the pixel data is either 16 bits by 2 bits, or 32
bits by 1 bit (meaning 16 pixels wide with 4 colors, or 32 pixels wide with 2 colors,
respectively), the FrameClocks is typically 16 or 32 times that of the PixelClocks value.

Using VSCL
VSCL can be read/written like other registers or pre-defined variables. For example:

 VSCL := %000000000000_10100000_101000000000

Page 216 · Propeller Manual v1.1

2: Spin Language Reference – VSCL

Propeller Manual v1.1 · Page 217

This sets the video scale register for 160 PixelClocks and 2,560 FrameClocks (for a 16-pixel
by 2-bit color frame). Of course, the actual rate at which pixels clock out depends on the
frequency of PLLA in combination with this scale factor.

WAITCNT – Spin Language Reference

Page 218 · Propeller Manual v1.1

WAITCNT
Command: Pause a cog’s execution temporarily.

((PUB ┆ PRI))
 WAITCNT (Value)

• Value is the desired 32-bit System Counter value to wait for.

Explanation
WAITCNT, “Wait for System Counter,” is one of four wait commands (T WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. WAITCNTT
pauses the cog until the global System Counter equals Value.

When executed, WAITCNT activates special “wait” hardware in the cog that prevents the
System Clock from causing further code execution within the cog until the moment the
System Counter equals Value. The wait hardware checks the System Counter every System
Clock cycle and the cog’s power consumption is reduced by approximately 7/8 during this
time. In normal applications,

T

ths

WAITCNT may be used strategically to reduce power
consumption anywhere in the program where time is wasted waiting for low-bandwidth
events.

There are two types of delays WAITCNT can be used for: fixed delays and synchronized delays.
Both are explained below.

Fixed Delays
Fixed delays are those that are all unrelated to one specific point in time and only serve the
purpose of pausing execution for a fixed amount of time. A fixed delay, for example, may be
used to wait for 10 milliseconds after an event occurs, before proceeding with another action.
For example:

CON
 _clkfreq = xtal1 'Set for slow crystal
 _xinfreq = 5_000_000 'Use 5 MHz accurate crystal

 repeat
 !outa[0] 'Toggle pin 0
 waitcnt(50_000 + cnt) 'Wait for 10 ms

2: Spin Language Reference – WAITCNT

Propeller Manual v1.1 · Page 219

This code toggles the state of I/O pin P0 and waits for 50,000 system clock cycles before
repeating the loop again. Remember, the Value parameter must be the desired 32-bit value to
match against the System Clock’s value. Since the System Clock is a global resource that
changes every clock cycle, to delay for a certain number of cycles from “now” we need a
value that is added to the current System Counter value. The cnt in “50_000 + cnt” is the
System Counter Register variable; it returns the value of the System Counter at that moment
in time. So our code says to wait for 50,000 cycles plus the current value of the System
Counter; i.e.: wait 50,000 cycles from now. Assuming that an external 5 MHz crystal is
being used, 50,000 cycles is about 10 ms (1/100th second) of time.

IMPORTANT: Since WAITCNT pauses the cog until the System Counter matches the given
value, care must be taken to ensure that the given value was not already surpassed by the
System Counter. If the System Counter already passed the given value before the wait
hardware activated then the cog will appear to have halted permanently when, in fact, it is
waiting for the counter to exceed 32 bits and wrap around to the given value. Even at 80
MHz, it takes over 53 seconds for the 32-bit System Counter to wrap around!

Related to this, when using WAITCNT in Spin code as shown above, make sure to write the
Value expression the same way we did: in the form “offset + cnt” as opposed to
“cnt + offset.” This is because the Spin interpreter will evaluate this expression from left
to right, and each intermediate evaluation within an expression takes time to perform. If cnt
were at the start of the expression, the System Counter would be read first then the rest of the
expression would be evaluated, taking an unknown amount of cycles and making our cnt
value quite old by the time the final result is calculated. However, having cnt as the last
value in the WAITCNT expression ensures a fixed amount of overhead (cycles) between reading
the System Counter and activating the wait hardware. In fact, the interpreter takes 381 cycles
of final overhead when the command is written in the form waitcnt(offset + cnt). This
means the value of

T

offset must always be at least 381 to avoid unexpectedly long delays.

Synchronized Delays
Synchronized delays are those that are all directly related to one specific point in time, a
“base” time, and serve the purpose of “time-aligning” future events relative to that point. A
synchronized delay, for example, may be used to output or input a signal at a specific
interval, despite the unknown amounts of overhead associated with the code itself. To
understand how this is different from the Fixed Delay example, let’s look at that example’s
timing diagram.

WAITCNT – Spin Language Reference

Page 220 · Propeller Manual v1.1

Figure 2-3: Fixed Delay Timing

Figure 2-3 shows the output of our previous example, the fixed delay example. Notice how
the I/O pin P0 toggles roughly every 10 milliseconds, but not exactly? In fact, there’s a
cumulative error that makes successive state changes further and further out-of-sync in
relation to our start time, 0 ms. The delay is 10 ms in length, but the error occurs because that
delay doesn’t compensate for the length of the rest of the loop. The repeat, !outa[0] and
WAITCNT statements each take a little time to execute, and all that extra time is in addition to
the 10 ms delay that

T

WAITCNT specified.

Using WAITCNT a slightly different way, for a synchronized delay, will eliminate this timing
error. The following example assumes we’re using a 5 MHz external crystal.

T

CON
 _clkfreq = xtal1 'Set for slow crystal
 _xinfreq = 5_000_000 'Use 5 MHz accurate crystal

PUB Toggle | Time
 Time := cnt 'Get current system counter value
 repeat
 waitcnt(Time += 50_000) 'Wait for 10 ms
 !outa[0] 'Toggle pin 0

This code first retrieves the value of the System Counter, Time := cnt, then starts the repeat
loop where it waits for the System Counter to reach Time + 50,000, toggles the state of I/O
pin P0 and repeats the loop again. The statement Time += 50_000 is actually an assignment
statement; it adds the value of Time to 50,000, stores that result back into Time and then
executes the WAITCNT command using that result. Notice that we retrieved the System
Counter’s value only once, at the start of the example; that is our base time. Then we wait for
the System Counter to equal that original base time plus 50,000 and perform the actions in the
loop. Each successive iteration through the loop, we wait for the System Counter to equal
another multiple of 50,000 from the base time. This method automatically compensates for

2: Spin Language Reference – WAITCNT
the overhead time consumed by the loop statements: repeat, !outa[0] and waitcnt. The
resulting output looks like Figure 2-4.

Figure 2-4: Synchronized Delay Timing

Using the synchronized delay method, our output signal is always perfectly aligned to the
time base plus a multiple of our interval. This will work as long as the time base (an external
crystal) is accurate and the overhead in the loop does not exceed the time interval itself. Note
that we waited, with WAITCNT, before the first toggle so that the time between the very first
toggle and the second matches that of all the rest.

Calculating Time
An object can delay a specific amount of time even if the application changes the System
Clock frequency occasionally. To do this, use WAITCNT combined with an expression that
includes the current System Clock frequency (CLKFREQ). For example, without you knowing
what the actual clock frequency will be for applications using your object, the following line
can be used to delay the cog for 1 millisecond; as long as the clock frequency is fast enough.

 waitcnt(clkfreq / 1000 + cnt) 'delay cog 1 millisecond

For more information, see CLKFREQ on page 63.

Propeller Manual v1.1 · Page 221

WAITPEQ – Spin Language Reference

WAITPEQ
Command: Pause a cog’s execution until I/O pin(s) match designated state(s).

((PUB ┆ PRI))
 WAITPEQ (State, Mask, Port)

• State is the logic state(s) to compare the pin(s) against. It is a 32-bit value that

indicates the high or low states of up to 32 I/O pins. State is compared against either
(INA & Mask), or (INB & Mask), depending on Port.

• Mask is the desired pin(s) to monitor. Mask is a 32-bit value that contains high (1)
bits for every I/O pin that should be monitored; low (0) bits indicate pins that should
be ignored. Mask is bitwised-ANDed with the 32-bit port’s input states and the
resulting value is compared against the entire State value.

• Port is a 1-bit value indicating the I/O port to monitor; 0 = Port A, 1 = Port B. Only
Port A exists on current (P8X32A) Propeller chips.

Explanation
WAITPEQ, “Wait for Pin(s) to Equal,” is one of four wait commands (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. WAITPEQ
pauses the cog until the value of Port’s I/O pin states, bitwised-ANDed with Mask, matches
that of State.

When executed, WAITPEQ activates special “wait” hardware in the cog that prevents the
System Clock from causing further code execution within the cog until the moment the
designated pin, or group of pins, equals the indicated state(s). The wait hardware checks the
I/O pins every System Clock cycle and the cog’s power consumption is reduced by
approximately 7/8ths during this time.

Using WAITPEQ
WAITPEQ is a great way to synchronize code to external events. For example:

 waitpeq(%0100, %1100, 0) 'Wait for P3 & P2 to be low & high
 outa[0] := 1 'Set P0 high

The above code pauses the cog until I/O pin 3 is low and I/O pin 2 is high, then sets I/O pin 0
high.

Page 222 · Propeller Manual v1.1

2: Spin Language Reference – WAITPEQ

Propeller Manual v1.1 · Page 223

Using Variable Pin Numbers
For Propeller objects, quite often it is necessary to monitor a single pin whose pin number is
specified outside the object itself. An easy way to translate that pin number into the proper
32-bit State and Mask value is by using the Bitwise Decode operator “|<” (See 160 for more
information). For example, if the pin number was specified by the variable Pin, and we
needed to wait until that pin is high, we could use the following code:

 waitpeq(|< Pin, |< Pin, 0) 'Wait for Pin to go high

The Mask parameter, |< Pin, evaluates to a long value where only one bit is high; the bit that
corresponds to the pin number given by Pin.

Waiting for Transitions
If we needed to wait for a transition from one state to another (high-to-low, for example) we
could use the following code:

 waitpeq(%100000, |< 5, 0) 'Wait for Pin 5 to go high
 waitpeq(%000000, |< 5, 0) 'Then wait for Pin 5 to go low

This example first waits for P5 to go high, then waits for it to go low; a high-to-low
transition. If we had used the second line of code without the first, the cog would not have
paused at all if P5 had been low to start with.

jmartin
Improved

WAITPNE – Spin Language Reference

WAITPNE
Command: Pause a cog’s execution until I/O pin(s) do not match designated state(s).

((PUB ┆ PRI))
 WAITPNE (State, Mask, Port)

• State is the logic state(s) to compare the pins against. It is a 32-bit value that
indicates the high or low states of up to 32 I/O pins. State is compared against either
(INA & Mask), or (INB & Mask), depending on Port.

• Mask is the desired pin(s) to monitor. Mask is a 32-bit value that contains high (1)
bits for every I/O pin that should be monitored; low (0) bits indicate pins that should
be ignored. Mask is bitwised-ANDed with the 32-bit port’s input states and the
resulting value is compared against the entire State value.

• Port is a 1-bit value indicating the I/O port to monitor; 0 = Port A, 1 = Port B. Only
Port A exists on current (P8X32A) Propeller chips.

Explanation
WAITPNE, “Wait for Pin(s) to Not Equal,” is one of four wait commands (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. WAITPNE is
the complimentary form of WAITPEQ; it pauses the cog until the value of Port’s I/O pin states,
bitwised-ANDed with Mask, does not match that of State.

When executed, WAITPNE activates special “wait” hardware in the cog that prevents the
System Clock from causing further code execution within the cog until the moment the
designated pin, or group of pins, does not equal the designated state(s). The wait hardware
checks the I/O pins every System Clock cycle and the cog’s power consumption is reduced
by approximately 7/8ths during this time.

Using WAITPNE
WAITPNE is a great way to synchronize code to external events. For example:

 waitpeq(%0100, %1100, 0) 'Wait for P3 & P2 to be low & high
 waitpne(%0100, %1100, 0) 'Wait for P3 & P2 to not match prev. state
 outa[0] := 1 'Set P0 high

The above code pauses the cog until P3 is low and P2 is high, then pauses the cog again until
one or both of those pins changes states, then it sets P0 high.

Page 224 · Propeller Manual v1.1

2: Spin Language Reference – WAITVID

WAITVID
Command: Pause a cog’s execution until its Video Generator is available to take pixel data.

((PUB ┆ PRI))
 WAITVID (Colors, Pixels)

• Colors is a long containing four byte-sized color values, each describing the four
possible colors of the pixel patterns in Pixels.

• Pixels is the next 16-pixel by 2-bit (or 32-pixel by 1-bit) pixel pattern to display.

Explanation
WAITVID, “Wait for Video Generator,” is one of four wait commands (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. WAITVID
pauses the cog until its Video Generator hardware is ready for the next pixel data, then the
Video Generator accepts that data and the cog continues execution with the next line of code.

When executed, WAITVID activates special “wait” hardware in the cog that prevents the
System Clock from causing further code execution within the cog until the moment the Video
Generator is ready. The wait hardware checks the Video Generator’s status every System
Clock cycle and the cog’s power consumption is reduced significantly during this time.

Using WAITVID
WAITVID is simply a delivery mechanism for data to the cog’s Video Generator hardware.
Since the Video Generator works independently from the cog itself, the two must synchronize
each time data is needed for the display device. The frequency at which this occurs depends
on the display device and the corresponding settings for the Video Generator, but in every
case, the cog must have new data available the moment the Video Generator is ready for it.
The cog uses the WAITVID command to wait for the right time and then “hand off” this data to
the Video Generator.

The Colors parameter is a 32-bit value containing either four 8-bit color values (for 4-color
mode) or two 8-bit color values in the lower 16 bits (for 2-color mode). For VGA, each color
value’s upper 6-bits is the 2-bit red, 2-bit green, and 2-bit blue color components describing
the desired color; the lower 2-bits are “don’t care” bits. Each of the color values corresponds
to one of the four possible colors per 2-bit pixel (when Pixels is used as a 16x2 bit pixel
pattern) or as one of the two possible colors per 1-bit pixel (when Pixels is used at a 32x1 bit
pixel pattern).

Propeller Manual v1.1 · Page 225

WAITVID – Spin Language Reference

Page 226 · Propeller Manual v1.1

Pixels describes the pixel pattern to display, either 16 pixels or 32 pixels depending on the
color-depth configuration of the Video Generator.

Review the TV and VGA objects for examples of how WAITVID is used.

Make sure to start the cog’s Video Generator module and Counter A before executing the
WAITVID command or it will wait forever. See VCFG on page 213, VSCL on page 216, and CTRA,
CTRB

 on page 95.

2: Spin Language Reference – WORD

WORD
Designator: Declare word-sized symbol, word aligned/sized data, or read/write a word of
main memory.

VAR

 WORD Symbol 〈[Count]〉
DAT
 〈Symbol〉 WORD Data 〈[Count]〉
((PUB ┆ PRI))
 WORD [BaseAddress] 〈[Offset]〉
((PUB ┆ PRI))
 Symbol.WORD 〈[Offset]〉

• Symbol is the desired name for the variable (Syntax 1) or data block (Syntax 2) or is
the existing name of the variable (Syntax 4).

• Count is an optional expression indicating the number of word-sized elements for
Symbol (Syntax 1), or the number of word-sized entries of Data (Syntax 2) to store in
a data table.

• Data is a constant expression or comma-separated list of constant expressions.
• BaseAddress is an expression describing the word-aligned address of main memory to

read or write. If Offset is omitted, BaseAddress is the actual address to operate on. If
Offset is specified, BaseAddress + Offset * 2 is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate on,
or the offset from word 0 of Symbol. Offset is in units of words.

Explanation
WORD is one of three multi-purpose declarations (BYTE, WORD, and LONG) that declare or operate
on memory. WORD can be used to:

1) declare a word-sized (16-bit) symbol or a multi-word symbolic array in a VAR block, or
2) declare word-aligned, and/or word-sized, data in a DAT block, or
3) read or write a word of main memory at a base address with an optional offset, or
4) access a word within a long-sized variable.

Propeller Manual v1.1 · Page 227

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

WORD – Spin Language Reference
Range of Word
Memory that is word-sized (16 bits) can contain a value that is one of 216 possible
combinations of bits (i.e., one of 65,536 combinations). This gives word-sized values a range
of 0 to 65,535. Since the Spin language performs all mathematic operations using 32-bit
signed math, any word-sized values will be internally treated as positive long-sized values.
However, the actual numeric value contained within a word is subject to how a computer and
user interpret it. For example, you may choose to use the Sign-Extend 15 operator (~~), page
157, in a Spin expression to convert a word value that you interpret as “signed” (-32,768 to
+32,767) to a signed long value.

Word Variable Declaration (Syntax 1)
In VAR blocks, syntax 1 of WORD is used to declare global, symbolic variables that are either
word-sized, or are any array of words. For example:

VAR
 word Temp 'Temp is a word (2 bytes)
 word List[25] 'List is a word array

The above example declares two variables (symbols), Temp and List. Temp is simply a single,
word-sized variable. The line under the Temp declaration uses the optional Count field to
create an array of 25 word-sized variable elements called List. Both Temp and List can be
accessed from any PUB or PRI method within the same object that this VAR block was declared;
they are global to the object. An example of this is below.

PUB SomeMethod
 Temp := 25_000 'Set Temp to 25,000
 List[0] := 500 'Set first element of List to 500
 List[1] := 9_000 'Set second element of List to 9,000
 List[24] := 60_000 'Set last element of List to 60,000

For more information about using WORD in this way, refer to the VAR section’s Variable
Declarations (Syntax 1) on page 210, and keep in mind that WORD is used for the Size field in
that description.

Page 228 · Propeller Manual v1.1

jmartin
New

2: Spin Language Reference – WORD

Propeller Manual v1.1 · Page 229

Word Data Declaration (Syntax 2)
In DAT blocks, syntax 2 of WORD is used to declare word-aligned, and/or word-sized data that is
compiled as constant values in main memory. DAT blocks allow this declaration to have an
optional symbol preceding it, which can be used for later reference. See DAT

T

, page 99. For
example:

DAT
 MyData word 640, $AAAA, 5_500 'Word-aligned/word-sized data
 MyList byte word $FF99, word 1_000 'Byte-aligned/word-sized data

The above example declares two data symbols, MyData and MyList. MyData points to the start
of word-aligned and word-sized data in main memory. MyData’s values, in main memory, are
640, $AAAA and 5,500, respectively. MyList uses a special DAT block syntax of WORD that
creates a byte-aligned but word-sized set of data in main memory. MyList’s values, in main
memory, are $FF99 and 1,000, respectively. When accessed a byte at a time, MyList contains
$99, $FF, 232 and 3 since the data is stored in little-endian format.

This data is compiled into the object and resulting application as part of the executable code
section and may be accessed using the read/write form, syntax 3, of WORD (see below). For
more information about using WORD in this way, refer to the DAT section’s Declaring
Data(Syntax 1) on page 100 and keep in mind that WORD is used for the Size field in that
description.

Data items may be repeated by using the optional Count field. For example:

DAT
 MyData word 640, $AAAA[4], 5_500

The above example declares a word-aligned, word-sized data table, called MyData, consisting
of the following six values: 640, $AAAA, $AAAA, $AAAA, $AAAA, 5500. There were
four occurrences of $AAAA due to the [4] in the declaration immediately after it.

Reading/Writing Words of Main Memory (Syntax 3)
In PUB and PRI blocks, syntax 3 of WORD is used to read or write word-sized values of main
memory. This is done by writing expressions that refer to main memory using the form:
word[BaseAddress][Offset]. Here’s an example.

PUB MemTest | Temp
 Temp := word[@MyData][1] 'Read word value
 word[@MyList][0] := Temp + $0123 'Write word value

jmartin
New

jmartin
Improved

WORD – Spin Language Reference

Page 230 · Propeller Manual v1.1

DAT
 MyData word 640, $AAAA, 5_500 'Word-sized/aligned data
 MyList byte word $FF99, word 1_000 'Byte-sized/aligned word data

In this example, the DAT block (bottom of code) places its data in memory as shown in Figure
2-5. The first data element of MyData is placed at memory address $18. The last data element
of MyData is placed at memory address $1C, with the first element of MyList immediately
following it at $1E. Note that the starting address ($18) is arbitrary and is likely to change as
the code is modified or the object itself is included in another application.

Data as words — 640 $AAAA 5,500 $FF99 1,000
Data as bytes — 128 2 $AA $AA 124 21 $99 $FF 232 3

Figure 2-5: Main Memory Word-Sized Data Structure and Addressing

Near the top of the code, the first executable line of the MemTest method,
Temp := word[@MyData][1], reads a word-sized value from main memory. It sets local
variable Temp to $AAAA; the value read from main memory address $1A. The address $1A
was determined by the address of the symbol MyData ($18) plus word offset 1 (2 bytes). The
following progressive simplification demonstrates this.

word[@MyData][1] word[$18][1] word[$18 + (1*2)] word[$1A]

The next line, word[@MyList][0] := Temp + $0123, writes a word-sized value to main
memory. It sets the value at main memory address $1E to $ABCD. The address $1E was
calculated from the address of the symbol MyList ($1E) plus word offset 0 (0 bytes).

word[@MyList][0] word[$1E][0] word[$1E + (0*2)] word[$1E]

The value $ABCD was derived from the current value of Temp plus $0123; $AAAA + $0123
equals $ABCD.

Word Address —
(Word Offset) —
[Word Symbol] —

$18
(-6)

$19
(-5)

$1A
(-4)

$1B
(-3)

$1C
(-2)

$1D
(-1)

$1E
(0)

[MyList]

$1F
(1)

$20
(2)

$21
(3)

Byte Address —
(Byte Offset) —
[Byte Symbol] —

$18
(0)

[MyData]

$1A
(1)

$1C
(2)

$1E
(3)

$20
(4)

2: Spin Language Reference – WORD
Addressing Main Memory
As Figure 2-5 suggests, main memory is really just a set of contiguous bytes (see “data as
bytes” row) that can also be read as words (2-byte pairs) when done properly. In fact, the
above example shows that even the addresses are calculated in terms of bytes. This concept
is a consistent theme for any commands that use addresses.

Main memory is ultimately addressed in terms of bytes regardless of the size of value you are
accessing; byte, word, or long. This is advantageous when thinking about how bytes, words,
and longs relate to each other, but it may prove problematic when thinking of multiple items
of a single size, like words.

For this reason, the WORD designator has a very handy feature to facilitate addressing from a
word-centric perspective. Its BaseAddress field when combined with the optional Offset field
operates in a base-aware fashion.

Imagine accessing words of memory from a known starting point (the BaseAddress). You
may naturally think of the next word or words as being a certain distance from that point (the
Offset). While those words are indeed a certain number of “bytes” beyond a given point, it’s
easier to think of them as a number of “words” beyond a point (i.e., the 4th word, rather than
the word that starts beyond the 6th byte). The WORD designator treats it properly by taking the
Offset value (units of words), multiplies it by 2 (number of bytes per word), and adds that
result to the BaseAddress to determine the correct word of memory to read. It also clears the
lowest bit of BaseAddress to ensure the address referenced is a word-aligned one.

So, when reading values from the MyData list, word[@MyData][0] reads the first word value,
word[@MyData][1] reads the second word value, and word[@MyData][2] reads the third.

If the Offset field were not used, the above statements would have to be something like
word[@MyData], word[@MyData+2], and word[@MyData+4], respectively. The result is the same,
but the way it’s written may not be as clear.

For more explanation of how data is arranged in memory, see the DAT section’s Declaring
Data(Syntax 1) on page 100.

An Alternative Memory Reference
There is yet another way to access the data from the code example above; you could
reference the data symbols directly. For example, this statement reads the first word of the
MyData list:

Temp := MyData[0]

...and these statements read the second and third words of MyData:

Propeller Manual v1.1 · Page 231

jmartin
New

jmartin
New

WORD – Spin Language Reference
Temp := MyData[1]
Temp := MyData[2]

So why wouldn’t you just use direct symbol references all the time? Consider the following
case:

Temp := MyList[0]
Temp := MyList[1]

Referring back to the example code above Figure 2-5, you might expect these two statements
to read the first and second words of MyList; $FF99 and 1000, respectively. Instead, it reads
the first and second “bytes” of MyList, $99 and $FF, respectively.

What happened? Unlike MyData, the MyList entry is defined in the code as byte-sized and
byte-aligned data. The data does indeed consist of word-sized values, because each element
is preceded by WORD, but since the symbol for the list is declared as byte-sized, all direct
references to it will return individual bytes.

However, the WORD designator can be used instead, since the list also happens to be word-
aligned because of its position following MyData.

Temp := word[@MyList][0]
Temp := word[@MyList][1]

The above reads the first word, $FF99, followed by the second word, 1000, of MyList. This
feature is very handy should a list of data need to be accessed as both bytes and words at
various times in an application.

Other Addressing Phenomena
Both the WORD and direct symbol reference techniques demonstrated above can be used to
access any location in main memory, regardless of how it relates to defined data. Here are
some examples:

Temp := word[@MyList][-1] 'Read last word of MyData (before MyList)
Temp := word[@MyData][3] 'Read first word of MyList (after MyData)
Temp := MyList[-6] 'Read first byte of MyData
Temp := MyData[-2] 'Read word that is two words before MyData

These examples read beyond the logical borders (start point or end point) of the lists of data
they reference. This may be a useful trick, but more often it’s done by mistake; be careful
when addressing memory, especially if you’re writing to that memory.

Page 232 · Propeller Manual v1.1

jmartin
New

2: Spin Language Reference – WORD

Propeller Manual v1.1 · Page 233

Accessing Words of Larger-Sized Symbols (Syntax 4)
In PUB and PRI blocks, syntax 4 of WORD is used to read or write word-sized components of
long-sized variables. For example:

VAR
 long LongVar

PUB Main
 LongVar.word := 65000 'Set first word of LongVar to 65000
 LongVar.word[0] := 65000 'Same as above
 LongVar.word[1] := 1 'Set second word of LongVar to 1

This example accesses the word-sized components of LongVar, individually. The comments
indicate what each line is doing. At the end of the Main method LongVar will equal 130,536.

The same techniques can be used to reference word-sized components of long-sized data
symbols.

PUB Main | Temp
 Temp := MyList.word[0] 'Read low word of MyList long 0
 Temp := MyList.word[1] 'Read high word of MyList long 0
 MyList.word[1] := $1234 'Write high word of MyList long 0
 MyList.word[2] := $FFEE 'Write low word of MyList long 1

DAT
 MyList long $FF998877, $DDDDEEEE 'Long-sized/aligned data

The first and second executable lines of Main read the values $8877 and $FF99, respectively,
from MyList. The third line writes $1234 to the high word of the long in element 0 of MyList,
resulting in a value of $12348877. The fourth line writes $FFEE to the word at index 2 in
MyList (the low word of the long in element 1), resulting in a value of $DDDDFFEE.

jmartin
New

WORDFILL – Spin Language Reference

Page 234 · Propeller Manual v1.1

WORDFILL
Command: Fill words of main memory with a value.

((PUB ┆ PRI))
 WORDFILL (StartAddress, Value, Count)

• StartAddress is an expression indicating the location of the first word of memory to fill
with Value.

• Value is an expression indicating the value to fill words with.
• Count is an expression indicating the number of words to fill, starting with

StartAddress.

Explanation
WORDFILL is one of three commands (BYTEFILL, WORDFILL, and LONGFILL) used to fill blocks of
main memory with a specific value. WORDFILL fills Count words of main memory with Value,
starting at location StartAddress.

Using WORDFILL
WORDFILL is a great way to clear large blocks of word-sized memory. For example:

VAR
 word Buff[100]

PUB Main
 wordfill(@Buff, 0, 100) 'Clear Buff to 0

The first line of the Main method, above, clears the entire 100-word (200-byte) Buff array to
all zeros. WORDFILL is faster at this task than a dedicated REPEAT loop is. T

2: Spin Language Reference – WORDMOVE

WORDMOVE
Command: Copy words from one region to another in main memory.

((PUB ┆ PRI))
 WORDMOVE (DestAddress, SrcAddress, Count)

• DestAddress is an expression specifying the main memory location to copy the first
word of source to.

• SrcAddress is an expression specifying the main memory location of the first word of
source to copy.

• Count is an expression indicating the number of words of the source to copy to the
destination.

Explanation
WORDMOVE is one of three commands (BYTEMOVE, WORDMOVE, and LONGMOVE) used to copy blocks
of main memory from one area to another. WORDMOVE copies Count words of main memory
starting from SrcAddress to main memory starting at DestAddress.

Using WORDMOVE
WORDMOVE is a great way to copy large blocks of word-sized memory. For example:

VAR
 word Buff1[100]
 word Buff2[100]

PUB Main
 wordmove(@Buff2, @Buff1, 100) 'Copy Buff1 to Buff2

The first line of the Main method, above, copies the entire 100-word (200-byte) Buff1 array to
the Buff2 array. WORDMOVE is faster at this task than a dedicated REPEAT loop.

Propeller Manual v1.1 · Page 235

_XINFREQ – Spin Language Reference

_XINFREQ
Constant: Pre-defined, one-time settable constant for specifying the external crystal
frequency.

CON
 _XINFREQ = Expression

• Expression is an integer expression that indicates the external crystal frequency; the
frequency on the XI pin. This value is used for application start-up.

Explanation
_XINFREQ specifies the external crystal frequency, which is used along with the clock mode to
determine the System Clock frequency at start-up. It is a pre-defined constant symbol whose
value is determined by the top object file of an application. _XINFREQ is either set directly by
the application itself, or is set indirectly as the result of the _CLKMODE and _CLKFREQ settings.

The top object file in an application (the one where compilation starts from) can specify a
setting for _XINFREQ in its CON block. This, along with the clock mode, defines the frequency
that the System Clock will switch to as soon as the application is booted up and execution
begins.

The application can specify either _XINFREQ or _CLKFREQ in the CON block; they are mutually
exclusive and the non-specified one is automatically calculated and set as a result of
specifying the other.

The following examples assume that they are contained within the top object file. Any
_XINFREQ settings in child objects are simply ignored by the compiler.

For example:

CON
 _CLKMODE = XTAL1 + PLL8X
 _XINFREQ = 4_000_000

The first declaration in the above CON block sets the clock mode for an external low-speed
crystal and a Clock PLL multiplier of 8. The second declaration indicates the external crystal
frequency is 4 MHz, which means the System Clock’s frequency will be 32 MHz because 4
MHz * 8 = 32 MHz. The _CLKFREQ value is automatically set to 32 MHz because of these
declarations.

Page 236 · Propeller Manual v1.1

2: Spin Language Reference – _XINFREQ

Propeller Manual v1.1 · Page 237

CON
 _CLKMODE = XTAL2
 _XINFREQ = 10_000_000

These two declarations set the clock mode for an external medium-speed crystal, no Clock
PLL multiplier, and an external crystal frequency of 10 MHz. The _CLKFREQ value, and thus
the System Clock frequency, is automatically set to 10 MHz, as well, because of these
declarations.

Assembly Language Reference

Page 238 · Propeller Manual v1.1

Chapter 3: Assembly Language Reference
This chapter describes all elements of the Propeller chip’s Assembly language and is best
used as a reference for individual elements of the assembly language. Many instructions have
corresponding Spin commands so referring to the Spin Language Reference is also
recommended.

The Assembly Language Reference is divided into three main sections:

1) The Structure of Propeller Assembly. Propeller Assembly code is an optional part of
Propeller Objects. This section describes the general structure of Propeller Assembly
code and how it fits within objects.

2) The Categorical Listing of the Propeller Assembly Language. All elements, including
operators, are grouped by related function. This is a great way to quickly realize the
breadth of the language and what features are available for specific uses. Each listed
element has a page reference for more information. Some elements are marked with a
superscript “s” indicating that they are also available in Propeller Spin, though syntax
may vary.

3) The Assembly Language Elements. All instructions are listed in a Master Table at the
start, and most elements have their own dedicated sub-section, alphabetically arranged to
ease searching for them. Those individual elements without a dedicated sub-section, such
as Operators, are grouped within other related sub-sections but can be easily located by
following their page references from the Categorical Listing.

The Structure of Propeller Assembly
Every Propeller Object consists of Spin code plus optional assembly code and data. An
object’s Spin code provides it with structure, consisting of special-purpose blocks. Data and
Propeller Assembly code are located in the DAT block; see DATT on page 99.

Spin code is executed from Main RAM by a cog running the Spin Interpreter, however,
Propeller Assembly code is executed directly from within a cog itself. Because of this nature,
Propeller Assembly code and any data belonging to it must be loaded (in its entirety) into a
cog in order to execute it. In this way, both assembly code and data are treated the same
during the cog loading process.

3: Assembly Language Reference

Propeller Manual v1.1 · Page 239

Here's an example Propeller object. Its Spin code in the PUB block, Main, launches another
cog to run the DAT block's Propeller Assembly routine, T Toggle.

{{ AssemblyToggle.spin }}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

PUB Main
{Launch cog to toggle P16 endlessly}

 cognew(@Toggle, 0) 'Launch new cog

DAT
{Toggle P16}
 org 0 'Begin at Cog RAM addr 0
Toggle mov dira, Pin 'Set Pin to output
 mov Time, cnt 'Calculate delay time
 add Time, #9 'Set minimum delay here
:loop waitcnt Time, Delay 'Wait
 xor outa, Pin 'Toggle Pin
 jmp #:loop 'Loop endlessly

Pin long |< 16 'Pin number
Delay long 6_000_000 'Clock cycles to delay
Time res 1 'System Counter Workspace

When the Main method's COGNEW command is executed, a new cog begins filling its Cog RAM
with 496 consecutive longs from Main Memory, starting with the instruction at the address of
Toggle. Afterwards, the new cog initializes its special purpose registers and begins executing
the code starting at Cog RAM register 0.

Both assembly and data may be intermixed within this DAT block but care should be taken to
arrange it such that all critical elements are loaded into the cog in the proper order for
execution. It is recommended to write it in the following order: 1) assembly code, 2)
initialized symbolic data (i.e.:

T

LONGs), 3) reserved symbolic memory (i.e.: RESs). This causes
the cog to load up the assembly code first, followed immediately by initialized data, and any

jmartin
New

jmartin
Improved

Assembly Language Reference

Page 240 · Propeller Manual v1.1

application data after that, whether or not it is required by the code. See the sections
discussing ORG (page 328), RES (page 339), and DAT 99T (page) for more information.

Cog Memory
Cog RAM is similar to Main RAM in the following ways:

• Each can contain program instruction(s) and/or data.

• Each can be modified at run-time (example: variables occupy RAM locations).

Cog RAM is different from Main RAM in the following ways:

• Cog RAM is smaller and faster than Main RAM.

• Cog RAM is a set of “registers” addressable only as longs (four bytes) while Main
RAM is a set of “locations” addressable as bytes, words, or longs.

• Propeller Assembly executes right from Cog RAM while Spin code is fetched and
executed from Main RAM.

• Cog RAM is available only to its own cog while Main RAM is shared by all cogs.

Once assembly code is loaded into Cog RAM, the cog executes it by reading a long (32-bit)
opcode from a register (starting with register 0), resolving its destination and source data,
executing the instruction (possibly writing the result to another register) and then moving on
to the next register address to repeat the process. Cog RAM registers may contain
instructions or pure data, and each may be modified as the result of the execution of another
instruction.

Where Does an Instruction Get Its Data?
Most instructions have two data operands; a destination value and a source value. For
example, the format for an ADD instruction is:

 add destination, 〈#〉source

The destination operand is the 9-bit address of a register containing the desired value to
operate on. The source operand is either a 9-bit literal value (constant) or a 9-bit address of a
register containing the desired value. The meaning of the source operand depends on whether
or not the literal indicator “#” was specified. For example:

jmartin
New

jmartin
New

3: Assembly Language Reference
 add X, #25 'Add 25 to X
 add X, Y 'Add Y to X

X long 50
Y long 10

The first instruction adds the literal value 25 to the value stored in the register X. The second
instruction adds the value stored in register Y to the value stored in the register X. In both
cases, the result of the addition is stored back into register X.

The last two lines define data symbols X and Y as long values 50 and 10, respectively. Since
launching assembly code into the cog caused this data to enter Cog RAM right after the
instructions, X naturally is a symbol that points to the register containing 50, and Y is a symbol
that points to the register containing 10.

Thus, the result of the first ADD instruction is 75 (i.e.: X + 25 → 50 + 25 = 75) and that value,
75, is stored back in the X register. Similarly, the result of the second ADD instruction is 85
(i.e.: X + Y → 75 + 10 = 85) and so X is set to 85.

Don't Forget the Literal Indicator '#'
Make sure to enter the literal indicator, #, when a literal value (a.k.a. immediate value) is
intended. Modifying the first line of the above example by omitting the # character
(ex: ADD X, 25) causes the value in register 25 to be added to X instead of the value 25 being
added to X.

Another possible mistake is to omit the # on branching instructions like JMP and DJNZ. If the
intended branch destination is a label named MyRoutine, a JMP instruction should normally
look like JMP #MyRoutine rather than JMP MyRoutine. The latter causes the value stored in the
MyRoutine register to be used as the address to jump to; that's handy for indirect jumping but
it is usually not the intention of the developer.

Literals Must Fit in 9 Bits
The source operand is only 9 bits wide; it can hold a value from 0 to 511 ($000 to $1FF).
Keep this in mind when specifying literal values. If a value is too big to fit in 9 bits, it must
be stored in a register and accessed via the register's address. For example:

 add X, BigValue 'Add BigValue to X

X long 50
BigValue long 1024

Propeller Manual v1.1 · Page 241

jmartin
New

jmartin
New

Assembly Language Reference

Global and Local Labels
To give names to special routines, Propeller Assembly code can make use of two types of
labels: global and local.

Global labels look just like other symbols and follow the same rules as symbols; they begin
with an underscore ‘_’ or a letter and are followed by more letters, underscores, and/or
numbers. See Symbol Rules, page 45, for more information.

Local labels are similar to global labels except they start with a colon ‘:’ and must be
separated from other same-named local labels by at least one global label. Here's an
example:

Addition mov Count, #9 'Set up 'Add' loop counter
:loop add Temp, X 'Iteratively do Temp+X
 djnz Count, #:loop 'Dec counter, loop back

Subtraction mov Count, #15 'Set up 'Sub' loop counter
:loop sub Temp, Y 'Iteratively do Temp-Y
 djnz Count, #:loop 'Dec counter, loop back

 jmp #Addition 'Go add more

This example has two global labels, Addition and Subtraction, and two local labels, both
named :loop. The local labels can have the exact same name, :loop, because at least one
global label separates them. In fact, this is the point of local labels; they indicate common,
generic things like loops without requiring unique names for each of them.

The two DJNZ instructions are exactly the same, but they each jump to different places. The
Addition routine's DJNZ jumps back to the local label :loop within Addition, and the
Subtraction routine's DJNZ jumps back to the local label :loop within Subtraction.

Note that the DJNZ instructions use the literal indicator, #, and the exact name of the local
label, including the colon. Without the # the code would execute improperly (jumping
indirectly rather than directly), and without the colon the code would result in a compile
error. For more Propeller Assembly format information, see Common Syntax Elements, page
250.

Page 242 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference

Categorical Listing of Propeller Assembly Language

Directives
ORG Adjust compile-time cog address pointer; p 328.
FIT Validate that previous instructions/data fit entirely in cog; p 292.
RES Reserve next long(s) for symbol; p 338.

Configuration
CLKSETs Set clock mode at run time; p 271.

Cog Control
COGIDs Get current cog’s ID; p 283.
COGINITs Start, or restart, a cog by ID; p 284.
COGSTOPs Stop a cog by ID; p 286.

Process Control
LOCKNEWs Check out a new lock; p 304.
LOCKRETs Return a lock; p 305.
LOCKCLRs Clear a lock by ID; p 303.
LOCKSETs Set a lock by ID; p 306.
WAITCNTs Pause execution temporarily; p 368.
WAITPEQs Pause execution until pin(s) match designated state(s); p 369.
WAITPNEs Pause execution until pin(s) do not match designated state(s); p 370.
WAITVIDs Pause execution until Video Generator is available for pixel data; p 371.

Conditions
IF_ALWAYS Always; p 296.
IF_NEVER Never; p 296.
IF_E If equal (Z = 1); p 296.
IF_NE If not equal (Z = 0); p 296.
IF_A If above (!C & !Z = 1); p 296.

Propeller Manual v1.1 · Page 243

Assembly Language Reference
IF_B If below (C = 1); p 296.
IF_AE If above or equal (C = 0); p 296.
IF_BE If below or equal (C | Z = 1); p 296.
IF_C If C set; p 296.
IF_NC If C clear; p 296.
IF_Z If Z set; p296.
IF_NZ If Z clear; p 296.
IF_C_EQ_Z If C equal to Z; p 296.
IF_C_NE_Z If C not equal to Z; p 296.
IF_C_AND_Z If C set and Z set; p 296.
IF_C_AND_NZ If C set and Z clear; p 296.
IF_NC_AND_Z If C clear and Z set; p 296.
IF_NC_AND_NZ If C clear and Z clear; p 296.
IF_C_OR_Z If C set or Z set; p 296.
IF_C_OR_NZ If C set or Z clear; p 296.
IF_NC_OR_Z If C clear or Z set; p 296.
IF_NC_OR_NZ If C clear or Z clear; p 296.
IF_Z_EQ_C If Z equal to C; p 296.
IF_Z_NE_C If Z not equal to C; p 296.
IF_Z_AND_C If Z set and C set; p 296.
IF_Z_AND_NC If Z set and C clear; p 296.
IF_NZ_AND_C If Z clear and C set; p 296.
IF_NZ_AND_NC If Z clear and C clear; p 296.
IF_Z_OR_C If Z set or C set; p 296.
IF_Z_OR_NC If Z set or C clear; p 296.
IF_NZ_OR_C If Z clear or C set; p 296.
IF_NZ_OR_NC If Z clear or C clear; p 296.

Page 244 · Propeller Manual v1.1

3: Assembly Language Reference

Flow Control
CALL Jump to address with intention to return to next instruction; p 268.
DJNZ Decrement value and jump to address if not zero; p 290.
JMP Jump to address unconditionally; p 298.
JMPRET Jump to address with intention to “return” to another address; p 300.
TJNZ Test value and jump to address if not zero; p 362.
TJZ Test value and jump to address if zero; p 365.
RET Return to stored address; p 342.

Effects
NR No result (don’t write result); p 291.
WR Write result; p 291.
WC Write C status; p 291.
WZ Write Z status; p 291.

Main Memory Access
RDBYTE Read byte of main memory; p 335.
RDWORD Read word of main memory; p 337.
RDLONG Read long of main memory; p 336.
WRBYTE Write a byte to main memory; p 374.
WRWORD Write a word to main memory; p 376.
WRLONG Write a long to main memory; p 375.

Common Operations
ABS Get absolute value of a number; p 257.
ABSNEG Get negative of number’s absolute value; p 258.
NEG Get negative of a number; p 319.
NEGC Get a value, or its additive inverse, based on C; p 320.
NEGNC Get a value or its additive inverse, based on !C; p 321.
NEGZ Get a value, or its additive inverse, based on Z; p 323.

Propeller Manual v1.1 · Page 245

Assembly Language Reference
NEGNZ Get a value, or its additive inverse, based on !Z; p 322.
MIN Limit minimum of unsigned value to another unsigned value; p 309.
MINS Limit minimum of signed value to another signed value; p 310.
MAX Limit maximum of unsigned value to another unsigned value; p 307.
MAXS Limit maximum of signed value to another signed value; p 308.
ADD Add two unsigned values; p 259.
ADDABS Add absolute value to another value; p 260.
ADDS Add two signed values; p 262.
ADDX Add two unsigned values plus C; p 264.
ADDSX Add two signed values plus C; p 262.
SUB Subtract two unsigned values; p 349.
SUBABS Subtract an absolute value from another value; p 350.
SUBS Subtract two signed values; p 351.
SUBX Subtract unsigned value plus C from another unsigned value; p 354.
SUBSX Subtract signed value plus C from another signed value; p 352.
SUMC Sum signed value with another of C-affected sign; p 356.
SUMNC Sum signed value with another of !C-affected sign; p 357.
SUMZ Sum signed value with another Z-affected sign; p 359.
SUMNZ Sum signed value with another of !Z-affected sign; p 358.
MUL <reserved for future use>
MULS <reserved for future use>
AND Bitwise AND two values; p 266.
ANDN Bitwise AND value with NOT of another; p 267.
OR Bitwise OR two values; p 327.
XOR Bitwise XOR two values; p 378.
ONES <reserved for future use>
ENC <reserved for future use>
RCL Rotate C left into value by specified number of bits; p 333.
RCR Rotate C right into value by specified number of bits; p 334.
REV Reverse LSBs of value and zero-extend; p 343.
ROL Rotate value left by specified number of bits; p 344.
Page 246 · Propeller Manual v1.1

3: Assembly Language Reference
ROR Rotate value right by specified number of bits; p 345.
SHL Shift value left by specified number of bits; p 347.
SHR Shift value right by specified number of bits; p 348.
SAR Shift value arithmetically right by specified number of bits; p 346.
CMP Compare two unsigned values; p 272.
CMPS Compare two signed values; p 274.
CMPX Compare two unsigned values plus C; p 280.
CMPSX Compare two signed values plus C; p 277.
CMPSUB Compare unsigned values, subtract second if lesser or equal; p 276.
TEST Bitwise AND two values to affect flags only; p 362.
TESTN Bitwise AND a value with NOT of another to affect flags only; p 363.
MOV Set a register to a value; p 311.
MOVS Set a register’s source field to a value; p 313.
MOVD Set a register’s destination field to a value; p 312.
MOVI Set a register’s instruction field to a value; p 312.
MUXC Set discrete bits of a value to the state of C; p 315.
MUXNC Set discrete bits of a value to the state of !C; p 316.
MUXZ Set discrete bits of a value to the state of Z; p 318.
MUXNZ Set discrete bits of a value to the state of !Z; p 317.
HUBOP Perform a hub operation; p 294.
NOP No operation, just elapse four cycles; p 324.

Constants
NOTE: Refer to Constants (pre-defined) in Chapter 2: Spin Language Reference.
TRUEs Logical true: -1 ($FFFFFFFF); p 93.
FALSEs Logical false: 0 ($00000000); p 93.
POSXs Maximum positive integer: 2,147,483,647 ($7FFFFFFF); p 94.
NEGXs Maximum negative integer: -2,147,483,648 ($80000000); p 94.
PIs Floating-point value for PI: ~3.141593 ($40490FDB); p 94.

Propeller Manual v1.1 · Page 247

jmartin
New

Assembly Language Reference

Page 248 · Propeller Manual v1.1

Registers
DIRAs Direction Register for 32-bit port A; p 338.
DIRBs Direction Register for 32-bit port B (future use); p 338.
INAs Input Register for 32-bit port A (read only); p 338.
INBs Input Register for 32-bit port B (read only) (future use); p 338.
OUTAs Output Register for 32-bit port A; p 338.
OUTBs Output Register for 32-bit port B (future use); p 338.
CNTs 32-bit System Counter Register (read only); p 338.
CTRAs Counter A Control Register; p 338.
CTRBs Counter B Control Register; p 338.
FRQAs Counter A Frequency Register; p 338.
FRQBs Counter B Frequency Register; p 338.
PHSAs Counter A Phase Lock Loop (PLL) Register; p 338.
PHSBs Counter B Phase Lock Loop (PLL) Register; p 338.
VCFGs Video Configuration Register; p 338.
VSCLs Video Scale Register; p 338.
PARs Cog Boot Parameter Register (read only); p 338.

Unary Operators
NOTE: All operators shown are constant-expression operators.
+ Positive (+X) unary form of Add; p 326.
- Negate (−X); unary form of Subtract; p 326.
^^ Square root; p 326.
|| Absolute Value; p 326.
|< Decode value (0-31) into single-high-bit long; p 326.
>| Encode long into value (0 - 32) as high-bit priority; p 326.
! Bitwise: NOT; p 326.
@ Address of symbol; p 326.

3: Assembly Language Reference

Binary Operators
NOTE: All operators shown are constant expression operators.
+ Add; p 326.
- Subtract; p 326.
* Multiply and return lower 32 bits (signed); p 326.
** Multiply and return upper 32 bits (signed); p 326.
/ Divide and return quotient (signed); p 326.
// Divide and return remainder (signed); p 326.
#> Limit minimum (signed); p 326.
<# Limit maximum (signed); p 326.
~> Shift arithmetic right; p 326.
<< Bitwise: Shift left; p 326.
>> Bitwise: Shift right; p 326.
<- Bitwise: Rotate left; p 326.
-> Bitwise: Rotate right; p 326.
>< Bitwise: Reverse; p 326.
& Bitwise: AND; p 326.
| Bitwise: OR; p 326.
^ Bitwise: XOR; p 326.
AND Boolean: AND (promotes non-0 to -1); p 326.
OR Boolean: OR (promotes non-0 to -1); p 326.
= = Boolean: Is equal; p 326.
<> Boolean: Is not equal; p 326.
< Boolean: Is less than (signed); p 326.
> Boolean: Is greater than (signed); p 326.
=< Boolean: Is equal or less (signed); p 326.
=> Boolean: Is equal or greater (signed); p 326.

Propeller Manual v1.1 · Page 249

Assembly Language Reference

Page 250 · Propeller Manual v1.1

Assembly Language Elements

Syntax Definitions
In addition to detailed descriptions, the following pages contain syntax definitions for many
elements that describe, in short terms, all the options of that element. The syntax definitions
use special symbols to indicate when and how certain element features are to be used.

BOLDCAPS Items in bold uppercase should be typed in exactly as shown.

Bold Italics Items in bold italics should be replaced by user text; symbols,
operators, expressions, etc.

. : , # Periods, colons, commas, and pound signs should be typed in where
shown.

〈 〉 Angle bracket symbols enclose optional items. Enter the enclosed
item if desired. Do not enter the angle brackets.

Double line Separates instruction from the result value.

Common Syntax Elements
When reading the syntax definitions in this chapter, keep in mind that all Propeller Assembly
instructions have three common, optional elements: a label, a condition, and effects. Each
Propeller Assembly instruction has the following basic syntax:

〈Label〉 〈Condition〉 Instruction Operands 〈Effects〉

• Label — an optional statement label. Label can be global (starting with an underscore
‘_’ or a letter) or can be local (starting with a colon ‘:’). Local Labels must be
separated from other same-named local labels by at least one global label. Label is
used by instructions like JMP, CALL and COGINIT to designate the target destination.
See

T

Global and Local Labels on page 242 for more information.
• Condition — an optional execution condition (IF_C, IF_Z, etc.) that causes Instruction

to be executed or not. See IF_x (Conditions) on page 295 for more information.
• Instruction and Operands — a Propeller Assembly instruction (MOV, ADD, COGINIT, etc.)

and its zero, one, or two operands as required by the Instruction.
• Effects — an optional list of one to three execution effects (WZ, WC, WR, and NR) to apply

to the instruction, if executed. They cause the Instruction to modify the Z flag, C

jmartin
Improved

jmartin
Improved

3: Assembly Language Reference
flag, and to write, or not write, the instruction’s result value to the destination
register, respectively. See Effects on page 291 for more information.

Since every instruction can include these three optional fields (Label, Condition, and Effects),
for simplicity those common fields are intentionally left out of the instruction’s syntax
description.

So, when you read a syntax description such as this:

WAITCNT Target, 〈#〉 Delta

...remember that the true syntax is this:

〈Label〉 〈Condition〉 WAITCNT Target, 〈#〉 Delta 〈Effects〉

This rule applies only to Propeller Assembly instructions; it does not apply to Propeller
Assembly directives.

Syntax declarations always give descriptive names to the instruction’s operands, such as
WAITCNT’s Target and Delta operands in the example above. The detailed descriptions refer to
operands by these names, however, the opcode tables and truth tables always use the generic
names (D, DEST, Destination, and S, SRC, Source) to refer to the instruction’s bits that store
the respective values.

Opcodes and Opcode Tables
Most syntax definitions include an opcode table similar to the one below. This table lists the
instruction’s 32-bit opcode, outputs and number of clock cycles.

The opcode table’s first column contains the Propeller Assembly Instruction opcode,
consisting of the following fields:

• INSTR (bits 31:26) - Indicates the instruction being executed.
• ZCRI (bits 25:22) - Indicates instruction’s effect status and SRC field meaning.
• CON (bits 21:18) - Indicates the condition in which to execute the instruction.
• DEST (bits 17:9) - Contains the destination register address.
• SRC (bits 8:0) - Contains the source register address or 9-bit literal value.

The bits of the ZCRI field each contain a 1 or 0 to indicate whether or not the ‘Z’ flag, ‘C’ flag,
and ‘R’esult should be written, and whether or not the SRC field contains an ‘I'mmediate value
(rather than a register address). The Z and C bits of the ZCRI field are clear (0) by default and

Propeller Manual v1.1 · Page 251

jmartin
New

jmartin
Improved

Assembly Language Reference
are set (1) if the instruction was specified with a WZ and/or WC effect. See Effects on page 291.
The R bit’s default state depends on the type of instruction, but is also affected if the
instruction was specified with the WR or NR effect. The I field’s default state depends on the
type of instruction and is affected by the inclusion, or lack of, the literal indicator (#) in the
instruction’s source field.

The bits of the CON field usually default to all ones (1111) but are affected if the instruction
was specified with a condition. See IF_x (Conditions) on page 295.

The last four columns of the opcode table indicate the meaning of the instruction’s output Z
and C flags, the default behavior for writing or not writing the result value, and the number of
clocks the instruction requires for execution.

CLKSET Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------000 --- --- Not Written 7..22

Concise Truth Tables
After the opcode table, there is a concise truth table. The concise truth table demonstrates
sample inputs and resulting outputs for the corresponding instruction. Rather than showing
every possible input/output case, the instruction’s concise truth table focuses on exploiting
numerical or logical boundaries that result in flag activity and notable destination output.
This information can aid in learning or verifying the instruction’s intrinsic function and
behavior.

Generally, the concise truth tables should be read carefully from the top row towards the
bottom row. When multiple boundary cases are possible, the related rows are grouped
together for emphasis and separated from other groups by a thick horizontal line.

The following conventions are used:

$FFFF_FFFE; -2 Numbers are values in hexadecimal (left of ‘;’) and decimal (right of ‘;’).
%0_00000011; 3 Numbers are values in binary (left of ‘;’) and decimal (right of ‘;’).
0 –or– 1 Individual zero (0) or one (1) means binary 0 or 1.
wr, wz, wc Assembly effects indicate execution state; write-result, write-z, write-c.
x Lower case “x” indicates items where every possible value applies.
--- Hyphens indicate items that are not applicable or not important.

A good example is the truth table for the ADDS instruction:

Page 252 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference

Propeller Manual v1.1 · Page 253

ADDS Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$FFFF_FFFF; -1 $0000_0001; 1 - - wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $0000_0002; 2 - - wz wc $0000_0001; 1 0 0

$0000_0001; 1 $FFFF_FFFF; -1 - - wz wc $0000_0000; 0 1 0

$0000_0001; 1 $FFFF_FFFE; -2 - - wz wc $FFFF_FFFF; -1 0 0

$7FFF_FFFE; 2,147,483,646 $0000_0001; 1 - - wz wc $7FFF_FFFF; 2,147,483,647 0 0

$7FFF_FFFE; 2,147,483,646 $0000_0002; 2 - - wz wc $8000_0000; -2,147,483,648 0 1

$8000_0001; -2,147,483,647 $FFFF_FFFF; -1 - - wz wc $8000_0000; -2,147,483,648 0 0

$8000_0001; -2,147,483,647 $FFFF_FFFE; -2 - - wz wc $7FFF_FFFF; 2,147,483,647 0 1

In the ADDS truth table there are eight data rows grouped into four pairs. Each group exploits
a different boundary condition. The first five columns of each row indicate the inputs to the
instruction and the last three columns show the resulting outputs.

• The first pair of data rows demonstrates a simple signed addition (-1 + 1) that results
in zero (z flag set) and also an example (-1 + 2) that results in non-zero (Z flag clear).

• The second pair of rows shows the same concept but with inverted signs on the
values; (1 + -1) and (1 + -2).

• The third pair of rows demonstrates an addition near the highest signed integer
boundary (2,147,482,646 + 1) followed by another that crosses that boundary
(2,147,482,646 + 2) resulting in a signed overflow (C flag set).

• The fourth pair of rows shows the same concept but approaching and crossing the
signed integer boundary from the negative side, also resulting in a signed overflow
(C flag set).

Note that an instruction’s destination field actually contains the address to a register that
holds the desired operand value, and the source field is often encoded similarly, but the truth
tables always simplify this detail by only showing the desired operand value itself for each
source and destination.

Propeller Assembly Instruction Master Table
A master table for all Propeller Assembly instructions is provided on the next two pages. In
this table, D and S refer to the instructions’ destination and source fields, also known as
d-field and s-field, respectively. Please be sure to read the notes on the page that follows the
table.

Assembly Language Reference

Page 254 · Propeller Manual v1.1

 Instruction -INSTR- ZCRI -CON- -DEST- -SRC- Z Result C Result Result Clocks
ABS D, S 101010 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
ABSNEG D, S 101011 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
ADD D, S 100000 001i 1111 ddddddddd sssssssss D + S = 0 Unsigned Carry Written 4
ADDABS D, S 100010 001i 1111 ddddddddd sssssssss D + |S| = 0 Unsigned Carry 3 Written 4
ADDS D, S 110100 001i 1111 ddddddddd sssssssss D + S = 0 Signed Overflow Written 4
ADDSX D, S 110110 001i 1111 ddddddddd sssssssss Z & (D+S+C = 0) Signed Overflow Written 4
ADDX D, S 110010 001i 1111 ddddddddd sssssssss Z & (D+S+C = 0) Unsigned Carry Written 4
AND D, S 011000 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
ANDN D, S 011001 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
CALL #S 010111 0011 1111 ????????? sssssssss Result = 0 --- Written 4
CLKSET D 000011 0001 1111 ddddddddd ------000 --- --- Not Written 7..22 1
CMP D, S 100001 000i 1111 ddddddddd sssssssss D = S Unsigned (D < S) Not Written 4
CMPS D, S 110000 000i 1111 ddddddddd sssssssss D = S Signed (D < S) Not Written 4
CMPSUB D, S 111000 001i 1111 ddddddddd sssssssss D = S Unsigned (D => S) Written 4
CMPSX D, S 110001 000i 1111 ddddddddd sssssssss Z & (D = S+C) Signed (D < S+C) Not Written 4
CMPX D, S 110011 000i 1111 ddddddddd sssssssss Z & (D = S+C) Unsigned (D < S+C) Not Written 4
COGID D 000011 0011 1111 ddddddddd ------001 ID = 0 0 Written 7..22 1
COGINIT D 000011 0001 1111 ddddddddd ------010 ID = 0 No Cog Free Not Written 7..22 1
COGSTOP D 000011 0001 1111 ddddddddd ------011 Stopped ID = 0 No Cog Free Not Written 7..22 1
DJNZ D, S 111001 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Written 4 or 8 2
HUBOP D, S 000011 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 7..22 1
JMP S 010111 000i 1111 --------- sssssssss Result = 0 --- Not Written 4
JMPRET D, S 010111 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4
LOCKCLR D 000011 0001 1111 ddddddddd ------111 ID = 0 Prior Lock State Not Written 7..22 1
LOCKNEW D 000011 0011 1111 ddddddddd ------100 ID = 0 No Lock Free Written 7..22 1
LOCKRET D 000011 0001 1111 ddddddddd ------101 ID = 0 No Lock Free Not Written 7..22 1
LOCKSET D 000011 0001 1111 ddddddddd ------110 ID = 0 Prior Lock State Not Written 7..22 1
MAX D, S 010011 001i 1111 ddddddddd sssssssss S = 0 Unsigned (D < S) Written 4
MAXS D, S 010001 001i 1111 ddddddddd sssssssss S = 0 Signed (D < S) Written 4
MIN D, S 010010 001i 1111 ddddddddd sssssssss S = 0 Unsigned (D < S) Written 4
MINS D, S 010000 001i 1111 ddddddddd sssssssss S = 0 Signed (D < S) Written 4
MOV D, S 101000 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
MOVD D, S 010101 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4
MOVI D, S 010110 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4
MOVS D, S 010100 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4
MUXC D, S 011100 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
MUXNC D, S 011101 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
MUXNZ D, S 011111 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
MUXZ D, S 011110 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
NEG D, S 101001 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

3: Assembly Language Reference

Propeller Manual v1.1 · Page 255

 Instruction -INSTR- ZCRI -CON- -DEST- -SRC- Z Result C Result Result Clocks
NEGC D, S 101100 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NEGNC D, S 101101 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NEGNZ D, S 101111 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NEGZ D, S 101110 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NOP ------ ---- 0000 --------- --------- --- --- --- 4
OR D, S 011010 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
RCL D, S 001101 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4
RCR D, S 001100 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
RDBYTE D, S 000000 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22 1
RDLONG D, S 000010 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22 1
RDWORD D, S 000001 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22 1
RET 010111 0001 1111 --------- --------- Result = 0 --- Not Written 4
REV D, S 001111 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
ROL D, S 001001 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4
ROR D, S 001000 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
SAR D, S 001110 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
SHL D, S 001011 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4
SHR D, S 001010 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
SUB D, S 100001 001i 1111 ddddddddd sssssssss D - S = 0 Unsigned Borrow Written 4
SUBABS D, S 100011 001i 1111 ddddddddd sssssssss D - |S| = 0 Unsigned Borrow 4 Written 4
SUBS D, S 110101 001i 1111 ddddddddd sssssssss D - S = 0 Signed Overflow Written 4
SUBSX D, S 110111 001i 1111 ddddddddd sssssssss Z & (D-(S+C) = 0) Signed Overflow Written 4
SUBX D, S 110011 001i 1111 ddddddddd sssssssss Z & (D-(S+C) = 0) Unsigned Borrow Written 4
SUMC D, S 100100 001i 1111 ddddddddd sssssssss D ± S = 0 Signed Overflow Written 4
SUMNC D, S 100101 001i 1111 ddddddddd sssssssss D ± S = 0 Signed Overflow Written 4
SUMNZ D, S 100111 001i 1111 ddddddddd sssssssss D ± S = 0 Signed Overflow Written 4
SUMZ D, S 100110 001i 1111 ddddddddd sssssssss D ± S = 0 Signed Overflow Written 4
TEST D, S 011000 000i 1111 ddddddddd sssssssss D = 0 Parity of Result Not Written 4
TESTN D, S 011001 000i 1111 ddddddddd sssssssss D = 0 Parity of Result Not Written 4
TJNZ D, S 111010 000i 1111 ddddddddd sssssssss D = 0 0 Not Written 4 or 8 2
TJZ D, S 111011 000i 1111 ddddddddd sssssssss D = 0 0 Not Written 4 or 8 2
WAITCNT D, S 111110 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry Written 5+
WAITPEQ D, S 111100 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+
WAITPNE D, S 111101 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+
WAITVID D, S 111111 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+
WRBYTE D, S 000000 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22 1
WRLONG D, S 000010 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22 1
WRWORD D, S 000001 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22 1
XOR D, S 011011 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
Improved

jmartin
New

Assembly Language Reference

Notes for Master Table

Note 1: Clock Cycles for Hub Instructions
Hub instructions require 7 to 22 clock cycles to execute depending on the relation between
the cog’s hub access window and the instruction’s moment of execution. The Hub provides a
hub access window to each cog every 16 clocks. Because each cog runs independently of the
Hub, it must sync to the Hub when executing a hub instruction. The first hub instruction in a
sequence will take from 0 to 15 clocks to sync up to the hub access window, and 7 clocks
afterwards to execute; thus the 7 to 22 (15 + 7) clock cycles to execute. After the first hub
instruction, there will be 9 (16 – 7) free clocks before a subsequent hub access window
arrives for that cog; enough time to execute two 4-clock instructions without missing the next
hub access window. To minimize clock waste, you can insert two normal instructions
between any two otherwise-contiguous hub instructions without any increase in execution
time. Beware that hub instructions can cause execution timing to appear indeterminate;
particularly the first hub instruction in a sequence.

Note 2: Clock Cycles for Modify-Branch Instructions
Instructions that modify a value and possibly jump, based on the result, require a different
amount of clock cycles depending on whether or not a jump is required. These instructions
take 4 clock cycles if a jump is required and 8 clock cycles if no jump is required. Since
loops utilizing these instructions typically need to be fast, they are optimized in this way for
speed.

Note 3: ADDABS C out: If S is negative, C = the inverse of unsigned borrow (for D-S).

Note 4: SUBABS C out: If S is negative, C = the inverse of unsigned carry (for D+S).

Page 256 · Propeller Manual v1.1

jmartin
New

jmartin
New

3: Assembly Language Reference – ABS

ABS
Instruction: Get the absolute value of a number.

ABS AValue, 〈#〉 SValue
Result: Absolute SValue is stored in AValue.

• AValue (d-field) is the register in which to write the absolute of SValue.
• SValue (s-field) is a register or a 9-bit literal whose absolute value will be written to

AValue.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101010 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$----_----; - $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$----_----; - $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$----_----; - $FFFF_FFFF; -1 - - wz wc $0000_0001; 1 0 1

$----_----; - $7FFF_FFFF; 2,147,483,647 - - wz wc $7FFF_FFFF; 2,147,483,647 0 0

$----_----; - $8000_0000; -2,147,483,648 - - wz wc $8000_0000; -2,147,483,6481
 0 1

$----_----; - $8000_0001; -2,147,483,647 - - wz wc $7FFF_FFFF; 2,147,483,647 0 1
1 The smallest negative number (-2,147,483,648) has no corresponding positive value in 32-bit two’s-complement math.

Explanation
ABS takes the absolute value of SValue and writes the result into AValue.

If the WZ effect is specified, the Z flag is set (1) if SValue is zero. If the WC effect is specified,
the C flag is set (1) if SValue is negative, or cleared (0) if SValue is positive. The result is
written to AValue unless the NR effect is specified.

Literal SValues are zero-extended, so ABS is really best used with register SValues.

Propeller Manual v1.1 · Page 257

jmartin
Improved

jmartin
New

ABSNEG – Assembly Language Reference

ABSNEG
Instruction: Get the negative of a number’s absolute value.

ABSNEG NValue, 〈#〉 SValue
Result: Absolute negative of SValue is stored in NValue.

• NValue (d-field) is the register in which to write the negative of SValue’s absolute
value.

• SValue (s-field) is a register or a 9-bit literal whose absolute negative value will be
written to NValue.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101011 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$----_----; - $0000_0001; 1 - - wz wc $FFFF_FFFF; -1 0 0

$----_----; - $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$----_----; - $FFFF_FFFF; -1 - - wz wc $FFFF_FFFF; -1 0 1

$----_----; - $7FFF_FFFF; 2,147,483,647 - - wz wc $8000_0001; -2,147,483,647 0 0

$----_----; - $8000_0000; -2,147,483,648 - - wz wc $8000_0000; -2,147,483,648 0 1

$----_----; - $8000_0001; -2,147,483,647 - - wz wc $8000_0001; -2,147,483,647 0 1

Explanation
ABSNEG negates the absolute value of SValue and writes the result into NValue.

If the WZ effect is specified, the Z flag is set (1) if SValue is zero. If the WC effect is specified,
the C flag is set (1) if SValue is negative, or cleared (0) if SValue is positive. The result is
written to NValue unless the NR effect is specified.

Literal SValues are zero-extended, so ABS is really best used with register SValues.

Page 258 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – ADD

ADD
Instruction: Add two unsigned values.

ADD Value1, 〈#〉 Value2
Result: Sum of unsigned Value1 and unsigned Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to add to Value2 and is the
destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is added into Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100000 001i 1111 ddddddddd sssssssss D + S = 0 Unsigned Carry Written 4

Concise Truth Table:
In Out

Destination
1 Source

1 Z C Effects Destination Z C
$FFFF_FFFE; 4,294,967,294 $0000_0001; 1 - - wz wc $FFFF_FFFF; 4,294,967,295 0 0

$FFFF_FFFE; 4,294,967,294 $0000_0002; 2 - - wz wc $0000_0000; 0 1 1

$FFFF_FFFE; 4,294,967,294 $0000_0003; 3 - - wz wc $0000_0001; 1 0 1
1 Both Source and Destination are treated as unsigned values.

Explanation
ADD sums the two unsigned values of Value1 and Value2 together and stores the result into the
Value1 register.

If the WZ effect is specified, the Z flag is set (1) if Value1 + Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in an unsigned carry (32-bit
overflow). The result is written to Value1 unless the NR effect is specified.

To add unsigned, multi-long values, use ADD followed by ADDX. See ADDX on page 264 for
more information.

Propeller Manual v1.1 · Page 259

jmartin
New

jmartin
Improved

jmartin
New

ADDABS – Assembly Language Reference

ADDABS
Instruction: Add an absolute value to another value.

ADDABS Value, 〈#〉 SValue
Result: Sum of Value and absolute of signed SValue is stored in Value.

• Value (d-field) is the register containing the value to add to the absolute of SValue and
is the destination in which to write the result.

• SValue (s-field) is a register or a 9-bit literal whose absolute value is added into Value.
Literal SValues are zero-extended (always positive values) so ADDABS is best used
with register SValues.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100010 001i 1111 ddddddddd sssssssss D + |S| = 0 Unsigned Carry1 Written 4

1 If S is negative, C Result is the inverse of unsigned borrow (for D - S).

Concise Truth Table:
In Out

Destination
1 Source Z C Effects Destination Z C

 $FFFF_FFFD; 4,294,967,293 $0000_0004; 4 - - wz wc $0000_0001; 1 0 1

 $FFFF_FFFD; 4,294,967,293 $0000_0003; 3 - - wz wc $0000_0000; 0 1 1

 $FFFF_FFFD; 4,294,967,293 $0000_0002; 2 - - wz wc $FFFF_FFFF; 4,294,967,295 0 0

 $FFFF_FFFD; 4,294,967,293 $FFFF_FFFF; -1 - - wz wc $FFFF_FFFE; 4,294,967,294 0 1

 $FFFF_FFFD; 4,294,967,293 $FFFF_FFFE; -2 - - wz wc $FFFF_FFFF; 4,294,967,295 0 1

 $FFFF_FFFD; 4,294,967,293 $FFFF_FFFD; -3 - - wz wc $0000_0000; 0 1 0

 $FFFF_FFFD; 4,294,967,293 $FFFF_FFFC; -4 - - wz wc $0000_0001; 1 0 0
1 Destination is treated as an unsigned value.

Explanation
ADDABS sums Value and the absolute of SValue together and stores the result into the Value
register.

If the WZ effect is specified, the Z flag is set (1) if Value + |SValue| equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in an unsigned carry (32-bit
overflow). The result is written to Value unless the NR effect is specified.

Page 260 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
Improved

3: Assembly Language Reference – ADDS

ADDS
Instruction: Add two signed values.

ADDS SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and signed SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to add to SValue2 and is the
destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is added into SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110100 001i 1111 ddddddddd sssssssss D + S = 0 Signed Overflow Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$FFFF_FFFF; -1 $0000_0001; 1 - - wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $0000_0002; 2 - - wz wc $0000_0001; 1 0 0

$0000_0001; 1 $FFFF_FFFF; -1 - - wz wc $0000_0000; 0 1 0

$0000_0001; 1 $FFFF_FFFE; -2 - - wz wc $FFFF_FFFF; -1 0 0

$7FFF_FFFE; 2,147,483,646 $0000_0001; 1 - - wz wc $7FFF_FFFF; 2,147,483,647 0 0

$7FFF_FFFE; 2,147,483,646 $0000_0002; 2 - - wz wc $8000_0000; -2,147,483,648 0 1

$8000_0001; -2,147,483,647 $FFFF_FFFF; -1 - - wz wc $8000_0000; -2,147,483,648 0 0

$8000_0001; -2,147,483,647 $FFFF_FFFE; -2 - - wz wc $7FFF_FFFF; 2,147,483,647 0 1

Explanation
ADDS sums the two signed values of SValue1 and SValue2 together and stores the result into
the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 + SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

To add signed, multi-long values, use ADD, possibly ADDX, and finally ADDSX. See ADDSX on
page 262 for more information.

Propeller Manual v1.1 · Page 261

jmartin
New

jmartin
Improved

jmartin
New

ADDSX – Assembly Language Reference

ADDSX
Instruction: Add two signed values plus C.

ADDSX SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and signed SValue2 plus C flag is stored in SValue1.

• SValue1 (d-field) is the register containing the value to add to SValue2 plus C, and is
the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value plus C is added into
SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110110 001i 1111 ddddddddd sssssssss Z & (D+S+C = 0) Signed Overflow Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
 $FFFF_FFFE; -2 $0000_0001; 1 x 0 wz wc $FFFF_FFFF; -1 0 0

 $FFFF_FFFE; -2 $0000_0001; 1 0 1 wz wc $0000_0000; 0 0 0

 $FFFF_FFFE; -2 $0000_0001; 1 1 1 wz wc $0000_0000; 0 1 0

 $0000_0001; 1 $FFFF_FFFE; -2 x 0 wz wc $FFFF_FFFF; -1 0 0

 $0000_0001; 1 $FFFF_FFFE; -2 0 1 wz wc $0000_0000; 0 0 0

 $0000_0001; 1 $FFFF_FFFE; -2 1 1 wz wc $0000_0000; 0 1 0

 $7FFF_FFFE; 2,147,483,646 $0000_0001; 1 x 0 wz wc $7FFF_FFFF; 2,147,483,647 0 0

 $7FFF_FFFE; 2,147,483,646 $0000_0001; 1 x 1 wz wc $8000_0000; -2,147,483,648 0 1

 $7FFF_FFFE; 2,147,483,646 $0000_0002; 2 x 0 wz wc $8000_0000; -2,147,483,648 0 1

 $8000_0001; -2,147,483,647 $FFFF_FFFF; -1 x 0 wz wc $8000_0000; -2,147,483,648 0 0

 $8000_0001; -2,147,483,647 $FFFF_FFFE; -2 x 0 wz wc $7FFF_FFFF; 2,147,483,647 0 1

 $8000_0001; -2,147,483,647 $FFFF_FFFE; -2 x 1 wz wc $8000_0000; -2,147,483,648 0 0

Explanation
ADDSX (Add Signed, Extended) sums the two signed values of SValue1 and SValue2 plus C,
and stores the result into the SValue1 register. The ADDSX instruction is used to perform
signed multi-long addition; 64-bit additions, for example.

Page 262 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
New

3: Assembly Language Reference – ADDSX

Propeller Manual v1.1 · Page 263

In a signed multi-long operation, the first instruction is unsigned (ex: ADD), any middle
instructions are unsigned, extended (ex: ADDX), and the last instruction is signed, extended
(ex: ADDSX). Make sure to use the WC, and optionally WZ, effect on the leading ADD and ADDX
instructions.

For example, a signed double-long (64-bit) addition may look like this:

 add XLow, YLow wc wz 'Add low longs together; save C and Z
 addsx XHigh, YHigh 'Add high longs together

After executing the above, the double-long (64-bit) result is in the long registers
XHigh:XLow. If XHigh:XLow started out as $0000_0001:0000_0000 (4,294,967,296) and
YHigh:YLow was $FFFF_FFFF:FFFF_FFFF (-1) the result in XHigh:XLow would be
$0000_0000:FFFF_FFFF (4,294,967,295). This is demonstrated below.

 Hexadecimal Decimal
 (high) (low)
 (XHigh:XLow) $0000_0001:0000_0000 4,294,967,296
 + (YHigh:YLow) + $FFFF_FFFF:FFFF_FFFF + -1
 ---------------------- ---------------
 = $0000_0000:FFFF_FFFF = 4,294,967,295

A signed triple-long (96-bit) addition would look similar but with an ADDX instruction inserted
between the ADD and ADDSX instructions:

 add XLow, YLow wc wz 'Add low longs; save C and Z
 addx XMid, YMid wc wz 'Add middle longs; save C and Z
 addsx XHigh, YHigh 'Add high longs

Of course, it may be necessary to specify the WC and WZ effects on the final instruction, ADDSX,
in order to watch for a result of zero or signed overflow condition. Note that during this
multi-step operation the Z flag always indicates if the result is turning out to be zero, but the
C flag indicates unsigned carries until the final instruction, ADDSX, in which it indicates signed
overflow.

For ADDSX, if the WZ effect is specified, the Z flag is set (1) if Z was previously set and
SValue1 + SValue2 + C equals zero (use WC and WZ on preceding ADD and ADDX instructions).
If the WC effect is specified, the C flag is set (1) if the summation resulted in a signed
overflow. The result is written to SValue1 unless the NR effect is specified.

ADDX – Assembly Language Reference

ADDX
Instruction: Add two unsigned values plus C.

ADDX Value1, 〈#〉 Value2
Result: Sum of unsigned Value1 and unsigned Value2 plus C flag is stored in Value1.

• Value1 (d-field) is the register containing the value to add to Value2 plus C, and is the
destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value plus C is added into Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110010 001i 1111 ddddddddd sssssssss Z & (D+S+C = 0) Unsigned Carry Written 4

Concise Truth Table:
In Out

Destination
1 Source

1 Z C Effects Destination Z C
$FFFF_FFFE; 4,294,967,294 $0000_0001; 1 x 0 wz wc $FFFF_FFFF; 4,294,967,295 0 0

$FFFF_FFFE; 4,294,967,294 $0000_0001; 1 0 1 wz wc $0000_0000; 0 0 1

$FFFF_FFFE; 4,294,967,294 $0000_0001; 1 1 1 wz wc $0000_0000; 0 1 1
1 Both Source and Destination are treated as unsigned values.

Explanation
ADDX (Add Extended) sums the two unsigned values of Value1 and Value2 plus C, and stores
the result into the Value1 register. The ADDX instruction is used to perform multi long
addition; 64-bit additions, for example.

In a multi-long operation, the first instruction is unsigned (ex: ADD), any middle instructions
are unsigned, extended (ex: ADDX), and the last instruction is unsigned, extended (ADDX) or
signed, extended (ADDSX) depending on the nature of the original multi-long values. We’ll
discuss unsigned multi-long values here; see ADDSX on page 262 for examples with signed,
multi-long values. Make sure to use the WC, and optionally WZ, effect on the leading ADD and
ADDX instructions.

For example, an unsigned double-long (64-bit) addition may look like this:

 add XLow, YLow wc wz 'Add low longs together; save C and Z
 addx XHigh, YHigh 'Add high longs together

Page 264 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
New

3: Assembly Language Reference – ADDX

Propeller Manual v1.1 · Page 265

After executing the above, the double-long (64-bit) result is in the long registers
XHigh:XLow. If XHigh:XLow started out as $0000_0000:FFFF_FFFF (4,294,967,295) and
YHigh:YLow was $0000_0000:0000_0001 (1) the result in XHigh:XLow would be
$0000_0001:0000_0000 (4,294,967,296). This is demonstrated below.

 Hexadecimal Decimal
 (high) (low)
 (XHigh:XLow) $0000_0000:FFFF_FFFF 4,294,967,295
 + (YHigh:YLow) + $0000_0000:0000_0001 + 1
 ---------------------- ---------------
 = $0000_0001:0000_0000 = 4,294,967,296

Of course, it may be necessary to specify the WC and WZ effects on the final instruction, ADDX,
in order to watch for a result of zero or an unsigned overflow condition.

For ADDX, if the WZ effect is specified, the Z flag is set (1) if Z was previously set and Value1 +
Value2 + C equals zero (use WC and WZ on preceding ADD and ADDX instructions). If the WC
effect is specified, the C flag is set (1) if the summation resulted in an unsigned carry (32-bit
overflow). The result is written to Value1 unless the NR effect is specified.

AND – Assembly Language Reference

AND
Instruction: Bitwise AND two values.

AND Value1, 〈#〉 Value2
Result: Value1 AND Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to bitwise AND with Value2 and is
the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is bitwise ANDed with
Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011000 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_000A; 10 $0000_0005; 5 - - wz wc $0000_0000; 0 1 0

$0000_000A; 10 $0000_0007; 7 - - wz wc $0000_0002; 2 0 1

$0000_000A; 10 $0000_000F; 15 - - wz wc $0000_000A; 10 0 0

Explanation
AND (bitwise AND) performs a bitwise AND of the value in Value2 into that of Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 AND Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
The result is written to Value1 unless the NR effect is specified.

Page 266 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – ANDN

ANDN
Instruction: Bitwise AND a value with the NOT of another.

ANDN Value1, 〈#〉 Value2
Result: Value1 AND !Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to bitwise AND with !Value2 and
is the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is inverted (bitwise NOT)
and bitwise ANDed with Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011001 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$F731_125A; -147,778,982 $FFFF_FFFA; -6 - - wz wc $0000_0000; 0 1 0

$F731_125A; -147,778,982 $FFFF_FFF8; -8 - - wz wc $0000_0002; 2 0 1

$F731_125A; -147,778,982 $FFFF_FFF0; -16 - - wz wc $0000_000A; 10 0 0

Explanation
ANDN (bitwise AND NOT) performs a bitwise AND of the inverted value (bitwise NOT) of
Value2 into that of Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 AND !Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
The result is written to Value1 unless the NR effect is specified.

Propeller Manual v1.1 · Page 267

jmartin
New

CALL – Assembly Language Reference

CALL
Instruction: Jump to address with intention to return to next instruction.

CALL #Symbol
Result: PC + 1 is written to the s-field of the register indicated by the d-field.

• Symbol (s-field) is a 9-bit literal whose value is the address to jump to. This field
must contain a DAT symbol specified as a literal (#symbol) and the corresponding
code should eventually execute a RET instruction labeled with the same symbol plus a
suffix of “_ret” (Symbol_ret RET).

 Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010111 0011 1111 ????????? sssssssss Result = 0 --- Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

2
$----_----; - $----_----; - - - wz wc 31:9 unchanged, 8:0 = PC+1 0 1

1 The Destination register’s s-field (lowest 9 bits) are overwritten with the return address (PC+1) at run-time.
2 The C flag is set (1) unless PC+1 equals 0; very unlikely since it would require the CALL to be executed from the top of cog RAM

($1FF; special purpose register VSCL).

Explanation
CALL records the address of the next instruction (PC + 1) then jumps to Symbol. The routine
at Symbol should eventually execute a RET instruction to return to the recorded address
(PC+1; the instruction following the CALL). For the CALL to compile and run properly, the
Symbol routine’s RET instruction must be labeled in the form Symbol with “_ret” appended to
it. The reason for this is explained below.

The Propeller hardware does not use a call stack, so the return address must be stored in a
different manner. At compile time the assembler locates the destination routine as well as its
RET instruction (labeled Symbol and Symbol_ret, respectively) and encodes those addresses
into the CALL instruction’s s-field and d-field. This provides the CALL instruction with the
knowledge of both where it’s going to jump to and exactly where it will return from.

At run time the first thing the CALL instruction does is store the return address (PC+1) into the
location where it will return from; the “Symbol_ret RET” instruction location. The RET

Page 268 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
New

3: Assembly Language Reference – CALL

Propeller Manual v1.1 · Page 269

instruction is really just a JMP instruction without a hard-coded destination address, and this
run-time action provides it with the “return” address to jump back to. After storing the return
address, CALL jumps to the destination address; Symbol.

The diagram below uses a short program example to demonstrate the CALL instruction’s run-
time behavior; the store operation (left) and the jump-execute-return operation (right).

Figure 3-1: Run-time CALL Procedure

Store operation Jump, execute and return operation

 this example, the following occurs when the CALL instruction is reached at run time:

source

②

y leading to the Routine_ret line.

rce

In

① The cog stores the return address (PC+1; that of <next instruction>) into the
(s-field) of the register at Routine_ret (see left image).

The cog jumps to Routine (see right image).

③ Routine’s instructions are executed, eventuall

④ Since the Routine_ret location contains a RET instruction with an updated sou
(s-field), which is the return address written by step 1, it returns, or jumps, back to
the <next instruction> line.

CALL – Assembly Language Reference

Page 270 · Propeller Manual v1.1

This nature of the CALL instruction dictates the following:

• The referenced routine must have only one RET instruction associated with it. If a
routine needs more than one exit point, make one of those exit points the RET
instruction and make all other exit points branch (i.e., JMP) to that RET instruction.

• The referenced routine can not be recursive. Making a nested call to the routine will
overwrite the return address of the previous call.

CALL is really a subset of the JMPRET instruction; in fact, it is the same opcode as JMPRET but
with the i-field set (since CALL uses an immediate value only) and the d-field set by the
assembler to the address of the label named Symbol_ret.

The return address (PC + 1) is written to the source (s-field) of the Symbol_ret register unless
the NR effect is specified. Of course, specifying NR is not recommended for the CALL
instruction since that turns it into a JMP, or RET, instruction.

3: Assembly Language Reference – CLKSET

Propeller Manual v1.1 · Page 271

CLKSET
Instruction: Set the clock mode at run time.

CLKSET Mode

• Mode (d-field) is the register containing the 8-bit pattern to write to the CLK register.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------000 --- --- Not Written 7..22

Concise Truth Table:
In Out

Destination Source
1 Z C Effects Destination

2 Z C
$0000_006F; 111 %0_00000000; 0 - - wr wz wc $0000_0007; 7 0 0

1 The Source is automatically set to immediate value 0 by the assembler to indicate that this is the CLKSET hub instruction.
2 Destination is not written unless the WR effect is given.

Explanation
CLKSET changes the System Clock mode during run time. The T CLKSET instruction behaves
similar to the Spin command of the same name (see CLKSET 71T on page) except that it only
sets the clock mode, not the frequency.

After issuing a CLKSET instruction, it is important to update the System Clock Frequency
value by writing to its location in Main RAM (long 0): WRLONG freqaddr, #0. If the System
Clock Frequency value is not updated, other objects will misbehave due to invalid clock
frequency data.

CLKSET is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See on page for more information.

T

Hub 24

jmartin
New

CMP – Assembly Language Reference

CMP
Instruction: Compare two unsigned values.

CMP Value1, 〈#〉 Value2
Result: Optionally, equality and greater/lesser status is written to the Z and C flags.

• Value1 (d-field) is the register containing the value to compare with that of Value2.
• Value2 (s-field) is a register or a 9-bit literal whose value is compared with Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100001 000i 1111 ddddddddd sssssssss D = S Unsigned (D < S) Not Written 4

Concise Truth Table:
In Out

Destination
1 Source

1 Z C Effects Destination
2 Z C

 $0000_0003; 3 $0000_0002; 2 - - wr wz wc $0000_0001; 1 0 0

 $0000_0003; 3 $0000_0003; 3 - - wr wz wc $0000_0000; 0 1 0

 $0000_0003; 3 $0000_0004; 4 - - wr wz wc $FFFF_FFFF; -1
3
 0 1

 $8000_0000; 2,147,483,648 $7FFF_FFFF; 2,147,483,647 - - wr wz wc $0000_0001; 1 0 0
4

 $7FFF_FFFF; 2,147,483,647 $8000_0000; 2,147,483,648 - - wr wz wc $FFFF_FFFF; -1
3
 0 1

4

 $FFFF_FFFE; 4,294,967,294 $FFFF_FFFF; 4,294,967,295 - - wr wz wc $FFFF_FFFF; -1
3
 0 1

 $FFFF_FFFE; 4,294,967,294 $FFFF_FFFE; 4,294,967,294 - - wr wz wc $0000_0000; 0 1 0

 $FFFF_FFFE; 4,294,967,294 $FFFF_FFFD; 4,294,967,293 - - wr wz wc $0000_0001; 1 0 0
1 Both Source and Destination are treated as unsigned values.
2 Destination is not written unless the WR effect is given.
3 Destination Out (written Destination) may be thought of as either unsigned or signed; it is shown here as signed for demonstration

purposes only.
4 The C flag result of CMP (Compare Unsigned) may differ from CMPS (Compare Signed) where the “interpreted sign” of Source and

Destination are opposite. The first example in the second group, above, shows that CMP clears C because unsigned $8000_0000
(2,147,483,648) is not less than unsigned $7FFF_FFFF (2,147,483,647). CMPS, however, would have set C because signed
$8000_0000 (-2,147,483,648) is less than signed $7FFF_FFFF (2,147,483,647). The second example is the complementary case
where the Source and Destination values are switched.

Explanation
CMP (Compare Unsigned) compares the unsigned values of Value1 and Value2. The Z and C
flags, if written, indicate the relative equal, and greater or lesser relationship between the two.

Page 272 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – CMP

Propeller Manual v1.1 · Page 273

If the WZ effect is specified, the Z flag is set (1) if Value1 equals Value2. If the WC effect is
specified, the C flag is set (1) if Value1 is less than Value2.

The result is not written unless the WR effect is specified. If WR is specified, CMP becomes
exactly like a SUB instruction.

To compare unsigned, multi-long values, use CMP followed by CMPX. See CMPX on page 280
for more information..

jmartin
New

jmartin
New

CMPS – Assembly Language Reference

CMPS
Instruction: Compare two signed values.

CMPS SValue1, 〈#〉 SValue2
Result: Optionally, equality and greater/lesser status is written to the Z and C flags.

• SValue1 (d-field) is the register containing the value to compare with that of SValue2.
• SValue2 (s-field) is a register or a 9-bit literal whose value is compared with SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110000 000i 1111 ddddddddd sssssssss D = S Signed (D < S) Not Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

 $0000_0003; 3 $0000_0002; 2 - - wr wz wc $0000_0001; 1 0 0

 $0000_0003; 3 $0000_0003; 3 - - wr wz wc $0000_0000; 0 1 0

 $0000_0003; 3 $0000_0004; 4 - - wr wz wc $FFFF_FFFF; -1 0 1

 $8000_0000; -2,147,483,648 $7FFF_FFFF; 2,147,483,647 - - wr wz wc $0000_0001; 1 0 1
2

 $7FFF_FFFF; 2,147,483,647 $8000_0000; -2,147,483,648 - - wr wz wc $FFFF_FFFF; -1 0 0
2

 $8000_0000; -2,147,483,648 $0000_0001; 1 - - wr wz wc $7FFF_FFFF; 2,147,483,647
3
 0 1

 $7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 - - wr wz wc $8000_0000; -2,147,483,648
3
 0 0

 $FFFF_FFFE; -2 $FFFF_FFFF; -1 - - wr wz wc $FFFF_FFFF; -1 0 1

 $FFFF_FFFE; -2 $FFFF_FFFE; -2 - - wr wz wc $0000_0000; 0 1 0

 $FFFF_FFFE; -2 $FFFF_FFFD; -3 - - wr wz wc $0000_0001; 1 0 0
1 Destination is not written unless the WR effect is given.
2 The C flag result of CMPS (Compare Signed) may differ from CMP (Compare Unsigned) where the “interpreted sign” of Source and

Destination are opposite. The first example in the second group, above, shows that CMPS sets C because signed $8000_0000
(-2,147,483,648) is less than signed $7FFF_FFFF (2,147,483,647). CMP, however, would have cleared C because unsigned
$8000_0000 (2,147,483,648) is not less than unsigned $7FFF_FFFF (2,147,483,647). The second example is the complementary
case where the Source and Destination values are switched.

3 The examples of the third group, above, demonstrate cases where the comparison is properly reflected in the flags but the
Destination Out has crossed the signed border (signed overflow error) in either the negative or positive direction. This signed
overflow condition can not be reflected in the flags. If this condition is important to an application, perform a CMPS without a WR
effect, note C’s status (signed borrow), then perform a SUBS and note C’s status (signed overflow).

Page 274 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – CMPS

Propeller Manual v1.1 · Page 275

Explanation
CMPS (Compare Signed) compares the signed values of SValue1 and SValue2. The Z and C
flags, if written, indicate the relative equal, and greater or lesser relationship between the two.

If the WZ effect is specified, the Z flag is set (1) if SValue1 equals SValue2. If the WC effect is
specified, the C flag is set (1) if SValue1 is less than SValue2.

To compare signed, multi-long values, instead of using CMPS, use CMP, possibly CMPX, and
finally CMPSX. See CMPSX on page 277 for more information.

jmartin
Improved

jmartin
New

CMPSUB – Assembly Language Reference

CMPSUB
Instruction: Compare two unsigned values and subtract the second if it is lesser or equal.

CMPSUB Value1, 〈#〉 Value2
Result: Optionally, Value1 = Value1 – Value2, and Z and C flags = comparison results.

• Value1 (d-field) is the register containing the value to compare with that of Value2 and
is the destination in which to write the result if a subtraction is performed.

• Value2 (s-field) is a register or a 9-bit literal whose value is compared with and
possibly subtracted from Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111000 001i 1111 ddddddddd sssssssss D = S Unsigned (D => S) Written 4

Concise Truth Table:
In Out

Destination
1 Source

1 Z C Effects Destination Z C
$0000_0003; 3 $0000_0002; 2 - - wz wc $0000_0001; 1 0 1

$0000_0003; 3 $0000_0003; 3 - - wz wc $0000_0000; 0 1 1

$0000_0003; 3 $0000_0004; 4 - - wz wc $0000_0003; 3 0 0
1 Both Source and Destination are treated as unsigned values.

Explanation
CMPSUB compares the unsigned values of Value1 and Value2, and if Value2 is equal to or less
than Value1 then it is subtracted from Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 equals Value2. If the WC effect is
specified, the C flag is set (1) if a subtraction is possible (Value1 is equal to or greater than
Value2). The result, if any, is written to Value1 unless the NR effect is specified.

Page 276 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
Improved

3: Assembly Language Reference – CMPSX

CMPSX
Instruction: Compare two signed values plus C.

CMPSX SValue1, 〈#〉 SValue2
Result: Optionally, equality and greater/lesser status is written to the Z and C flags.

• SValue1 (d-field) is the register containing the value to compare with that of SValue2.
• SValue2 (s-field) is a register or a 9-bit literal whose value is compared with SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110001 000i 1111 ddddddddd sssssssss Z & (D = S+C) Signed (D < S+C) Not Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

$0000_0003; 3 $0000_0002; 2 x 0 wr wz wc $0000_0001; 1 0 0

$0000_0003; 3 $0000_0002; 2 0 1 wr wz wc $0000_0000; 0 0 0

$0000_0003; 3 $0000_0002; 2 1 1 wr wz wc $0000_0000; 0 1 0

$0000_0003; 3 $0000_0003; 3 0 0 wr wz wc $0000_0000; 0 0 0

$0000_0003; 3 $0000_0003; 3 1 0 wr wz wc $0000_0000; 0 1 0

$0000_0003; 3 $0000_0003; 3 x 1 wr wz wc $FFFF_FFFF; -1 0 1

$0000_0003; 3 $0000_0004; 4 x 0 wr wz wc $FFFF_FFFF; -1 0 1

$0000_0003; 3 $0000_0004; 4 x 1 wr wz wc $FFFF_FFFE; -2 0 1

$8000_0000; -2,147,483,648 $7FFF_FFFF; 2,147,483,647 0 0 wr wz wc $0000_0001; 1 0 1
2

$7FFF_FFFF; 2,147,483,647 $8000_0000; -2,147,483,648 0 0 wr wz wc $FFFF_FFFF; -1 0 0
2

$8000_0000; -2,147,483,648 $0000_0001; 1 0 0 wr wz wc $7FFF_FFFF; 2,147,483,647
3
 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 0 0 wr wz wc $8000_0000; -2,147,483,648
3
 0 0

$FFFF_FFFE; -2 $FFFF_FFFF; -1 x 0 wr wz wc $FFFF_FFFF; -1 0 1

$FFFF_FFFE; -2 $FFFF_FFFF; -1 x 1 wr wz wc $FFFF_FFFE; -2 0 1

$FFFF_FFFE; -2 $FFFF_FFFE; -2 0 0 wr wz wc $0000_0000; 0 0 0

$FFFF_FFFE; -2 $FFFF_FFFE; -2 1 0 wr wz wc $0000_0000; 0 1 0

$FFFF_FFFE; -2 $FFFF_FFFE; -2 x 1 wr wz wc $FFFF_FFFF; -1 0 1

$FFFF_FFFE; -2 $FFFF_FFFD; -3 x 0 wr wz wc $0000_0001; 1 0 0

$FFFF_FFFE; -2 $FFFF_FFFD; -3 0 1 wr wz wc $0000_0000; 0 0 0

$FFFF_FFFE; -2 $FFFF_FFFD; -3 1 1 wr wz wc $0000_0000; 0 1 0
1 Destination is not written unless the WR effect is given.

Propeller Manual v1.1 · Page 277

jmartin
New

jmartin
Improved

CMPSX – Assembly Language Reference
2 The C flag result of CMPSX (Compare Signed, Extended) may differ from CMPX (Compare Unsigned, Extended) where the

“interpreted sign” of Source and Destination are opposite. The first example in the second group, above, shows that CMPSX sets C
because signed $8000_0000 (-2,147,483,648) is less than signed $7FFF_FFFF (2,147,483,647). CMPX, however, would have cleared
C because unsigned $8000_0000 (2,147,483,648) is not less than unsigned $7FFF_FFFF (2,147,483,647). The second example is the
complementary case where the Source and Destination values are switched. Note that examples with differing Z and C are not
shown but have expected effects similar to the other examples.

3 The examples of the third group, above, demonstrate cases where the comparison is properly reflected in the flags but the
Destination Out has crossed the signed border (signed overflow error) in either the negative or positive direction. This signed
overflow condition can not be reflected in the flags. If this condition is important to an application, it must detect it through other
means.

Explanation
CMPSX (Compare Signed, Extended) compares the signed values of SValue1 and SValue2 plus
C. The Z and C flags, if written, indicate the relative equal, and greater or lesser relationship
between the two. The CMPSX instruction is used to perform signed multi-long comparison;
64-bit comparisons, for example.

In a signed multi-long operation, the first instruction is unsigned (ex: CMP), any middle
instructions are unsigned, extended (ex: CMPX), and the last instruction is signed, extended (ex:
CMPSX). Make sure to use the WC, and optionally WZ, effect on all the instructions in the
comparison operation.

For example, a signed double-long (64-bit) comparison may look like this:

 cmp XLow, YLow wc wz 'Compare low longs; save C and Z
 cmpsx XHigh, YHigh wc wz 'Compare high longs; save C and Z

After executing the above, the C and Z flags will indicate the relationship between the two
double-long (64-bit) values. If XHigh:XLow started out as $FFFF_FFFF:FFFF_FFFF (-1)
and YHigh:YLow was $0000_0000:0000_0001 (1) the resulting flags would be: Z = 0 and
C = 1; (Value1 < Value2). This is demonstrated below. Note that the comparison is really
just a subtraction with the result not written; the Z and C flag result is important, however.

 Hexadecimal Decimal Flags
 (high) (low)
 (XHigh:XLow) $FFFF_FFFF:FFFF_FFFF -1 n/a
- (YHigh:YLow) - $0000_0000:0000_0001 - 1 n/a
 ---------------------- --------------- --------
 = $FFFF_FFFF:FFFF_FFFE = -2 Z=0, C=1

Page 278 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – CMPSX

Propeller Manual v1.1 · Page 279

A signed triple-long (96-bit) comparison would look similar but with a CMPX instruction
inserted between the CMP and CMPSX instructions:

 cmp XLow, YLow wc wz 'Compare low longs; save C and Z
 cmpx XMid, YMid wc wz 'Compare middle longs; save C and Z
 cmpsx XHigh, YHigh wc wz 'Compare high longs; save C and Z

For CMPSX, if the WZ effect is specified, the Z flag is set (1) if Z was previously set and
SValue1 equals SValue2 + C (use WC and WZ on preceding CMP and CMPX instructions). If the WC
effect is specified, the C flag is set (1) if SValue1 is less than SValue2 (as multi-long values).

CMPX – Assembly Language Reference

CMPX
Instruction: Compare two unsigned values plus C.

CMPX Value1, 〈#〉 Value2
Result: Optionally, equality and greater/lesser status is written to the Z and C flags.

• Value1 (d-field) is the register containing the value to compare with that of Value2.
• Value2 (s-field) is a register or a 9-bit literal whose value is compared with Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110011 000i 1111 ddddddddd sssssssss Z & (D = S+C) Unsigned (D < S+C) Not Written 4

Concise Truth Table:
In Out

Destination
1 Source

1 Z C Effects Destination
2 Z C

$0000_0003; 3 $0000_0002; 2 x 0 wr wz wc $0000_0001; 1 0 0

$0000_0003; 3 $0000_0002; 2 0 1 wr wz wc $0000_0000; 0 0 0

$0000_0003; 3 $0000_0002; 2 1 1 wr wz wc $0000_0000; 0 1 0

$0000_0003; 3 $0000_0003; 3 0 0 wr wz wc $0000_0000; 0 0 0

$0000_0003; 3 $0000_0003; 3 1 0 wr wz wc $0000_0000; 0 1 0

$0000_0003; 3 $0000_0003; 3 x 1 wr wz wc $FFFF_FFFF; -1
3
 0 1

$0000_0003; 3 $0000_0004; 4 x 0 wr wz wc $FFFF_FFFF; -1
3
 0 1

$0000_0003; 3 $0000_0004; 4 x 1 wr wz wc $FFFF_FFFE; -2
3
 0 1

$8000_0000; 2,147,483,648 $7FFF_FFFF; 2,147,483,647 0 0 wr wz wc $0000_0001; 1 0 0
4

$7FFF_FFFF; 2,147,483,647 $8000_0000; 2,147,483,648 0 0 wr wz wc $FFFF_FFFF; -1
3
 0 1

4

$FFFF_FFFE; 4,294,967,294 $FFFF_FFFF; 4,294,967,295 x 0 wr wz wc $FFFF_FFFF; -1
3
 0 1

$FFFF_FFFE; 4,294,967,294 $FFFF_FFFF; 4,294,967,295 x 1 wr wz wc $FFFF_FFFE; -2
3
 0 1

$FFFF_FFFE; 4,294,967,294 $FFFF_FFFE; 4,294,967,294 0 0 wr wz wc $0000_0000; 0 0 0

$FFFF_FFFE; 4,294,967,294 $FFFF_FFFE; 4,294,967,294 1 0 wr wz wc $0000_0000; 0 1 0

$FFFF_FFFE; 4,294,967,294 $FFFF_FFFE; 4,294,967,294 x 1 wr wz wc $FFFF_FFFF; -1
3
 0 1

$FFFF_FFFE; 4,294,967,294 $FFFF_FFFD; 4,294,967,293 x 0 wr wz wc $0000_0001; 1 0 0

$FFFF_FFFE; 4,294,967,294 $FFFF_FFFD; 4,294,967,293 0 1 wr wz wc $0000_0000; 0 0 0

$FFFF_FFFE; 4,294,967,294 $FFFF_FFFD; 4,294,967,293 1 1 wr wz wc $0000_0000; 0 1 0
1 Both Source and Destination are treated as unsigned values.
2 Destination is not written unless the WR effect is given.
3 Destination Out (written Destination) may be thought of as either unsigned or signed; it is shown here as signed for demonstration

purposes only.

Page 280 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – CMPX

Propeller Manual v1.1 · Page 281

4 The C flag result of CMPX (Compare Unsigned, Extended) may differ from CMPSX (Compare Signed, Extended) where the
“interpreted sign” of Source and Destination are opposite. The first example in the second group, above, shows that CMPX clears
C because unsigned $8000_0000 (2,147,483,648) is not less than unsigned $7FFF_FFFF (2,147,483,647). CMPSX, however, would
have set C because signed $8000_0000 (2,147,483,648) is less than signed $7FFF_FFFF (2,147,483,647). The second example is
the complementary case where the Source and Destination values are switched. Note that examples with differing Z and C are not
shown but have expected effects similar to the other examples.

Explanation
CMPX (Compare Extended) compares the unsigned values of Value1 and Value2 plus C. The Z
and C flags, if written, indicate the relative equal, and greater or lesser relationship between
the two. The CMPX instruction is used to perform multi-long comparison; 64-bit comparisons,
for example.

In a multi-long operation, the first instruction is unsigned (ex: CMP), any middle instructions
are unsigned, extended (ex: CMPX), and the last instruction is unsigned, extended (CMPX) or
signed, extended (CMPSX) depending on the nature of the original multi-long values. We’ll
discuss unsigned multi-long values here; see CMPSX on page 277 for examples with signed,
multi-long values. Make sure to use the WC, and optionally WZ, effect on all the instructions in
the comparison operation.

For example, an unsigned double-long (64-bit) comparison may look like this:

 cmp XLow, YLow wc wz 'Compare low longs; save C and Z
 cmpx XHigh, YHigh wc wz 'Compare high longs

After executing the above, the C and Z flags will indicate the relationship between the two
double-long (64-bit) values. If XHigh:XLow started out as $0000_0001:0000_0000
(4,294,967,296) and YHigh:YLow was $0000_0000:0000_0001 (1) the resulting flags would
be: Z = 0 and C = 0; (Value1 > Value2). This is demonstrated below. Note that the
comparison is really just a subtraction with the result not written; the Z and C flag result is
important, however.

 Hexadecimal Decimal Flags
 (high) (low)
 (XHigh:XLow) $0000_0001:0000_0000 4,294,967,296 n/a
- (YHigh:YLow) - $0000_0000:0000_0001 - 1 n/a
 ---------------------- --------------- --------
 = $0000_0000:FFFF_FFFF = 4,294,967,295 Z=0, C=0

For CMPX, if the WZ effect is specified, the Z flag is set (1) if Z was previously set and Value1
equals Value2 + C (use WC and WZ on preceding CMP and CMPX instructions). If the WC effect is
specified, the C flag is set (1) if Value1 is less than Value2 (as multi-long values).

jmartin
New

CNT – Assembly Language Reference

Page 282 · Propeller Manual v1.1

CNT
Register: System Counter register.

DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, CNT 〈Effects〉

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. CNT is a read-only register and thus

should only be used in the instruction’s source operand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of CNT in the instruction’s source operand. T

Explanation
The CNT register contains the current value in the global 32-bit System Counter. The System
Counter serves as the central time reference for all cogs; it increments its 32-bit value once
every System Clock cycle.

CNT is a read-only pseudo-register; when used as an instruction’s source operand, it reads the
current value of the System Counter. Do not use CNT as the destination operand; that only
results in reading and modifying the shadow register whose address CNT occupies.

CNT is often used to determine an initial target value for a WAITCNT-based delay. The
following code performs an operation in a loop every ¼ second. See Registers, page 338, and
the Spin language CNT section, page 73, for more information.

DAT
 org 0 'Reset assembly pointer
AsmCode rdlong Delay, #0 'Get clock frequency
 shr Delay, #2 'Divide by 4
 mov Time, cnt 'Get current time

 add Time, Delay 'Adjust by 1/4 second
Loop waitcnt Time, Delay 'Wait for 1/4 second

 '<more code here> 'Perform operation
 jmp #Loop 'loop back

Delay res 1
Time res 1

jmartin
New

3: Assembly Language Reference – COGID

COGID
Instruction: Get current cog’s ID.

COGID Destination
Result: The current cog’s ID (0-7) is written to Destination.

• Destination (d-field) is the register to write the cog’s ID into.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0011 1111 ddddddddd ------001 ID = 0 0 Written 7..22

Concise Truth Table:
In Out

Destination Source
1 Z C Effects Destination

2 Z C
$----_----; - %0_00000001; 1 - - wz wc $0000_0000; 0 1 0

$----_----; - %0_00000001; 1 - - wz wc $1; 1 .. $7; 7 0 0
1 Source is automatically set to immediate value 1 by the assembler to indicate that this is the COGID hub instruction.
2 Destination Out (written Destination) will be 0 through 7, depending on which cog executed the instruction.

Explanation
COGID returns the ID of the cog that executed the command. The COGID instruction behaves
similar to the Spin command of the same name; see COGID on page 75.

If the WZ effect is specified, the Z flag is set if the cog ID is zero. The result is written to
Destination unless the NR effect is specified.

COGID is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute depending
on the relation between the cog’s hub access window and the instruction’s moment of
execution. See Hub on page 24 for more information.

Propeller Manual v1.1 · Page 283

jmartin
New

jmartin
Improved

COGINIT – Assembly Language Reference

Page 284 · Propeller Manual v1.1

COGINIT
Instruction: Start or restart a cog, optionally by ID, to run Propeller Assembly or Spin code.

COGINIT Destination
Result: Optionally, the started/restarted cog’s ID (0-7) is written to Destination.

• Destination (d-field) is the register containing startup information for the target cog
and optionally becomes the destination of the started cog’s ID if a new cog is started.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------010 ID = 0 No Cog Free Not Written 7..22

Concise Truth Table:
In Out

Destination
1 Source

2 Z C Effects Destination
3 Z C

$0000_0000; 0 %0_00000010; 2 - - wr wz wc $0000_0000; 0
4
 1 0

$0000_0001; 1 %0_00000010; 2 - - wr wz wc $0000_0001; 1
4
 0 0

$0000_0008; 8 %0_00000010; 2 - - wr wz wc $0000_0000; 0
5
 1 0

$0000_0008; 8 %0_00000010; 2 - - wr wz wc $1; 1 .. $7; 7
5
 0 0

$0000_0008; 8 %0_00000010; 2 - - wr wz wc $0000_0007; 7
5
 0 1

1 Destination In must be a PAR value (bits 31:18), an assembly code address (bits 17:4), and a new cog / cog ID indicator (bits 3:0).
2 Source is automatically set to immediate value 2 by the assembler to indicate that this is the COGINIT hub instruction.
3 Destination is not written unless the WR effect is given.
4 When Destination In indicates to start a specific cog, Destination Out (written Destination) indicates that cog’s ID; it is always

started or restarted.
5 When Destination In indicates to start a new (next available) cog, Destination Out (written Destination) indicates the ID of the cog

that was started, or 7 (with C set) if no cog available.

Explanation
The COGINIT instruction behaves similar to two Spin commands, T COGNEW and COGINITT, put
together. Propeller Assembly’s COGINIT instruction can be used to start a new cog or restart
an active cog. The Destination register has four fields that determine which cog is started,
where its program begins in main memory, and what its

T

PAR register will contain. The table
below describes these fields.

jmartin
New

jmartin
Improved

3: Assembly Language Reference – COGINIT

Propeller Manual v1.1 · Page 285

Table 3-1: Destination Register Fields
31:18 17:4 3 2:0

14-bit Long address for PAR Register 14-bit Long address of code to load New Cog ID

The first field, bits 31:18, will be written to the started cog’s PAR register bits 15:2. This is 14
bits total that are intended to be the upper bits of a 16-bit long address. Similar to the
Parameter field of Spin’s version of COGINIT, this first field of Destination is used to pass the
14-bit address of an agreed-upon memory location or structure to the started cog.

T

The second field, bits 17:4, holds the upper 14-bits of a 16-bit long address pointing to the
desired assembly program to load into the cog. Cog registers $000 through $1EF will be
loaded sequentially starting at this address, the special purpose registers will be cleared to
zero (0), and the cog will start executing the code at register $000.

The third field, bit 3, should be set (1) if a new cog should be started, or cleared (0) if a
specific cog should be started or restarted.

If the third field bit is set (1), the Hub will start the next available (lowest-numbered inactive)
cog and return that cog’s ID in Destination (if the WR effect is specified).

If the third field bit is clear (0), the Hub will start or restart the cog identified by Destination’s
fourth field, bits 2:0.

If the WZ effect is specified, the Z flag will be set (1) if the cog ID returned is 0. If the WC
effect is specified, the C flag will be set (1) if no cog was available. If the WR effect is
specified, Destination is written with the ID of the cog that the Hub started, or would have
started, if you let it pick one.

It is not practical to launch Spin code from a user’s Propeller Assembly code; we recommend
launching only assembly code with this instruction.

COGINIT is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See on page for more information.

T

Hub 24

COGSTOP – Assembly Language Reference

COGSTOP
Instruction: Start a cog by its ID.

COGSTOP CogID

• CogID (d-field) is the register containing the ID (0 – 7) of the cog to stop.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------011 Stopped ID = 0 No Cog Free Not Written 7..22

Concise Truth Table:
In Out

Destination Source
1 Z C Effects Destination

2,

3 Z C

4
 $0000_0000; 0 %0_00000011; 3

 - - wr wz wc $0000_0000; 0 1 0

 $0000_0005; 5 %0_00000011; 3 - - wr wz wc $0000_0005; 5 0 0

 $0000_0008; 8
5
 %0_00000011; 3 - - wr wz wc $0000_0000; 0 1 0

1 Source is automatically set to immediate value 3 by the assembler to indicate that this is the COGSTOP hub instruction.
2 Destination is not written unless the WR effect is given.
3 Destination Out (written Destination) indicates the cog that was stopped.
4 The C flag will be set (1) if all cogs were running prior to executing the COGSTOP instruction.
5 Only the lowest 3 bits of Destination In are utilized, so a value of 8 is seen as cog 0.

Explanation
The COGSTOP instruction stops a cog whose ID is in the register CogID, placing that cog into a
dormant state. In the dormant state, the cog ceases to receive System Clock pulses so that
power consumption is greatly reduced.

COGSTOP is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

If the WZ effect is specified, the Z flag will be set (1) if the ID of the cog that was stopped is
zero (0). If the WC effect is specified, the C flag will be set (1) if all cogs were running prior
to executing this instruction. If the WR effect is specified, Destination is written with the ID of
the cog that was stopped.

Page 286 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
New

3: Assembly Language Reference – Conditions (IF_x)

Conditions (IF_x)
Every Propeller Assembly instruction has an optional “condition” field that is used to
dynamically determine whether or not it executes when it is reached at run time. The basic
syntax for Propeller Assembly instructions is:

〈Label〉 〈Condition〉 Instruction Operands 〈Effects〉

The optional Condition field can contain one of 32 conditions (see IF_x (Conditions), page
295) and defaults to IF_ALWAYS when no condition is specified. During compilation, the 4-bit
Value representing the condition is used in place of the –CON– field’s default bits in the
instruction’s opcode.

This feature, along with proper use of instructions’ optional Effects field, makes Propeller
Assembly very powerful. For example, the C and Z flags can be affected at will and later
instructions can be conditionally executed based on those results.

When an instruction’s condition evaluates to FALSE, the instruction dynamically becomes a
NOP, elapsing 4 clock cycles but affecting no flags or registers. This makes the timing of
multi-decision code very deterministic since the same path of execution (same execution
time) can be used and yet can achieve one of many possible outcomes.

See IF_x (Conditions) on page 295 for more information.

Propeller Manual v1.1 · Page 287

CTRA, CTRB – Assembly Language Reference

CTRA, CTRB
Register: Counter A and Counter B control registers.

DAT

 〈Label〉 〈Condition〉 Instruction CTRA, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, CTRA 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction CTRB, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, CTRB 〈Effects〉
Result: Optionally, the counter control register is updated.

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. CTRA or CTRB may be used in either the

assembly instruction’s DestOperand or SrcOperand fields.
• SrcOperand is a constant expression used by Instruction to operate on, and optionally

write to, the CTRA or CTRB register in DestOperand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of CTRA or CTRB in SrcOperand.

Explanation
CTRA and CTRB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The CTRA and CTRB registers contain the
configuration settings of the Counter A and Counter B Modules, respectively.

CTRA and CTRB are read/write registers and can be used in either the DestOperand or
SrcOperand fields of an assembly instruction. The following code sets Counter A to NCO
mode on I/O pin 2. See Registers, page 338, and the Spin language CTRA, CTRB section, page
95, for more information.

 mov ctra, CtrCfg

CtrCfg long %0_00100_000_0000000_000000_000_000010

Page 288 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – DIRA, DIRB

DIRA, DIRB
Register: Direction registers for 32-bit ports A and B.

DAT

 〈Label〉 〈Condition〉 Instruction DIRA, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, DIRA 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DIRB, SrcOperand 〈Effects〉 (Reserved for future use)
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, DIRB 〈Effects〉 (Reserved for future use)
Result: Optionally, the direction register is updated.

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. DIRA or DIRB may be used in either the

assembly instruction’s DestOperand or SrcOperand fields.
• SrcOperand is a constant expression used by Instruction to operate on, and optionally

write to, the DIRA or DIRB register in DestOperand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of DIRA or DIRB in SrcOperand.

Explanation
DIRA and DIRB are one of six special purpose registers (DIRA, DIRB, INA, INB, OUTA and OUTB)
that directly affect the I/O pins. The DIRA and DIRB register’s bits indicate the direction states
for each of the 32 I/O pins in Port A and Port B, respectively. DIRB is reserved for future use;
the Propeller P8X32A does not include Port B I/O pins so only DIRA is discussed below.

DIRA is a read/write register and can be used in either the DestOperand or SrcOperand fields
of an assembly instruction. A low (0) bit sets the corresponding I/O pin to an input direction,
and a high (1) bit sets it to an output direction. The following code sets I/O pins P0 through
P3 to outputs.

mov dira, #$0F

See Registers, page 338, and the Spin language DIRA, DIRB section, page 104, for more
information. Keep in mind that in Propeller Assembly, unlike in Spin, all 32 bits of DIRA are
accessed at once unless the MUXx instructions are used.

Propeller Manual v1.1 · Page 289

jmartin
New

DJNZ – Assembly Language Reference

DJNZ
Instruction: Decrement value and jump to address if not zero.

DJNZ Value, 〈#〉 Address
Result: Value-1 is written to Value.

• Value (d-field) is the register to decrement and test.
• Address (s-field) is the register or a 9-bit literal whose value is the address to jump to

when the decremented Value is not zero.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111001 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Written 4 or 8

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0002; 2 $----_----; - - - wz wc $0000_0001; 1 0 0

$0000_0001; 1 $----_----; - - - wz wc $0000_0000; 0 1 0

$0000_0000; 0 $----_----; - - - wz wc $FFFF_FFFF; -1 0 1

Explanation
DJNZ decrements the Value register and jumps to Address if the result is not zero.

When the WZ effect is specified, the Z flag is set (1) if the decremented Value is zero. When
the WC effect is specified, the C flag is set (1) if the decrement results in an unsigned borrow
(32-bit overflow). The decremented result is written to Value unless the NR effect is specified.

DJNZ requires a different amount of clock cycles depending on whether or not it has to jump.
If it must jump it takes 4 clock cycles, if no jump occurs it takes 8 clock cycles. Since loops
utilizing DJNZ need to be fast, it is optimized in this way for speed.

Page 290 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – Effects (WC, WZ, WR, NR)

Effects (WC, WZ, WR, NR)
Every Propeller Assembly instruction has an optional “effects” field that causes it to modify a
flag or register when it executes. The basic syntax for Propeller Assembly instructions is:

〈Label〉 〈Condition〉 Instruction Operands 〈Effects〉

The optional Effects field can contain one or more of the four items shown below. For any
effect not specified next to the instruction in code, the default behavior remains as indicated
by the corresponding bit (Z, C, or R) in the ZCRI field of the instruction’s opcode.

Table 3-2: Effects
Effect Description
WC Updates C Flag. See WC, page 372.
WZ Updates Z Flag. See WZ, page 377.
WR Updates Destination Register. See WR, page 373.
NR Preserves Destination Register. See NR, page 325.

Follow an instruction with one to three comma-delimited Effects to cause that instruction to
affect the indicated item. For example:

 and temp1, #$20 wc
 andn temp2, #$38 wz, nr
 if_c_and_z jmp #MoreCode

The first instruction performs a bitwise AND of the value in the temp1 register with $20,
stores the result in temp1 and modifies with C flag to indicate the parity of the result. The
second instruction performs a bitwise AND NOT of the value in the temp2 register with $38,
modifies the Z flag according to whether or not the result is zero, and does not write the result
to temp2. During the execution of the first instruction, the Z flag is not altered. During the
execution of the second instruction, the C flag is not altered. If these instructions did not
include the WC and WZ effects, those flags would not be altered at all. The third instruction,
which specifies a Condition, jumps to the MoreCode label (not shown) but only if both the C
and Z flags are set; otherwise, the JMP instruction acts like a NOP instruction.

Using Effects on instructions, along with Conditions on later instructions, enables code to be
much more powerful than what is possible with typical assembly languages. See IF_x
(Conditions) on page 295 for more information.

Propeller Manual v1.1 · Page 291

jmartin
Improved

jmartin
New

jmartin
Improved

FIT – Assembly Language Reference

Page 292 · Propeller Manual v1.1

FIT
Directive: Validate that previous instructions/data fit entirely below a specific address.

FIT 〈Address〉
Result: Compile-time error if previous instructions/data exceed Address-1.

• Address is an optional Cog RAM address (0-$1F0) for which prior assembly code
should not reach. If Address is not given, the value $1F0 is used (the address of the
first special purpose register).

Explanation
The FIT directive checks the current compile-time cog address pointer and generates an error
if it is beyond Address-1 or if it is beyond $1EF (the end of general purpose Cog RAM). This
directive can be used to ensure that the previous instructions and data fit within Cog RAM, or
a limited region of Cog RAM. Note: any instructions that do not fit in Cog RAM will be left
out when the assembly code is launched into the cog. Consider the following example:

DAT
 ORG 492
Toggle mov dira, Pin
:Loop mov outa, Pin
 mov outa, #0
 jmp #:Loop

Pin long $1000

 FIT

This code was artificially pushed into upper Cog RAM space by the ORG statement, causing
the code to overlap the first special purpose register ($1F0) and causing the FIT directive to
cause a compile-time error when the code is compiled.

T

3: Assembly Language Reference – FRQA, FRQB

FRQA, FRQB
Register: Counter A and Counter B frequency registers.

DAT

 〈Label〉 〈Condition〉 Instruction FRQA, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, FRQA 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction FRQB, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, FRQB 〈Effects〉
Result: Optionally, the counter frequency register is updated.

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. FRQA or FRQB may be used in either the

assembly instruction’s DestOperand or SrcOperand fields.
• SrcOperand is a constant expression used by Instruction to operate on, and optionally

write to, the FRQA or FRQB register in DestOperand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of FRQA or FRQB in SrcOperand.

Explanation
FRQA and FRQB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The FRQA and FRQB registers contain the value that is
accumulated into the PHSA and PHSB registers, respectively, according to the corresponding
counter’s mode and input stimulus. See the Spin language CTRA, CTRB section, page 95, for
more information.

FRQA and FRQB are read/write registers and can be used in either the DestOperand or
SrcOperand fields of an assembly instruction. The following code sets FRQA to $F. See
Registers, page 338, and the Spin language FRQA, FRQB section, page 111, for more
information.

 mov frqa, #$F

Propeller Manual v1.1 · Page 293

jmartin
New

HUBOP – Assembly Language Reference

Page 294 · Propeller Manual v1.1

HUBOP
Instruction: Perform a hub operation.

HUBOP Destination, 〈#〉 Operation
Result: Varies depending on the operation performed.

• Destination (d-field) is the register containing a value to use in the Operation.
• Operation (s-field) is a register or a 3-bit literal that indicates the hub operation to

perform.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 7..22

Concise Truth Table:
(Not specified because it varies with each hub operation. See CLKSET, page 271; COGID, page
283; COGINIT, page 284; COGSTOP, page 286; LOCKNEW, page 304; LOCKRET, page ; LOCKSET

306
T 305 T,

page , and LOCKCLR, page .) 303

Explanation
HUBOP is the template for every hub operation instruction in the Propeller chip: CLKSET, T COGID,
COGINITT, COGSTOP, LOCKNEW, LOCKRET, T LOCKSET, and LOCKCLR. The instructions that perform hub
operations set the Operation field (s-field of the opcode) to the 3-bit immediate value that
represents the desired operation (see the opcode of each hub instruction’s syntax description
for more information). The HUBOP instruction itself should rarely be used, but may be handy
for special situations.

HUBOP is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute depending
on the relation between the cog’s hub access window and the instruction’s moment of
execution. See Hub on page 24 for more information.

3: Assembly Language Reference – IF_x (Conditions)

IF_x (Conditions)
Every Propeller Assembly instruction has an optional “condition” field that is used to
dynamically determine whether or not it executes when it is reached at run time. The basic
syntax for Propeller Assembly instructions is:

〈Label〉 〈Condition〉 Instruction Operands 〈Effects〉

The optional Condition field can contain one of 32 conditions (see Table 3-3) and defaults to
IF_ALWAYS when no condition is specified. The 4-bit Value shown for each condition is the
value used for the –CON– field in the instruction’s opcode.

This feature, along with proper use of instructions’ optional Effects field, makes Propeller
Assembly very powerful. Flags can be affected at will and later instructions can be
conditionally executed based on the results. Here’s an example:

 test _pins, #$20 wc
 and _pins, #$38
 shl t1, _pins
 shr _pins, #3
 movd vcfg, _pins
 if_nc mov dira, t1
 if_nc mov dirb, #0
 if_c mov dira, #0
 if_c mov dirb, t1

The first instruction, test _pins, #$20 wc, performs its operation and adjusts the state of
the C flag because the WC effect was specified. The next four instructions perform operations
that could affect the C flag, but they do not affect it because no WC effect was specified. This
means that the state of the C flag is preserved since it was last modified by the first
instruction. The last four instructions are conditionally executed based on the state of the C
flag that was set five instructions prior. Among the last four instructions, the first two mov
instructions have if_nc conditions, causing them to execute only “if not C” (if C = 0). The
last two mov instructions have if_c conditions, causing them to execute only “if C” (if C = 1).
In this case, the two pairs of mov instructions are executed in a mutually exclusive fashion.

When an instruction’s condition evaluates to FALSE, the instruction dynamically becomes a
NOP, elapsing 4 clock cycles but affecting no flags or registers. This makes the timing of
multi-decision code very deterministic.

Propeller Manual v1.1 · Page 295

jmartin
New

IF_x (Conditions) – Assembly Language Reference

Page 296 · Propeller Manual v1.1

Table 3-3: Conditions
Condition Instruction Executes Value Synonyms

IF_ALWAYS always 1111

IF_NEVER never 0000

IF_E if equal (Z = 1) 1010 IF_Z

IF_NE if not equal (Z = 0) 0101 IF_NZ

IF_A if above (!C & !Z = 1) 0001 IF_NC_AND_NZ –and– IF_NZ_AND_NC
IF_B if below (C = 1) 1100 IF_C

IF_AE if above or equal (C = 0) 0011 IF_NC

IF_BE if below or equal (C | Z = 1) 1110 IF_C_OR_Z –and– IF_Z_OR_C
IF_C if C set 1100 IF_B

IF_NC if C clear 0011 IF_AE

IF_Z if Z set 1010 IF_E

IF_NZ if Z clear 0101 IF_NE

IF_C_EQ_Z if C equal to Z 1001 IF_Z_EQ_C

IF_C_NE_Z if C not equal to Z 0110 IF_Z_NE_C

IF_C_AND_Z if C set and Z set 1000 IF_Z_AND_C

IF_C_AND_NZ if C set and Z clear 0100 IF_NZ_AND_C

IF_NC_AND_Z if C clear and Z set 0010 IF_Z_AND_NC

IF_NC_AND_NZ if C clear and Z clear 0001 IF_A –and– IF_NZ_AND_NC
IF_C_OR_Z if C set or Z set 1110 IF_BE –and– IF_Z_OR_C
IF_C_OR_NZ if C set or Z clear 1101 IF_NZ_OR_C

IF_NC_OR_Z if C clear or Z set 1011 IF_Z_OR_NC

IF_NC_OR_NZ if C clear or Z clear 0111 IF_NZ_OR_NC

IF_Z_EQ_C if Z equal to C 1001 IF_C_EQ_Z

IF_Z_NE_C if Z not equal to C 0110 IF_C_NE_Z

IF_Z_AND_C if Z set and C set 1000 IF_C_AND_Z

IF_Z_AND_NC if Z set and C clear 0010 IF_NC_AND_Z

IF_NZ_AND_C if Z clear and C set 0100 IF_C_AND_NZ

IF_NZ_AND_NC if Z clear and C clear 0001 IF_A –and– IF_NC_AND_NZ
IF_Z_OR_C if Z set or C set 1110 IF_BE –and– IF_C_OR_Z
IF_Z_OR_NC if Z set or C clear 1011 IF_NC_OR_Z

IF_NZ_OR_C if Z clear or C set 1101 IF_C_OR_NZ

IF_NZ_OR_NC if Z clear or C clear 0111 IF_NC_OR_NZ

3: Assembly Language Reference – INA, INB

INA, INB
Register: Input registers for 32-bit ports A and B.

DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, INA 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, INB 〈Effects〉 (Reserved for future use)

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. INA and INB are read-only registers and

thus should only be used in the instruction’s source operand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of the instruction’s source operand; INA or INB.

Explanation
INA and INB are one of six special purpose registers (DIRA, DIRB, INA, INB, OUTA and OUTB) that
directly affect the I/O pins. The INA and INB register’s bits indicate the current logical states
of each of the 32 I/O pins in Port A and Port B, respectively. INB is reserved for future use;
the Propeller P8X32A does not include Port B I/O pins so only INA is discussed below.

INA is a read-only pseudo-register; when used as an instruction’s source operand, it reads the
current logic state of the corresponding I/O pins. Do not use INA as the destination operand;
that only results in reading and modifying the shadow register whose address INA occupies.

In INA, a low (0) bit indicates the corresponding I/O pin senses ground, and a high (1) bit
indicates it senses VDD (3.3 volts). The following code writes the current state of I/O pins
P0 through P31 into a register named Temp.

 mov Temp, ina

See Registers, page 338, and the Spin language INA, INB section, page 118, for more
information. Keep in mind that in Propeller Assembly, unlike in Spin, all 32 bits of INA are
accessed at once unless the MUXx instructions are used.

Propeller Manual v1.1 · Page 297

jmartin
New

JMP – Assembly Language Reference

JMP
Instruction: Jump to address.

JMP 〈#〉 Address

• Address (s-field) is the register or a 9-bit literal whose value is the address to jump to.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010111 000i 1111 --------- sssssssss Result = 0 --- Not Written 4

Concise Truth Table:
In Out

Destination
1 Source Z C Effects Destination

2 Z C
3

$----_----; - $----_----; - - - wr wz wc 31:9 unchanged, 8:0 = PC+1 0 1
1 Destination is normally ignored for typical JMP usage, however if the WR effect is given, the JMP instruction becomes a JMPRET

instruction and Destination’s s-field (lowest 9 bits) are overwritten with the return address (PC+1).
2 Destination is not written unless the WR effect is given.
3 The C flag is set (1) unless PC+1 equals 0; very unlikely since it would require the JMP to be executed from the top of cog RAM

($1FF; special purpose register VSCL).

Explanation
JMP sets the Program Counter (PC) to Address causing execution to jump to that location in
Cog RAM. JMP is closely related to the CALL, JMPRET, and RET commands; in fact, they are all
the same opcode but with different r-field and i-field values and varying assembler-driven
and user-driven d-field and s-field values.

Conditional Jumps
Conditional jumps, and conditional execution of any instruction, is achieved by preceding the
instruction with a condition in the form: IF_x. See IF_x (Conditions) on page 295 for more
information.

The Here Symbol ‘$’
The ‘Here’ Symbol, $, represents the current address. During development and debugging,
the Here Symbol ‘$’ is often used in the JMP instruction’s Address field (i.e., JMP #$) to
cause the cog to endlessly loop in place. It may also be used as a relative jump back or
forward a number of instructions, for example:

Page 298 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
New

jmartin
New

3: Assembly Language Reference – JMP

Propeller Manual v1.1 · Page 299

Toggle mov dira, Pin 'Set I/O pin to output
 xor outa, Pin 'Toggle I/O pin's state
 jmp #$-1 'Loop back endlessly

The last instruction, JMP #$-1, causes execution to jump back to the second-to-last instruction
(i.e., ‘here’ minus 1).

JMPRET – Assembly Language Reference

Page 300 · Propeller Manual v1.1

JMPRET
Instruction: Jump to address with intention to “return” to another address.

JMPRET RetInstAddr, 〈#〉 DestAddress
Result: PC + 1 is written to the s-field of the register indicated by the d-field.

• RetInstAddr (d-field) is the register in which to store the return address (PC + 1); often
it is the address of an appropriate RET or JMP instruction executed by the DestAddress
routine.

• DestAddress (s-field) is the register or 9-bit literal whose value is the address of the
routine to temporarily execute.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010111 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

2
$----_----; - $----_----; - - - wz wc 31:9 unchanged, 8:0 = PC+1 0 1

1 The Destination register’s s-field (lowest 9 bits) are overwritten with the return address (PC+1) at run-time.
2 The C flag is set (1) unless PC+1 equals 0; very unlikely since it would require the JMPRET to be executed from the top of cog RAM

($1FF; special purpose register VSCL).

Explanation
JMPRET (jump and return) provides a mechanism to “call” other routines and eventually return
to the instruction that follows the JMPRET. For normal subroutine calls, use the CALL
instruction instead since it serves a function similar to its namesake in other processors. The
JMPRET instruction provides additional power beyond simple “calling” to execute multiple
routines in a task switching manner.

T

The Propeller hardware does not use a call stack, so the return address of a call-type operation
must be stored in a different manner. At run time the JMPRET instruction stores the address of
the next instruction (PC + 1) into the source (s-field) of the register at RetInstAddr, then
jumps to DestAddress.

If the RetInstAddr register contains a RET or JMP instruction and it is eventually executed by
the DestAddress routine, the behavior is similar to a CALL instruction; the return address is

jmartin
New

jmartin
New

3: Assembly Language Reference – JMPRET
stored, the DestAddress routine is executed, and finally control returns to the instruction
following the JMPRET. See CALL on page 268 for more information.

When used a little differently, the JMPRET instruction can aid in single-process multi-tasking.
This is done by defining a set of registers to hold various destination and return addresses and
specifying those registers for the RetInstAddr and DestAddress fields. For example:

Initialize mov Task2, #SecondTask 'Initialize 1st Dest.

FirstTask <start of first task>
 ...
 jmpret Task1, Task2 'Give 2nd task cycles
 <more first task code>
 ...
 jmpret Task1, Task2 'Give 2nd task cycles
 jmp #FirstTask 'Loop first task

SecondTask <start of second task>
 ...
 jmpret Task2, Task1 'Give 1st task cycles
 <more second task code>
 ...
 jmpret Task2, Task1 'Give 1st task cycles
 jmp #SecondTask 'Loop second task

Task1 res 1 'Declare task address
Task2 res 1 'storage space

In this example there are two routines, FirstTask and SecondTask, which serve as separate
tasks in the cog process. The function each task performs is relatively irrelevant; they may do
similar or dissimilar operations. Task1 and Task2 are longs, declared at the end of code, used
to hold the destination and return addresses that facilitate the switching of execution between
the two tasks.

The first instruction, mov Task2,#SecondTask, stores the address of SecondTask into the Task2
register. This primes the task registers for the first task-switch event.

Once FirstTask starts, it performs some operations denoted by “…” and reaches the first
JMPRET instruction, jmpret Task1,Task2. First, JMPRET saves the return address (PC + 1, the
address of <more first task code>) into the s-field of the Task1 register, then it jumps to the

Propeller Manual v1.1 · Page 301

JMPRET – Assembly Language Reference

Page 302 · Propeller Manual v1.1

address indicated by Task2. Since we initialized Task2 to point to SecondTask, the second
task will now be executed.

SecondTask performs some operations denoted by “…” and reaches another JMPRET
instruction, jmpret Task2,Task1. Note that this is similar to FirstTask’s JMPRET instruction
except the order of Task1 and Task2 is reversed. This JMPRET instruction saves the return
address (PC + 1, the address of <more second task code>) into the s-field of the Task2
register, then it jumps to the address indicated by Task1. Since Task1 contains the address of
<more first task code>, as written by the previous JMPRET instruction, execution now
switches back to FirstTask starting with the <more first task code> line.

Execution continues to switch back and forth between FirstTask and SecondTask wherever
the JMPRET instruction exists, faithfully returning to where the previous task left off last time.
Each JMPRET instruction overwrites the previously used destination address with the new
return address and then jumps to the new destination; the return address from last time.

This multitasking concept can be applied in a number of ways. For example, removing one
of the JMPRET instructions from SecondTask will cause FirstTask to receive fewer cog cycles
per unit of time. Techniques like this may be used allocate more cog cycles to time-sensitive
tasks, or to time-sensitive portions of tasks. It’s also possible to introduce more Task registers
to multitask between three or more routines in the same cog. The processing time of each
task is always determinate and based upon where the JMPRET instructions are placed and
which tasks they refer to.

Note that the state of the flags, C and Z, are unchanged and are not stored between these
logical task-switching events. For this reason, it is important to switch between tasks only
when the flags are no longer needed or are not in danger of changing states before execution
returns.

JMPRET is a superset of the CALL instruction; in fact, it is the same opcode as CALL but with the
i-field and d-field configured by the developer, rather than the assembler. See CALL on page
268 for more information.

The return address (PC + 1) is written to the source (s-field) of the RetInstAddr register unless
the NR effect is specified. Of course, specifying NR is not recommended for the JMPRET
instruction since that turns it into a JMP, or RET, instruction.

3: Assembly Language Reference – LOCKCLR

Propeller Manual v1.1 · Page 303

LOCKCLR
Instruction: Clear lock to false and get its previous state.

LOCKCLR ID
Result: Optionally, previous state of lock is written to C flag.

• ID (d-field) is the register containing the ID (0 – 7) of the lock to clear.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------111 ID = 0 Prior Lock State Not Written 7..22

Concise Truth Table:
In Out

Destination Source
1 Z C Effects Destination

2,

3 Z C

 $0000_0005; 5 %0_00000111; 7 - - wr wz wc $0000_0005; 5 0 1
4

 $0000_0005; 5 %0_00000111; 7 - - wr wz wc $0000_0005; 5 0 0

 $0000_0000; 0 %0_00000111; 7 - - wr wz wc $0000_0000; 0 1 1
4

 $0000_0000; 0 %0_00000111; 7 - - wr wz wc $0000_0000; 0 1 0

 $0000_0008; 8
5
 %0_00000111; 7 - - wr wz wc $0000_0000; 0 1 0

1 Source is automatically set to immediate value 7 by the assembler to indicate that this is the LOCKCLR hub instruction.
2 Destination is not written unless the WR effect is given.
3 Destination Out (written Destination) indicates the ID of the lock bit that was cleared.
4 The C flag indicates the previous state of the lock bit; in these cases the lock bit was previously set by a formerly executed LOCKSET

instruction (not shown). The next example clears the C flag because the lock bit was just cleared by the previous example.
5 Only the lowest 3 bits of Destination In are utilized, so a value of 8 is seen as lock bit ID 0.

Explanation
LOCKCLR is one of four lock instructions (LOCKNEW, LOCKRET, T LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKCLR clears the
lock described by the register ID to zero (0) and returns the previous state of that lock in the
C flag; if the WC effect is specified. The LOCKCLR instruction behaves similar to Spin’s LOCKCLR
command; see LOCKCLR on page 120.

If the WZ effect is specified, the Z flag is set (1) if the ID of the cleared lock is zero (0). If the
WC effect is specified, the C flag is set equal to the previous state of the lock. If the WR effect
is specified, the ID of the cleared lock is written to ID.

LOCKCLR is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

jmartin
New

jmartin
Improved

jmartin
New

LOCKNEW – Assembly Language Reference

Page 304 · Propeller Manual v1.1

LOCKNEW
Instruction: Check out a new lock and get its ID.

LOCKNEW NewID
Result: The new lock’s ID (0-7) is written to NewID.

• NewID (d-field) is the register where the newly checked-out lock’s ID is written.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0011 1111 ddddddddd ------100 ID = 0 No Lock Free Written 7..22

Concise Truth Table:
In Out

Destination Source
1 Z C Effects Destination Z C

$----_----; - %0_00000100; 4 - - wz wc $0000_0000; 0 1 0

$----_----; - %0_00000100; 4 - - wz wc $0000_0001; 1 0 0

$----_----; - %0_00000100; 4 - - wz wc $0000_0002; 2 0 0

$----_----; - %0_00000100; 4 - - wz wc $0000_0003; 3 0 0

$----_----; - %0_00000100; 4 - - wz wc $0000_0004; 4 0 0

$----_----; - %0_00000100; 4 - - wz wc $0000_0005; 5 0 0

$----_----; - %0_00000100; 4 - - wz wc $0000_0006; 6 0 0

$----_----; - %0_00000100; 4 - - wz wc $0000_0007; 7 0 0

$----_----; - %0_00000100; 4 - - wz wc $0000_0007; 7 0 1
1 Source is automatically set to immediate value 4 by the assembler to indicate that this is the LOCKNEW hub instruction.

Explanation
LOCKNEW is one of four lock instructions (LOCKNEW, LOCKRET, T LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKNEW checks out a
unique lock, from the hub, and retrieves the ID of that lock. The LOCKNEW instruction behaves
similar to Spin’s LOCKNEW command; see LOCKNEW on page . 122

If the WZ effect is specified, the Z flag is set (1) if the returned ID is zero (0). If the WC effect
is specified, the C flag is set (1) if no lock was available for checking out. The ID of the
newly checked-out lock is written to NewID unless the NR effect is specified.

LOCKNEW is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

jmartin
New

jmartin
Improved

3: Assembly Language Reference – LOCKRET

Propeller Manual v1.1 · Page 305

LOCKRET
Instruction: Release lock back for future “new lock” requests.

LOCKRET ID

• ID (d-field) is the register containing the ID (0 – 7) of the lock to return to the lock
pool.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------101 ID = 0 No Lock Free Not Written 7..22

Concise Truth Table:
In Out

Destination Source
1 Z C Effects Destination

2 Z C
3

 $0000_0000; 0 %0_00000101; 5 - - wr wz wc $0000_0000; 0 1 0

 $0000_0005; 5 %0_00000101; 5 - - wr wz wc $0000_0005; 5 0 0

 $0000_0008; 8
4
 %0_00000101; 5 - - wr wz wc $0000_0000; 0 1 0

1 Source is automatically set to immediate value 5 by the assembler to indicate that this is the LOCKRET hub instruction.
2 Destination is not written unless the WR effect is given.
3 The C flag will be set (1) if all lock bits were allocated prior to executing the LOCKRET instruction.
4 Only the lowest 3 bits of Destination In are utilized, so a value of 8 is seen as lock bit ID 0.

Explanation
LOCKRET is one of four lock instructions (T LOCKNEW, LOCKRETT, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKRET returns a
lock, by ID, back to the Hub’s lock pool so that it may be reused by other cogs at a later time.
The LOCKRET instruction behaves similar to Spin’s T LOCKRET command; see LOCKRET
125

T on page
.

If the WZ effect is specified, the Z flag is set (1) if the ID of the returned lock is zero (0). If the
WC effect is specified, the C flag is set (1) if all lock bits were allocated prior to executing this
instruction. If the WR effect is specified, the ID of the returned lock is written to ID.

LOCKRET is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See on page for more information.

T

Hub 24

jmartin
New

jmartin
Improved

jmartin
New

LOCKSET – Assembly Language Reference

Page 306 · Propeller Manual v1.1

LOCKSET
Instruction: Set lock to true and get its previous state.

LOCKSET ID
Result: Optionally, previous state of lock is written to C flag.

• ID (d-field) is the register containing the ID (0 – 7) of the lock to set.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------110 ID = 0 Prior Lock State Not Written 7..22

Concise Truth Table:
In Out

Destination Source
1 Z C Effects Destination

2,

3 Z C

 $0000_0005; 5 %0_00000110; 6 - - wr wz wc $0000_0005; 5 0 0

 $0000_0005; 5 %0_00000110; 6 - - wr wz wc $0000_0005; 5 0 1
4

 $0000_0000; 0 %0_00000110; 6 - - wr wz wc $0000_0000; 0 1 0

 $0000_0000; 0 %0_00000110; 6 - - wr wz wc $0000_0000; 0 1 1
4

 $0000_0008; 8
5
 %0_00000110; 6 - - wr wz wc $0000_0000; 0 1 1

4

1 Source is automatically set to immediate value 6 by the assembler to indicate that this is the LOCKSET hub instruction.
2 Destination is not written unless the WR effect is given.
3 Destination Out (written Destination) indicates the ID of the lock bit that was set.
4 The C flag indicates the previous state of the lock bit; in these cases the lock bit was already set from the previous example.
5 Only the lowest 3 bits of Destination In are utilized, so a value of 8 is seen as lock bit ID 0.

Explanation
LOCKSET is one of four lock instructions (T LOCKNEW, LOCKRETT, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKSET sets the lock
described by the register ID to one (1) and returns the previous state of that lock in the C flag;
if the

T

WC effect is specified. The LOCKSET instruction behaves similar to Spin’s LOCKSETT
command; see LOCKSET on page 126.

If the WZ effect is specified, the Z flag is set (1) if the ID of the set lock is zero (0). If the WC
effect is specified, the C flag is set equal to the previous state of the lock. If the WR effect is
specified, the ID of the set lock is written to ID.

LOCKSET is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See on page for more information.

T

Hub 24

jmartin
New

jmartin
Improved

jmartin
New

3: Assembly Language Reference – MAX

MAX
Instruction: Limit maximum of unsigned value to another unsigned value.

MAX Value1, 〈#〉 Value2
Result: Lesser of unsigned Value1 and unsigned Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to compare against Value2 and is
the destination in which to write the lesser of the two.

• Value2 (s-field) is a register or a 9-bit literal whose value is compared against Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010011 001i 1111 ddddddddd sssssssss S = 0 Unsigned (D < S) Written 4

Concise Truth Table:
In Out

Destination
1 Source

1 Z C Effects Destination Z C
$0000_0001; 1 $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0001; 1 $0000_0002; 2 - - wz wc $0000_0001; 1 0 1

$0000_0000; 0 $0000_0001; 1 - - wz wc $0000_0000; 0 0 1

$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0002; 2 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

1 Both Source and Destination are treated as unsigned values.

Explanation
MAX compares the unsigned values of Value1 and Value2 and stores the lesser of the two into
the Value1 register, effectively limiting Value1 to a maximum of Value2.

If the WZ effect is specified, the Z flag is set (1) if Value2 is zero (0). If the WC effect is
specified, the C flag is set (1) if the unsigned Value1 is less than the unsigned Value2. The
lesser of the two values is written to Value1 unless the NR effect is specified.

Propeller Manual v1.1 · Page 307

jmartin
New

jmartin
Improved

jmartin
Improved

MAXS – Assembly Language Reference

MAXS
Instruction: Limit maximum of signed value to another signed value.

MAXS SValue1, 〈#〉 SValue2
Result: Lesser of signed SValue1 and signed SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to compare against SValue2 and
is the destination in which to write the lesser of the two.

• SValue2 (s-field) is a register or a 9-bit literal whose value is compared against
SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010001 001i 1111 ddddddddd sssssssss S = 0 Signed (D < S) Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $FFFF_FFFF; -1 - - wz wc $FFFF_FFFF; -1 0 0

$0000_0001; 1 $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0001; 1 $0000_0002; 2 - - wz wc $0000_0001; 1 0 1

$FFFF_FFFF; -1 $0000_0001; 1 - - wz wc $FFFF_FFFF; -1 0 1

$0000_0000; 0 $0000_0001; 1 - - wz wc $0000_0000; 0 0 1

$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0002; 2 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

Explanation
MAXS compares the signed values of SValue1 and SValue2 and stores the lesser of the two into
the SValue1 register, effectively limiting SValue1 to a maximum of SValue2.

If the WZ effect is specified, the Z flag is set (1) if SValue2 is zero (0). If the WC effect is
specified, the C flag is set (1) if the signed SValue1 is less than the signed SValue2. The
lesser of the two values is written to SValue1 unless the NR effect is specified.

Page 308 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
Improved

3: Assembly Language Reference – MIN

MIN
Instruction: Limit minimum of unsigned value to another unsigned value.

MIN Value1, 〈#〉 Value2
Result: Greater of unsigned Value1 and unsigned Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to compare against Value2 and is
the destination in which to write the greater of the two.

• Value2 (s-field) is a register or a 9-bit literal whose value is compared against Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010010 001i 1111 ddddddddd sssssssss S = 0 Unsigned (D < S) Written 4

Concise Truth Table:
In Out

Destination
1 Source

1 Z C Effects Destination Z C
$0000_0001; 1 $0000_0002; 2 - - wz wc $0000_0001; 2 0 1

$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0001; 1 $0000_0000; 0 - - wz wc $0000_0001; 1 1 0

$0000_0002; 2 $0000_0001; 1 - - wz wc $0000_0001; 2 0 0

$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0000; 0 $0000_0001; 1 - - wz wc $0000_0001; 1 0 1
1 Both Source and Destination are treated as unsigned values.

Explanation
MIN compares the unsigned values of Value1 and Value2 and stores the greater of the two into
the Value1 register, effectively limiting Value1 to a minimum of Value2.

If the WZ effect is specified, the Z flag is set (1) if Value2 is zero (0). If the WC effect is
specified, the C flag is set (1) if the unsigned Value1 is less than the unsigned Value2. The
greater of the two values is written to Value1 unless the NR effect is specified.

Propeller Manual v1.1 · Page 309

jmartin
New

jmartin
Improved

jmartin
Improved

MINS – Assembly Language Reference

MINS
Instruction: Limit minimum of signed value to another signed value.

MINS SValue1, 〈#〉 SValue2
Result: Greater of signed SValue1 and signed SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to compare against SValue2 and
is the destination in which to write the greater of the two.

• SValue2 (s-field) is a register or a 9-bit literal whose value is compared against
SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010000 001i 1111 ddddddddd sssssssss S = 0 Signed (D < S) Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $0000_0002; 2 - - wz wc $0000_0002; 2 0 1

$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0001; 1 $0000_0000; 0 - - wz wc $0000_0001; 1 1 0

$0000_0001; 1 $FFFF_FFFF; -1 - - wz wc $0000_0001; 1 0 0

$0000_0002; 2 $0000_0001; 1 - - wz wc $0000_0002; 2 0 0

$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0000; 0 $0000_0001; 1 - - wz wc $0000_0001; 1 0 1

$FFFF_FFFF; -1 $0000_0001; 1 - - wz wc $0000_0001; 1 0 1

Explanation
MINS compares the signed values of SValue1 and SValue2 and stores the greater of the two
into the SValue1 register, effectively limiting SValue1 to a minimum of SValue2.

If the WZ effect is specified, the Z flag is set (1) if SValue2 is zero (0). If the WC effect is
specified, the C flag is set (1) if the signed SValue1 is less than the signed SValue2. The
greater of the two values is written to SValue1 unless the NR effect is specified.

Page 310 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
Improved

3: Assembly Language Reference – MOV

MOV
Instruction: Set a register to a value.

MOV Destination, 〈#〉 Value
Result: Value is stored in Destination.

• Destination (d-field) is the register in which to store Value.
• Value (s-field) is a register or a 9-bit literal whose value is stored into Destination.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101000 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$----_----; - $FFFF_FFFF; -1 - - wz wc $FFFF_FFFF; -1 0 1

$----_----; - $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$----_----; - $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

Explanation
MOV copies, or stores, the number in Value into Destination.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. If the WC effect is
specified, the C flag is set to Value’s MSB. The result is written to Destination unless the NR
effect is specified.

Propeller Manual v1.1 · Page 311

jmartin
New

MOVD – Assembly Language Reference

MOVD
Instruction: Set a register’s destination field to a value.

MOVD Destination, 〈#〉 Value
Result: Value is stored in Destination’s d-field (bits 17..9).

• Destination (d-field) is the register whose destination field (bits 17..9) is set to Value’s
value.

• Value (s-field) is a register or a 9-bit literal whose value is stored into Destination’s d-
field.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010101 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_01FF; 511 - - wz wc $0003_FE00; 261,632 0 1

$FFFF_FFFF; -1 $0000_01FF; 511 - - wz wc $FFFF_FFFF; -1 0 0

$FFFF_FFFF; -1 $0000_0000; 0 - - wz wc $FFFC_01FF; -261,633 0 0

Explanation
MOVD copies the 9-bit value of Value into Destination’s d-field (destination field) bits 17..9.
Destination’s other bits are left unchanged. This instruction is handy for setting certain
registers like CTRA and VCFG, and for updating the destination field of instructions in self-
modifying code.

For self-modifying code, ensure that at least one other instruction is executed between a MOVD
instruction and the target instruction that MOVD modifies. This gives the cog time to write
MOVD’s result before it fetches the target instruction for execution; otherwise, the as-yet-
unmodified version of the target instruction would be fetched and executed.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. The result is written to
Destination unless the NR effect is specified.

Page 312 · Propeller Manual v1.1

jmartin
New

jmartin
New

3: Assembly Language Reference – MOVI

MOVI
Instruction: Set a register’s instruction and effects fields to a value.

MOVI Destination, 〈#〉 Value
Result: Value is stored in Destination’s i-field and effects-field (bits 31..23).

• Destination (d-field) is the register whose instruction and effects fields (bits 31..23) are
set to Value’s value.

• Value (s-field) is a register or a 9-bit literal whose value is stored into Destination’s
instruction and effects field.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010110 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_01FF; 511 - - wz wc $FF80_0000; -8,388,608 0 1

$FFFF_FFFF; -1 $0000_01FF; 511 - - wz wc $FFFF_FFFF; -1 0 0

$FFFF_FFFF; -1 $0000_0000; 0 - - wz wc $007F_FFFF; 8,388,607 0 0

Explanation
MOVI copies the 9-bit value of Value into Destination’s instruction and effects fields bits
31..23. Destination’s other bits are left unchanged. This instruction is handy for setting
certain registers like CTRA and VCFG, and for updating the instruction and effects fields of
instructions in self-modifying code.

For self-modifying code, ensure that at least one other instruction is executed between a MOVI
instruction and the target instruction that MOVI modifies. This gives the cog time to write
MOVI’s result before it fetches the target instruction for execution; otherwise, the as-yet-
unmodified version of the target instruction would be fetched and executed.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. The result is written to
Destination unless the NR effect is specified.

Propeller Manual v1.1 · Page 313

jmartin
New

jmartin
New

MOVS – Assembly Language Reference

MOVS
Instruction: Set a register’s source field to a value.

MOVS Destination, 〈#〉 Value
Result: Value is stored in Destination’ s-field (bits 8..0).

• Destination (d-field) is the register whose source field (bits 8..0) is set to Value’s
value.

• Value (s-field) is a register or a 9-bit literal whose value is stored into Destination’s
source field.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010100 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_01FF; 511 - - wz wc $0000_01FF; 511 0 1

$FFFF_FFFF; -1 $0000_01FF; 511 - - wz wc $FFFF_FFFF; -1 0 0

$FFFF_FFFF; -1 $0000_0000; 0 - - wz wc $FFFF_FE00; -512 0 0

Explanation
MOVS copies the 9-bit value of Value into Destination’s source field (s-field) bits 8..0.
Destination’s other bits are left unchanged. This instruction is handy for setting certain
registers like CTRA and VCFG, and for updating the source field of instructions in self-
modifying code.

For self-modifying code, ensure that at least one other instruction is executed between a MOVS
instruction and the target instruction that MOVS modifies. This gives the cog time to write
MOVS’s result before it fetches the target instruction for execution; otherwise, the as-yet-
unmodified version of the target instruction would be fetched and executed.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. The result is written to
Destination unless the NR effect is specified.

Page 314 · Propeller Manual v1.1

jmartin
New

jmartin
New

3: Assembly Language Reference – MUXC

MUXC
Instruction: Set discrete bits of a value to the state of C.

MUXC Destination, 〈#〉 Mask
Result: Destination’s bits, indicated by Mask, are set to the state of C.

• Destination (d-field) is the register whose bits described by Mask are affected by C.
• Mask (s-field) is a register or a 9-bit literal whose value contains high (1) bits for

every bit in Destination to set to the C flag’s state.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011100 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0001; 1 - 0 wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_0001; 1 - 1 wz wc $0000_0001; 1 0 1

$0000_0000; 0 $0000_0003; 3 - 0 wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_0003; 3 - 1 wz wc $0000_0003; 3 0 0

$AA55_2200; -1,437,261,312 $1234_5678; 305,419,896 - 0 wz wc $A841_2000; -1,472,126,976 0 0

$AA55_2200; -1,437,261,312 $1234_5678; 305,419,896 - 1 wz wc $BA75_7678; -1,166,707,080 0 1

$AA55_2200; -1,437,261,312 $FFFF_FFFF; -1 - 0 wz wc $0000_0000; 0 1 0

$AA55_2200; -1,437,261,312 $FFFF_FFFF; -1 - 1 wz wc $FFFF_FFFF; -1 0 0

Explanation
MUXC sets each bit of the value in Destination, which corresponds to Mask’s high (1) bits, to
the C state. All bits of Destination that are not targeted by high (1) bits of Mask are
unaffected. This instruction is handy for setting or clearing discrete bits, or groups of bits, in
an existing value.

If the WZ effect is specified, the Z flag is set (1) if Destination’s final value is 0. If the WC
effect is specified, the C flag is set (1) if the resulting Destination contains an odd number of
high (1) bits. The result is written to Destination unless the NR effect is specified.

Propeller Manual v1.1 · Page 315

jmartin
New

MUXNC – Assembly Language Reference

MUXNC
Instruction: Set discrete bits of a value to the state of !C.

MUXNC Destination, 〈#〉 Mask
Result: Destination’s bits, indicated by Mask, are set to the state of !C.

• Destination (d-field) is the register whose bits described by Mask are affected by !C.
• Mask (s-field) is a register or a 9-bit literal whose value contains high (1) bits for

every bit in Destination to set to the inverse of the C flag’s state.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011101 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0001; 1 - 0 wz wc $0000_0001; 1 0 1

$0000_0000; 0 $0000_0001; 1 - 1 wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_0003; 3 - 0 wz wc $0000_0003; 3 0 0

$0000_0000; 0 $0000_0003; 3 - 1 wz wc $0000_0000; 0 1 0

$AA55_2200; -1,437,261,312 $1234_5678; 305,419,896 - 0 wz wc $BA75_7678; -1,166,707,080 0 1

$AA55_2200; -1,437,261,312 $1234_5678; 305,419,896 - 1 wz wc $A841_2000; -1,472,126,976 0 0

$AA55_2200; -1,437,261,312 $FFFF_FFFF; -1 - 0 wz wc $FFFF_FFFF; -1 0 0

$AA55_2200; -1,437,261,312 $FFFF_FFFF; -1 - 1 wz wc $0000_0000; 0 1 0

Explanation
MUXNC sets each bit of the value in Destination, which corresponds to Mask’s high (1) bits, to
the !C state. All bits of Destination that are not targeted by high (1) bits of Mask are
unaffected. This instruction is handy for setting or clearing discrete bits, or groups of bits, in
an existing value.

If the WZ effect is specified, the Z flag is set (1) if Destination’s final value is 0. If the WC
effect is specified, the C flag is set (1) if the resulting Destination contains an odd number of
high (1) bits. The result is written to Destination unless the NR effect is specified.

Page 316 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – MUXNZ

MUXNZ
Instruction: Set discrete bits of a value to the state of !Z.

MUXNZ Destination, 〈#〉 Mask
Result: Destination’s bits, indicated by Mask, are set to the state of !Z.

• Destination (d-field) is the register whose bits described by Mask are affected by !Z.
• Mask (s-field) is a register or a 9-bit literal whose value contains high (1) bits for

every bit in Destination to set to the inverse of the Z flag’s state.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011111 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0001; 1 0 - wz wc $0000_0001; 1 0 1

$0000_0000; 0 $0000_0001; 1 1 - wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_0003; 3 0 - wz wc $0000_0003; 3 0 0

$0000_0000; 0 $0000_0003; 3 1 - wz wc $0000_0000; 0 1 0

$AA55_2200; -1,437,261,312 $1234_5678; 305,419,896 0 - wz wc $BA75_7678; -1,166,707,080 0 1

$AA55_2200; -1,437,261,312 $1234_5678; 305,419,896 1 - wz wc $A841_2000; -1,472,126,976 0 0

$AA55_2200; -1,437,261,312 $FFFF_FFFF; -1 0 - wz wc $FFFF_FFFF; -1 0 0

$AA55_2200; -1,437,261,312 $FFFF_FFFF; -1 1 - wz wc $0000_0000; 0 1 0

Explanation
MUXNZ sets each bit of the value in Destination, which corresponds to Mask’s high (1) bits, to
the !Z state. All bits of Destination that are not targeted by high (1) bits of Mask are
unaffected. This instruction is handy for setting or clearing discrete bits, or groups of bits, in
an existing value.

If the WZ effect is specified, the Z flag is set (1) if Destination’s final value is 0. If the WC
effect is specified, the C flag is set (1) if the resulting Destination contains an odd number of
high (1) bits. The result is written to Destination unless the NR effect is specified.

Propeller Manual v1.1 · Page 317

jmartin
New

MUXZ – Assembly Language Reference

MUXZ
Instruction: Set discrete bits of a value to the state of Z.

MUXZ Destination, 〈#〉 Mask
Result: Destination’s bits, indicated by Mask, are set to the state of Z.

• Destination (d-field) is the register whose bits described by Mask are affected by Z.
• Mask (s-field) is a register or a 9-bit literal whose value contains high (1) bits for

every bit in Destination to set to the Z flag’s state.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011110 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0001; 1 0 - wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_0001; 1 1 - wz wc $0000_0001; 1 0 1

$0000_0000; 0 $0000_0003; 3 0 - wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_0003; 3 1 - wz wc $0000_0003; 3 0 0

$AA55_2200; -1,437,261,312 $1234_5678; 305,419,896 0 - wz wc $A841_2000; -1,472,126,976 0 0

$AA55_2200; -1,437,261,312 $1234_5678; 305,419,896 1 - wz wc $BA75_7678; -1,166,707,080 0 1

$AA55_2200; -1,437,261,312 $FFFF_FFFF; -1 0 - wz wc $0000_0000; 0 1 0

$AA55_2200; -1,437,261,312 $FFFF_FFFF; -1 1 - wz wc $FFFF_FFFF; -1 0 0

Explanation
MUXZ sets each bit of the value in Destination, which corresponds to Mask’s high (1) bits, to
the Z state. All bits of Destination that are not targeted by high (1) bits of Mask are
unaffected. This instruction is handy for setting or clearing discrete bits, or groups of bits, in
an existing value.

If the WZ effect is specified, the Z flag is set (1) if Destination’s final value is 0. If the WC
effect is specified, the C flag is set (1) if the resulting Destination contains an odd number of
high (1) bits. The result is written to Destination unless the NR effect is specified.

Page 318 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – NEG

NEG
Instruction: Get the negative of a number.

NEG NValue, 〈#〉 SValue
Result: –SValue is stored in NValue.

• NValue (d-field) is the register in which to write the negative of SValue.
• SValue (s-field) is a register or a 9-bit literal whose negative value will be written to

NValue.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101001 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$----_----; - $FFFF_FFFF; -1 - - wz wc $0000_0001; 1 0 1

$----_----; - $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$----_----; - $0000_0001; 1 - - wz wc $FFFF_FFFF; -1 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 - - wz wc $8000_0001; -2,147,483,647 0 0

$----_----; - $8000_0000; -2,147,483,648 - - wz wc $8000_0000; -2,147,483,648
1
 0 1

$----_----; - $8000_0001; -2,147,483,647 - - wz wc $7FFF_FFFF; 2,147,483,647 0 1
1 The smallest negative number (-2,147,483,648) has no corresponding positive value in 32-bit two’s-complement math.

Explanation
NEG stores negative SValue into NValue.

If the WZ effect is specified, the Z flag is set (1) if SValue is zero. If the WC effect is specified,
the C flag is set (1) if SValue is negative or cleared (0) if SValue is positive. The result is
written to NValue unless the NR effect is specified.

Propeller Manual v1.1 · Page 319

jmartin
New

NEGC – Assembly Language Reference

NEGC
Instruction: Get a value, or its additive inverse, based on C.

NEGC RValue, 〈#〉 Value
Result: Value or –Value is stored in RValue.

• RValue (d-field) is the register in which to write Value or –Value.
• Value (s-field) is a register or a 9-bit literal whose value (if C = 0) or additive inverse

value (if C = 1) will be written to RValue.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101100 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$----_----; - $FFFF_FFFF; -1 - 0 wz wc $FFFF_FFFF; -1 0 1

$----_----; - $FFFF_FFFF; -1 - 1 wz wc $0000_0001; 1 0 1

$----_----; - $0000_0000; 0 - x wz wc $0000_0000; 0 1 0

$----_----; - $0000_0001; 1 - 0 wz wc $0000_0001; 1 0 0

$----_----; - $0000_0001; 1 - 1 wz wc $FFFF_FFFF; -1 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 - 0 wz wc $7FFF_FFFF; 2,147,483,647 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 - 1 wz wc $8000_0001; -2,147,483,647 0 0

$----_----; - $8000_0000; -2,147,483,648 - x wz wc $8000_0000; -2,147,483,648
1
 0 1

$----_----; - $8000_0001; -2,147,483,647 - 0 wz wc $8000_0001; -2,147,483,647 0 1

$----_----; - $8000_0001; -2,147,483,647 - 1 wz wc $7FFF_FFFF; 2,147,483,647 0 1
1 The smallest negative number (-2,147,483,648) has no corresponding positive value in 32-bit two’s-complement math.

Explanation
NEGC stores Value (if C = 0) or –Value (if C = 1) into RValue.

If the WZ effect is specified, the Z flag is set (1) if Value is zero. If the WC effect is specified,
the C flag is set (1) if Value is negative or cleared (0) if Value is positive. The result is
written to RValue unless the NR effect is specified.

Page 320 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – NEGNC

NEGNC
Instruction: Get a value, or its additive inverse, based on !C.

NEGNC RValue, 〈#〉 Value
Result: –Value or Value is stored in RValue.

• RValue (d-field) is the register in which to write –Value or Value.
• Value (s-field) is a register or a 9-bit literal whose additive inverse value (if C = 0) or

value (if C = 1) will be written to RValue.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101101 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Concise Truth Table:
 Out

Destination Source Z C Effects Destination Z C
$----_----; - $FFFF_FFFF; -1 - 0 wz wc $0000_0001; 1 0 1

$----_----; - $FFFF_FFFF; -1 - 1 wz wc $FFFF_FFFF; -1 0 1

$----_----; - $0000_0000; 0 - x wz wc $0000_0000; 0 1 0

$----_----; - $0000_0001; 1 - 0 wz wc $FFFF_FFFF; -1 0 0

$----_----; - $0000_0001; 1 - 1 wz wc $0000_0001; 1 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 - 0 wz wc $8000_0001; -2,147,483,647 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 - 1 wz wc $7FFF_FFFF; 2,147,483,647 0 0

$----_----; - $8000_0000; -2,147,483,648 - x wz wc $8000_0000; -2,147,483,648
1
 0 1

$----_----; - $8000_0001; -2,147,483,647 - 0 wz wc $7FFF_FFFF; 2,147,483,647 0 1

$----_----; - $8000_0001; -2,147,483,647 - 1 wz wc $8000_0001; -2,147,483,647 0 1
1 The smallest negative number (-2,147,483,648) has no corresponding positive value in 32-bit two’s-complement math.

Explanation
NEGNC stores –Value (if C = 0) or Value (if C = 1) into RValue.

If the WZ effect is specified, the Z flag is set (1) if Value is zero. If the WC effect is specified,
the C flag is set (1) if Value is negative or cleared (0) if Value is positive. The result is
written to RValue unless the NR effect is specified.

Propeller Manual v1.1 · Page 321

jmartin
New

NEGNZ – Assembly Language Reference

NEGNZ
Instruction: Get a value, or its additive inverse, based on !Z.

NEGNZ RValue, 〈#〉 Value
Result: –Value or Value is stored in RValue.

• RValue (d-field) is the register in which to write –Value or Value.
• Value (s-field) is a register or a 9-bit literal whose additive inverse value (if Z = 0) or

value (if Z = 1) will be written to RValue.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101111 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$----_----; - $FFFF_FFFF; -1 0 - wz wc $0000_0001; 1 0 1

$----_----; - $FFFF_FFFF; -1 1 - wz wc $FFFF_FFFF; -1 0 1

$----_----; - $0000_0000; 0 x - wz wc $0000_0000; 0 1 0

$----_----; - $0000_0001; 1 0 - wz wc $FFFF_FFFF; -1 0 0

$----_----; - $0000_0001; 1 1 - wz wc $0000_0001; 1 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 0 - wz wc $8000_0001; -2,147,483,647 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 1 - wz wc $7FFF_FFFF; 2,147,483,647 0 0

$----_----; - $8000_0000; -2,147,483,648 x - wz wc $8000_0000; -2,147,483,648
1
 0 1

$----_----; - $8000_0001; -2,147,483,647 0 - wz wc $7FFF_FFFF; 2,147,483,647 0 1

$----_----; - $8000_0001; -2,147,483,647 1 - wz wc $8000_0001; -2,147,483,647 0 1
1 The smallest negative number (-2,147,483,648) has no corresponding positive value in 32-bit two’s-complement math.

Explanation
NEGNZ stores –Value (if Z = 0) or Value (if Z = 1) into RValue.

If the WZ effect is specified, the Z flag is set (1) if Value is zero. If the WC effect is specified,
the C flag is set (1) if Value is negative or cleared (0) if Value is positive. The result is
written to RValue unless the NR effect is specified.

Page 322 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – NEGZ

NEGZ
Instruction: Get a value, or its additive inverse, based on Z.

NEGZ RValue, 〈#〉 Value
Result: Value or –Value is stored in RValue.

• RValue (d-field) is the register in which to write Value or –Value.
• Value (s-field) is a register or a 9-bit literal whose value (if Z = 0) or additive inverse

value (if Z = 1) will be written to RValue.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101110 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$----_----; - $FFFF_FFFF; -1 0 - wz wc $FFFF_FFFF; -1 0 1

$----_----; - $FFFF_FFFF; -1 1 - wz wc $0000_0001; 1 0 1

$----_----; - $0000_0000; 0 x - wz wc $0000_0000; 0 1 0

$----_----; - $0000_0001; 1 0 - wz wc $0000_0001; 1 0 0

$----_----; - $0000_0001; 1 1 - wz wc $FFFF_FFFF; -1 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 0 - wz wc $7FFF_FFFF; 2,147,483,647 0 0

$----_----; - $7FFF_FFFF; 2,147,483,647 1 - wz wc $8000_0001; -2,147,483,647 0 0

$----_----; - $8000_0000; -2,147,483,648 x - wz wc $8000_0000; -2,147,483,648
1
 0 1

$----_----; - $8000_0001; -2,147,483,647 0 - wz wc $8000_0001; -2,147,483,647 0 1

$----_----; - $8000_0001; -2,147,483,647 1 - wz wc $7FFF_FFFF; 2,147,483,647 0 1
1 The smallest negative number (-2,147,483,648) has no corresponding positive value in 32-bit two’s-complement math.

Explanation
NEGZ stores Value (if Z = 0) or –Value (if Z = 1) into RValue.

If the WZ effect is specified, the Z flag is set (1) if Value is zero. If the WC effect is specified,
the C flag is set (1) if Value is negative or cleared (0) if Value is positive. The result is
written to RValue unless the NR effect is specified.

Propeller Manual v1.1 · Page 323

jmartin
New

NOP – Assembly Language Reference

NOP
Instruction: No operation, just elapse four clock cycles.

NOP

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
------ ---- 0000 --------- --------- --- --- --- 4

Concise Truth Table:
(Not specified because NOP performs no action.)

Explanation
NOP performs no operation but consumes 4 clock cycles. NOP has its –CON– field set to all
zeros, the NEVER condition; effectively, every instruction with a NEVER condition is a NOP
instruction. Because of this, the NOP instruction can never be preceded by a Condition, such as
IF_Z or IF_C_AND_Z, since it can never be conditionally executed.

Page 324 · Propeller Manual v1.1

jmartin
Improved

3: Assembly Language Reference – NR

NR
Effect: Prevent assembly instruction from writing a result.

〈Label〉 〈Condition〉 Instruction Operands NR
Result: Instruction’s destination register is left unaffected.

• Label is an optional statement label. See Common Syntax Elements on page 250.
• Condition is an optional execution condition. See Common Syntax Elements on page 250.
• Instruction is the desired assembly instruction.
• Operands is zero, one, or two operands as required by the Instruction.

Explanation
NR (No Result) is one of four optional effects (WC, WZ, WR, and NR) that influence the behavior
of assembly instructions. NR causes an executing assembly instruction to leave the destination
register’s value unaffected.

For example, by default the SHL (Shift Left) instruction shifts the destination value left a
number of bits, writes the result back into the destination register, and optionally indicates
status via the C and Z flags. If all that you really need is the SHL instruction’s C flag status,
simply specify it with both the WC and NR effects:

 shl value, #1 WC, NR 'Put value's MSB in C

The above example effectively sets the C flag to the state of value’s high bit (bit 31) without
affecting the final contents of value.

See Effects on page 291 for more information.

Propeller Manual v1.1 · Page 325

jmartin
New

Operators – Assembly Language Reference

Operators
Propeller Assembly code can contain expressions using any operators that are allowed in
constant expressions. Table 3-4 summarizes all the operators allowed in Propeller Assembly
code. Please refer to the Spin Language Reference Operators section on page 143 for
detailed descriptions of their functions; page numbers are given in the table.

Table 3-4: Constant Expression Math/Logic Operators
Normal Operator Is Unary Description, Page Number

+ Add, 149
+ Positive (+X); unary form of Add, 150
- Subtract, 150
- Negate (-X); unary form of Subtract, 150
* Multiply and return lower 32 bits (signed), 153
** Multiply and return upper 32 bits (signed), 153
/ Divide (signed), 154
// Modulus (signed), 154
#> Limit minimum (signed), 155
<# Limit maximum (signed), 155
^^ Square root, 156
|| Absolute value, 156
~> Shift arithmetic right, 158
|< Bitwise: Decode value (0-31) into single-high-bit long, 160
>| Bitwise: Encode long into value (0 - 32) as high-bit priority, 160
<< Bitwise: Shift left, 161
>> Bitwise: Shift right, 161
<- Bitwise: Rotate left, 162
-> Bitwise: Rotate right, 162
>< Bitwise: Reverse, 163
& Bitwise: AND, 164
| Bitwise: OR, 165
^ Bitwise: XOR, 165
! Bitwise: NOT, 166

AND Boolean: AND (promotes non-0 to -1), 167
OR Boolean: OR (promotes non-0 to -1), 168
NOT Boolean: NOT (promotes non-0 to -1), 168
== Boolean: Is equal, 169
<> Boolean: Is not equal, 170
< Boolean: Is less than (signed), 170
> Boolean: Is greater than (signed), 171
=< Boolean: Is equal or less (signed), 171
=> Boolean: Is equal or greater (signed), 172
@ Symbol address, 173

Page 326 · Propeller Manual v1.1

3: Assembly Language Reference – OR

OR
Instruction: Bitwise OR two values.

OR Value1, 〈#〉 Value2
Result: Value1 OR Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to bitwise OR with Value2 and is
the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is bitwise ORed with
Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011010 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_0001; 1 - - wz wc $0000_0001; 1 0 1

$0000_000A; 10 $0000_0005; 5 - - wz wc $0000_000F; 15 0 0

Explanation
OR (bitwise inclusive OR) performs a bitwise OR of the value in Value2 into that of Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 OR Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
The result is written to Value1 unless the NR effect is specified.

Propeller Manual v1.1 · Page 327

jmartin
New

ORG – Assembly Language Reference

ORG
Directive: Adjust compile-time assembly pointer.

ORG 〈Address〉

• Address is an optional Cog RAM address (0-495) to assemble the following assembly
code with. If Address is not given, the value 0 is used.

Explanation
The ORG (origin) directive sets the Propeller Tool’s assembly pointer to a new value for use in
address references within the assembly code to follow. ORG typically appears as ORG 0, or just
ORG, at the start of any new assembly code intended to be launched into a separate cog.

ORG only affects symbol references; it does not affect the position of assembly code in the cog
itself. When assembly code is launched via a COGNEW or COGINIT command, the destination
cog always loads the code into its RAM starting at address 0.

Even though assembly code is always loaded in this way, the compiler/assembler does not
know which part of the code constitutes its beginning since developers are free to launch any
code starting from any address.

To solve this, the assembler uses a reference point (the assembly pointer value) to calculate
the absolute address of referenced symbols. Those absolute addresses are encoded into the
assembly instruction’s destination (d-field) or source (s-field) in place of the symbolic
reference. For example:

DAT
 org 0 'Start at Cog RAM 0
Toggle mov dira, Pin 'Set I/O direction to output
:Loop xor outa, Pin 'Toggle output pin state
 jmp #:Loop 'Loop endlessly

Pin long $0000_0010 'Use I/O pin 4 ($10 or %1_0000)

The ORG statement in this example sets the assembly pointer to zero (0) so the code following
it is assembled with that reference point in mind. Because of this, to the assembler the Toggle
symbol is logically at Cog RAM location 0, the :Loop symbol is at Cog RAM location 1, and
the Pin symbol is at Cog RAM location 3. The assembler will replace each reference to these
symbols with their respective hard-coded location.
Page 328 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – ORG

Propeller Manual v1.1 · Page 329

When the Toggle code is launched with COGNEW(@Toggle, 0), for example, the code will
properly execute starting with Cog RAM address 0 since all symbol addresses were
calculated from that point. If the ORG statement had been ORG 1 and the Toggle code was
launched, it would not execute properly because the symbol addresses were calculated from
the wrong reference (1 instead of 0).

A Propeller object may contain multiple instances of the ORG directive, each placed
immediately before a launchable portion of assembly code. However, it is not common to
use ORG with values other than zero (0) though that may be handy when creating run-time
swappable portions of assembly code.

OUTA, OUTB – Assembly Language Reference

OUTA, OUTB
Register: Output registers for 32-bit ports A and B.

DAT

 〈Label〉 〈Condition〉 Instruction OUTA, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, OUTA 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction OUTB, SrcOperand 〈Effects〉 (Reserved for future use)
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, OUTB 〈Effects〉 (Reserved for future use)
Result: Optionally, the output register is updated.

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. OUTA or OUTB may be used in either the

assembly instruction’s DestOperand or SrcOperand fields.
• SrcOperand is a constant expression used by Instruction to operate on, and optionally

write to, the OUTA or OUTB register in DestOperand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of OUTA or OUTB in SrcOperand.

Explanation
OUTA and OUTB are one of six special purpose registers (DIRA, DIRB, INA, INB, OUTA and OUTB)
that directly affect the I/O pins. The OUTA and OUTB register’s bits indicate the output states of
each of the 32 I/O pins in Port A and Port B, respectively. OUTB is reserved for future use; the
Propeller P8X32A does not include Port B I/O pins so only OUTA is discussed below.

OUTA is a read/write register usable in an instruction’s DestOperand or SrcOperand fields. If the
I/O pin is set to output, a low (0) bit in OUTA causes it to output ground, and a high (1) bit causes
it to output VDD (3.3 volts). The following code sets I/O pins P0 through P3 to output high.

 mov dira, #$0F
 mov outa, #$0F

See Registers, page 338, and the Spin language OUTA, OUTB section, page 175, for more
information. Keep in mind that in Propeller Assembly, unlike in Spin, all 32 bits of OUTA are
accessed at once unless the MUXx instructions are used.

Page 330 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – PAR

Propeller Manual v1.1 · Page 331

PAR
Register: Cog boot parameter register.

DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, PAR 〈Effects〉

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. PAR is a read-only register and thus

should only be used in the instruction’s source operand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, by the value of PAR in the instruction’s source operand.

Explanation
The PAR register contains the address value passed into the Parameter field of a Spin-based
COGINIT or T COGNEW command, or into the upper bits of the Destination field of an assembly-
based COGINITT command. When the cog starts up, its Propeller Assembly code can use the
PAR register’s contents to locate and operate on main memory shared between it and the
calling code.

It’s important to note that the value passed into PAR is intended to be a long address, so only
14-bits (bits 2 through 15) are retained; the lower two bits are cleared to zero to ensure that
it’s a long-aligned address. Values other than long addresses can still be passed, but must be
14 bits or less and shifted left and right appropriately by both caller and newly started cog.

PAR is a read-only pseudo-register; when used as an instruction’s source operand, it reads the
value passed to the cog upon launch. Do not use PAR as the destination operand; that only
results in reading and modifying the shadow register whose address PAR occupies.

The following code moves the value of PAR into the register Addr for further use later in code.
See Registers, page 338, and the Spin language PAR section, page 178, for more information.

DAT
 org 0 'Reset assembly pointer
AsmCode mov Addr, par 'Get shared address
 '<more code here> 'Perform operation

Addr res 1

jmartin
New

PHSA, PHSB – Assembly Language Reference

PHSA, PHSB
Register: Counter A and Counter B phase registers.

DAT

 〈Label〉 〈Condition〉 Instruction PHSA, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, PHSA 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction PHSB, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, PHSB 〈Effects〉
Result: Optionally, the counter phase register is updated.

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. PHSA and PHSB are read/write pseudo-

registers that act differently in the SrcOperand than they do in the DestOperand.
• SrcOperand is a constant expression used by Instruction to operate on, and optionally

write to, the PHSA or PHSB register in DestOperand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of PHSA or PHSB in SrcOperand.

Explanation
PHSA and PHSB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The PHSA and PHSB registers contain the
accumulations of the FRQA and FRQB registers’ value, respectively, according to the
corresponding counter’s mode and input stimulus. See the Spin language CTRA, CTRB section
on page 95 for more information.

PHSA and PHSB are read/write pseudo-registers. In the SrcOperand they read the counter’s
accumulator value. In the DestOperand they read the shadow register whose address PHSA or
PHSB occupies, but modifications affect both the shadow and accumulator registers.

The following code moves the value of PHSA into Result. See Registers, page 338, and the
Spin language PHSA, PHSB section, page 180, for more information.

 mov Result, phsa 'Get current phase value

Page 332 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – RCL

RCL
Instruction: Rotate C left into value by specified number of bits.

RCL Value, 〈#〉 Bits
Result: Value has Bits copies of C rotated left into it.

• Value (d-field) is the register in which to rotate C leftwards.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits of Value

to rotate C leftwards into.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001101 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$8000_0000; -2,147,483,648 $0000_0000; 0 - x wz wc $8000_0000; -2,147,483,648 0 1

$8000_0000; -2,147,483,648 $0000_0001; 1 - 0 wz wc $0000_0000; 0 1 1

$8000_0000; -2,147,483,648 $0000_0001; 1 - 1 wz wc $0000_0001; 1 0 1

$2108_4048; 554,188,872 $0000_0002; 2 - 0 wz wc $8421_0120; -2,078,211,808 0 0

$2108_4048; 554,188,872 $0000_0002; 2 - 1 wz wc $8421_0123; -2,078,211,805 0 0

$8765_4321; -2,023,406,815 $0000_0004; 4 - 0 wz wc $7654_3210; 1,985,229,328 0 1

$8765_4321; -2,023,406,815 $0000_0004; 4 - 1 wz wc $7654_321F; 1,985,229,343 0 1

Explanation
RCL (Rotate Carry Left) performs a rotate left of Value, Bits times, using the C flag’s original
value for each of the LSBs affected.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, at the end of the operation, the C flag is set equal to Value’s original bit
31. The result is written to Value unless the NR effect is specified.

Propeller Manual v1.1 · Page 333

jmartin
New

RCR – Assembly Language Reference

RCR
Instruction: Rotate C right into value by specified number of bits.

RCR Value, 〈#〉 Bits
Result: Value has Bits copies of C rotated right into it.

• Value (d-field) is the register in which to rotate C rightwards.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits of Value

to rotate C rightwards into.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001100 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $0000_0000; 0 - x wz wc $0000_0001; 1 0 1

$0000_0001; 1 $0000_0001; 1 - 0 wz wc $0000_0000; 0 1 1

$0000_0001; 1 $0000_0001; 1 - 1 wz wc $8000_0000; -2,147,483,648 0 1

$18C2_1084; 415,371,396 $0000_0002; 2 - 0 wz wc $0630_8421; 103,842,849 0 0

$18C2_1084; 415,371,396 $0000_0002; 2 - 1 wz wc $C630_8421; -969,898,975 0 0

$8765_4321; -2,023,406,815 $0000_0004; 4 - 0 wz wc $0876_5432; 141,972,530 0 1

$8765_4321; -2,023,406,815 $0000_0004; 4 - 1 wz wc $F876_5432; -126,462,926 0 1

Explanation
RCR (Rotate Carry Right) performs a rotate right of Value, Bits times, using the C flag’s
original value for each of the MSBs affected.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, at the end of the operation, the C flag is set equal to Value’s original bit 0.
The result is written to Value unless the NR effect is specified.

Page 334 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – RDBYTE

RDBYTE
Instruction: Read byte of main memory.

RDBYTE Value, 〈#〉 Address
Result: Zero-extended byte is stored in Value.

• Value (d-field) is the register to store the zero-extended byte value into.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to read from.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000000 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z

2 C
$----_----; - $----_----; - - - wz wc 31:8 = 0, 7:0 = byte value 0 0

1 Destination Out is the zero-extended byte value read from main memory and is always generated since including an NR effect
would turn RDBYTE into a WRBYTE instruction.

2 The Z flag is cleared (0) unless Destination Out equals 0.

Explanation
RDBYTE syncs to the Hub, reads the byte of main memory at Address, zero-extends it, and
stores it into the Value register.

If the WZ effect is specified, the Z flag will be set (1) if the value read from main memory is
zero. The NR effect can not be used with RDBYTE as that would change it to a WRBYTE
instruction.

RDBYTE is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

Propeller Manual v1.1 · Page 335

jmartin
New

jmartin
Improved

RDLONG – Assembly Language Reference

RDLONG
Instruction: Read long of main memory.

RDLONG Value, 〈#〉 Address
Result: Long is stored in Value.

• Value (d-field) is the register to store the long value into.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to read from.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000010 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z

2 C
$----_----; - $----_----; - - - wz wc long value 0 0

1 Destination Out is always generated since including an NR effect would turn RDLONG into a WRLONG instruction.
2 The Z flag is cleared (0) unless Destination Out equals 0.

Explanation
RDLONG syncs to the Hub, reads the long of main memory at Address, and stores it into the
Value register. Address can point to any byte within the desired long; the address’ lower two
bits will be cleared to zero resulting in an address pointing to a long boundary.

If the WZ effect is specified, the Z flag will be set (1) if the value read from main memory is
zero. The NR effect can not be used with RDLONG as that would change it to a WRLONG
instruction.

RDLONG is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

Page 336 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – RDWORD

RDWORD
Instruction: Read word of main memory.

RDWORD Value, 〈#〉 Address
Result: Zero-extended word is stored in Value.

• Value (d-field) is the register to store the zero-extended word value into.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to read from.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000001 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z

2 C
$----_----; - $----_----; - - - wz wc 31:16 = 0, 15:0 = word value 0 0

1 Destination Out is the zero-extended word value read from main memory and is always generated since including an NR effect
would turn RDWORD into a WRWORD instruction.

2 The Z flag is cleared (0) unless Destination Out equals 0.

Explanation
RDWORD syncs to the Hub, reads the word of main memory at Address, zero-extends it, and
stores it into the Value register Address can point to any byte within the desired word; the
address’ lower bit will be cleared to zero resulting in an address pointing to a word boundary.

If the WZ effect is specified, the Z flag will be set (1) if the value read from main memory is
zero. The NR effect can not be used with RDWORD as that would change it to a WRWORD
instruction.

RDWORD is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

Propeller Manual v1.1 · Page 337

jmartin
New

jmartin
Improved

Registers – Assembly Language Reference

Registers
Each cog contains 16 special purpose registers for accessing I/O pins, the built-in counters
and video generator, and the parameter passed at the moment the cog is launched. All of
these registers are explained in the Spin Language Reference and most of the information
applies to both Spin and Propeller Assembly. The following table illustrates the 16 special
purpose registers, indicates where to find information, and states what details, if any, do not
apply to Propeller Assembly. Each of these registers can be accessed just like any other
register in the destination or source fields of instructions, except for those that are designated
with a footnote of 1 or 2. These special registers can only be read via the Source field of an
instruction; (1) they are not writable, or (2) they can not be used in the Destination field for a
read-modify-write operation.

Table 3-5: Registers

Register(s) Description

DIRA, DIRB 3
Direction Registers for 32-bit port A and 32-bit port B, see pages 289 and 104.
The optional “[Pin(s)]” parameter does not apply to Propeller Assembly; all bits of
the entire register are read/written at once, unless using the MUXx instructions.

INA 1, INB 1,3
Input Registers for 32-bit port A and 32-bit port B (Read-Only), see pages 297 and
118. The optional “[Pin(s)]” parameter does not apply to Propeller Assembly; all
bits of the entire register are read at once.

OUTA, OUTB 3
Output Registers for 32-bit port A and 32-bit port B, see pages 330 and 175.
The optional “[Pin(s)]” parameter does not apply to Propeller Assembly; all bits of
the entire register are read/written at once, unless using the MUXx instructions.

CNT 1 32-bit System Counter Register (Read-Only), see pages 282 and 73.

CTRA, CTRB Counter A and Counter B Control Registers, see pages 288 and 95.

FRQA, FRQB Counter A and Counter B Frequency Registers, see pages 293 and 111.

PHSA 2, PHSB 2 Counter A and Counter B Phase-Locked Loop Registers, see pages 332 and 180.

VCFG Video Configuration Register, see pages 366 and 213.

VSCL Video Scale Register, see pages 367 and 216.

PAR 1 Cog Boot Parameter Register (Read Only), see pages 331 and 178.
Note 1: For Propeller Assembly, only accessible as a source register (i.e., mov dest, source). See the

Assembly language sections for PAR, page 331; CNT, page 282, and INA, INB, page 297.
Note 2: For Propeller Assembly, only readable as a source register (i.e., mov dest, source); read

modify-write not possible as a destination register. See the Assembly language section
for PHSA, PHSB on page 332.

Note 3: Reserved for future use.
Page 338 · Propeller Manual v1.1

jmartin
Improved

jmartin
Improved

3: Assembly Language Reference – RES

RES
Directive: Reserve next long(s) for symbol.

〈Symbol〉 RES 〈Count〉

• Symbol is an optional name for the reserved long in Cog RAM.
• Count is the optional number of longs to reserve for Symbol. If not specified, RES

reserves one long.

Explanation
The RES (reserve) directive effectively reserves one or more longs of Cog RAM by
incrementing the compile-time assembly pointer by Count. Normally this is used to reserve
memory for an assembly symbol that does not need initialization to any specific value. For
example:

DAT
 ORG 0
AsmCode mov Time, cnt 'Get system counter
 add Time, Delay 'Add delay
:Loop waitcnt Time, Delay 'Wait for time window
 nop 'Do something useful
 jmp #:Loop 'Loop endlessly

Delay long 6_000_000 'Time window size
Time RES 1 'Time window workspace

The last line of the AsmCode example, above, reserves one long of Cog RAM for the symbol
Time without defining an initial value. AsmCode uses Time as a long variable to wait for the
start of a time window of 6 million clock cycles. When AsmCode is launched into a cog, it is
loaded into Cog RAM as shown below

Propeller Manual v1.1 · Page 339

jmartin
New

RES – Assembly Language Reference
Symbol Address Instruction/Data
AsmCode 0 mov Time, cnt

 1 add Time, Delay

:Loop 2 waitcnt Time, Delay

 3 nop

 4 jmp #:Loop

Delay 5 6_000_000

Time 6 ?

RES simply increments the compile-time assembly pointer that affects further symbol
references (Cog RAM); it does not consume space in the object (Main RAM). This
distinction is important in how it impacts the object code, initialized symbols, and affects run-
time operation.

• Since it increments the compile-time assembly pointer only, the computed address of
all symbols following a RES statement are affected accordingly.

• No space is actually consumed in the object/application (Main RAM). This is an
advantage if defining buffers that should only exist in Cog RAM but not Main RAM.

Caution: Use RES Only After Instructions and Data
It’s important to use RES only after the final instructions and data in a logical assembly
program. Placing RES in a prior location could have unintended results as explained below.

Remember that assembly instructions and data are placed in the application memory image in
the exact order entered in source, independent of the assembly pointer. This is because
launched assembly code must be loaded in order, starting with the designated routine label.
However, since RES does not generate any data (or code), it has absolutely no effect on the
memory image of the application; RES only adjusts the value of the assembly pointer.

By nature of the RES directive, any data or code appearing after a RES statement will be placed
immediately after the last non-RES entity, in the same logical space as the RES entities
themselves. Consider the following example where the code, from above, has the order of
the Time and Delay declarations reversed.

DAT
 ORG 0
AsmCode mov Time, cnt 'Get system counter
 add Time, Delay 'Add delay

Page 340 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – RES

Propeller Manual v1.1 · Page 341

:Loop waitcnt Time, Delay 'Wait for time window
 nop 'Do something useful
 jmp #:Loop 'Loop endlessly

Time RES 1 'Time window workspace
Delay long 6_000_000 'Time window size

This example would be launched into a cog as follows:

Symbol Address Instruction/Data
AsmCode 0 mov Time, cnt

 1 add Time, Delay

:Loop 2 waitcnt Time, Delay

 3 nop

 4 jmp #:Loop

Time 5 6_000_000

Delay 6 ?

Notice how Time and Delay are reversed with respect to the previous example but their data is
not? Here’s what happened:

• First, the assembler placed everything in the object’s memory image exactly as it did
before up to and including the JMP instruction.

• The assembler reached the Time symbol, which is declared with a RES directive, so it
equated Time to address 5 (the current assembly pointer value) and then incremented the
assembly pointer by 1. No data was placed in the application memory image due to this
step.

• The assembler reached the Delay symbol, which is declared as a LONG of data, so it
equated Delay to address 6 (the current assembly pointer value), incremented the
assembly pointer by 1, then placed the data, 6_000_000, into the next available location
in the memory image right after the JMP instruction which happens to be where Time is
logically pointing.

The effect when launched into a cog is that the Time symbol occupies the same Cog RAM
space that Delay’s initial value does, and Delay exists in the next register that contains
unknown data. The code will fail to run as intended.

For this reason, it is best to place RES statements after the last instruction and after the last
defined data that your assembly code relies upon, as shown in the first example.

RET – Assembly Language Reference

Page 342 · Propeller Manual v1.1

RET
Instruction: Return to previously recorded address.

RET

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010111 0001 1111 --------- --------- Result = 0 --- Not Written 4

Concise Truth Table:
In Out

Destination
1 Source Z C Effects Destination

2 Z C
3

$----_----; - $----_----; - - - wr wz wc 31:9 unchanged, 8:0 = PC+1 0 1
1 Destination is normally ignored for RET usage, however if the WR effect is given, the RET instruction becomes a CALL instruction

and Destination’s s-field (lowest 9 bits) are overwritten with the return address (PC+1).
2 Destination is not written unless the WR effect is given.
3 The C flag is set (1) unless PC+1 equals 0; very unlikely since it would require the RET to be executed from the top of cog RAM

($1FF; special purpose register VSCL).

Explanation
RET returns execution to a previously recorded address by setting the Program Counter (PC)
to that address. The

T

RET instruction is meant to be used along with a label in the form
“label_ret” and a CALL instruction that targets RET’s routine, denoted by “label.” See CALL
on page for more information. 268

RET is a subset of the T JMP instruction but with the i-field set and the s-field unspecified. It is
also closely related to the CALL and JMPRETT commands; in fact, they are all the same opcode
but with different r-field and i-field values and varying assembler-driven and user-driven
d-field and s-field values.

jmartin
New

jmartin
Improved

3: Assembly Language Reference – REV

REV
Instruction: Reverse LSBs of value and zero-extend.

REV Value, 〈#〉 Bits
Result: Value has lower 32 - Bits of its LSBs reversed and upper bits cleared.

• Value (d-field) is the register containing the value whose bits are reversed.
• Bits (s-field) is a register or a 5-bit literal whose value subtracted from 32, (32 - Bits),

is the number of Value’s LSBs to reverse. The upper Bits MSBs of Value are
cleared.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001111 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$8421_DECA; -2,078,155,062 $0000_001F; 31 - - wz wc $0000_0000; 0 1 0

$8421_DECA; -2,078,155,062 $0000_001C; 28 - - wz wc $0000_0005; 5 0 0

$8421_DECA; -2,078,155,062 $0000_0018; 24 - - wz wc $0000_0053; 83 0 0

$8421_DECA; -2,078,155,062 $0000_0010; 16 - - wz wc $0000_537B; 21,371 0 0

$8421_DECA; -2,078,155,062 $0000_0000; 0 - - wz wc $537B_8421; 1,400,603,681 0 0

$4321_8765; 1,126,270,821 $0000_001C; 28 - - wz wc $0000_000A; 10 0 1

$4321_8765; 1,126,270,821 $0000_0018; 24 - - wz wc $0000_00A6; 166 0 1

$4321_8765; 1,126,270,821 $0000_0010; 16 - - wz wc $0000_A6E1; 42,721 0 1

$4321_8765; 1,126,270,821 $0000_0000; 0 - - wz wc $A6E1_84C2; -1,495,169,854 0 1

Explanation
REV (Reverse) reverses the lower (32 - Bits) of Value’s LSB and clears the upper Bits of
Value’s MSBs.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, the C flag is set equal to Value’s original bit 0. The result is written to
Value unless the NR effect is specified.

Propeller Manual v1.1 · Page 343

jmartin
New

ROL – Assembly Language Reference

ROL
Instruction: Rotate value left by specified number of bits.

ROL Value, 〈#〉 Bits
Result: Value is rotated left by Bits.

• Value (d-field) is the register to rotate left.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to rotate

left.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001001 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0001; 1 - - wz wc $0000_0000; 0 1 0

$8765_4321; -2,023,406,815 $0000_0004; 4 - - wz wc $7654_3218; 1,985,229,336 0 1

$7654_3218; 1,985,229,336 $0000_000C; 12 - - wz wc $4321_8765; 1,126,270,821 0 0

$4321_8765; 1,126,270,821 $0000_0010; 16 - - wz wc $8765_4321; -2,023,406,815 0 0

Explanation
ROL (Rotate Left) rotates Value left, Bits times. The MSBs rotated out of Value are rotated
into its LSBs.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, at the end of the operation, the C flag is set equal to Value’s original bit
31. The result is written to Value unless the NR effect is specified.

Page 344 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – ROR

ROR
Instruction: Rotate value right by specified number of bits.

ROR Value, 〈#〉 Bits
Result: Value is rotated right by Bits.

• Value (d-field) is the register to rotate right.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to rotate

right.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001000 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0001; 1 - - wz wc $0000_0000; 0 1 0

$1234_5678; 305,419,896 $0000_0004; 4 - - wz wc $8123_4567; -2,128,394,905 0 0

$8123_4567; -2,128,394,905 $0000_000C; 12 - - wz wc $5678_1234; 1,450,709,556 0 1

$5678_1234; 1,450,709,556 $0000_0010; 16 - - wz wc $1234_5678; 305,419,896 0 0

Explanation
ROR (Rotate Right) rotates Value right, Bits times. The LSBs rotated out of Value are rotated
into its MSBs.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, at the end of the operation, the C flag is set equal to Value’s original bit 0.
The result is written to Value unless the NR effect is specified.

Propeller Manual v1.1 · Page 345

jmartin
New

SAR – Assembly Language Reference

SAR
Instruction: Shift value arithmetically right by specified number of bits.

SAR Value, 〈#〉 Bits
Result: Value is shifted arithmetically right by Bits.

• Value (d-field) is the register to shift arithmetically right.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift

arithmetically right.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001110 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$FFFF_FF9C; -100 $0000_0001; 1 - - wz wc $FFFF_FFCE; -50 0 0

$FFFF_FF9C; -100 $0000_0002; 2 - - wz wc $FFFF_FFE7; -25 0 0

$FFFF_FF9C; -100 $0000_0003; 3 - - wz wc $FFFF_FFF3; -13 0 0

$FFFF_FFF3; -13 $0000_0001; 1 - - wz wc $FFFF_FFF9; -7 0 1

$FFFF_FFF9; -7 $0000_0001; 1 - - wz wc $FFFF_FFFC; -4 0 1

$FFFF_FFFC; -4 $0000_0001; 1 - - wz wc $FFFF_FFFE; -2 0 0

$0000_0006; 6 $0000_0001; 1 - - wz wc $0000_0003; 3 0 0

$0000_0006; 6 $0000_0002; 2 - - wz wc $0000_0001; 1 0 0

$0000_0006; 6 $0000_0003; 3 - - wz wc $0000_0000; 0 1 0

Explanation
SAR (Shift Arithmetic Right) shifts Value right by Bits places, extending the MSB along the
way. This has the effect of preserving the sign in a signed value, thus SAR is a quick divide-
by-power-of-two for signed integer values.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, the C flag is set equal to Value’s original bit 0. The result is written to
Value unless the NR effect is specified.

Page 346 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – SHL

SHL
Instruction: Shift value left by specified number of bits.

SHL Value, 〈#〉 Bits
Result: Value is shifted left by Bits.

• Value (d-field) is the register to shift left.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift

left.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001011 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$8765_4321; -2,023,406,815 $0000_0004; 4 - - wz wc $7654_3210; 1,985,229,328 0 1

$7654_3210; 1,985,229,328 $0000_000C; 12 - - wz wc $4321_0000; 1,126,236,160 0 0

$4321_0000; 1,126,236,160 $0000_0010; 16 - - wz wc $0000_0000; 0 1 0

Explanation
SHL (Shift Left) shifts Value left by Bits places and sets the new LSBs to 0.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, the C flag is set equal to Value’s original bit 31. The result is written to
Value unless the NR effect is specified.

Propeller Manual v1.1 · Page 347

jmartin
New

jmartin
Improved

SHR – Assembly Language Reference

SHR
Instruction: Shift value right by specified number of bits.

SHR Value, 〈#〉 Bits
Result: Value is shifted right by Bits.

• Value (d-field) is the register to shift right.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift

right.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001010 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$1234_5678; 305,419,896 $0000_0004; 4 - - wz wc $0123_4567; 19,088,743 0 0

$0123_4567; 19,088,743 $0000_000C; 12 - - wz wc $0000_1234; 4,660 0 1

$0000_1234; 4,660 $0000_0010; 16 - - wz wc $0000_0000; 0 1 0

Explanation
SHR (Shift Right) shifts Value right by Bits places and sets the new MSBs to 0.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, the C flag is set equal to Value’s original bit 0. The result is written to
Value unless the NR effect is specified.

Page 348 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – SUB

SUB
Instruction: Subtract two unsigned values.

SUB Value1, 〈#〉 Value2
Result: Difference of unsigned Value1 and unsigned Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to subtract Value2 from, and is the
destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is subtracted from Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100001 001i 1111 ddddddddd sssssssss D - S = 0 Unsigned Borrow Written 4

Concise Truth Table:
In Out

Destination
1 Source Z C Effects Destination Z C

$0000_0002; 2 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

$0000_0002; 2 $0000_0002; 2 - - wz wc $0000_0000; 0 1 0

$0000_0002; 2 $0000_0003; 3 - - wz wc $FFFF_FFFF; 4,294,967,295 0 1
1 Both Source and Destination are treated as unsigned values.

Explanation
SUB subtracts the unsigned Value2 from the unsigned Value1 and stores the result into the
Value1 register.

If the WZ effect is specified, the Z flag is set (1) if Value1 − Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the subtraction resulted in an unsigned borrow (32-
bit overflow). The result is written to Value1 unless the NR effect is specified.

To subtract unsigned, multi-long values, use SUB followed by SUBX. See SUBX on page 354 for
more information.

Propeller Manual v1.1 · Page 349

jmartin
New

jmartin
Improved

jmartin
New

SUBABS – Assembly Language Reference

SUBABS
Instruction: Subtract an absolute value from another value.

SUBABS Value, 〈#〉 SValue
Result: Difference of Value and absolute of signed SValue is stored in Value.

• Value (d-field) is the register containing the value to subtract the absolute of SValue
from, and is the destination in which to write the result.

• SValue (s-field) is a register or a 9-bit literal whose absolute value is subtracted from
Value.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100011 001i 1111 ddddddddd sssssssss D - |S| = 0 Unsigned Borrow1 Written 4

1 If S is negative, C Result is the inverse of unsigned carry (for D + S).

Concise Truth Table:
In Out

Destination
1 Source Z C Effects Destination Z C

$0000_0003; 3 $FFFF_FFFC; -4 - - wz wc $FFFF_FFFF; 4,294,967,295 0 0

$0000_0003; 3 $FFFF_FFFD; -3 - - wz wc $0000_0000; 0 1 1

$0000_0003; 3 $FFFF_FFFE; -2 - - wz wc $0000_0001; 1 0 1

$0000_0003; 3 $FFFF_FFFF; -1 - - wz wc $0000_0002; 2 0 1

$0000_0003; 3 $0000_0002; 2 - - wz wc $0000_0001; 1 0 0

$0000_0003; 3 $0000_0003; 3 - - wz wc $0000_0000; 0 1 0

$0000_0003; 3 $0000_0004; 4 - - wz wc $FFFF_FFFF; 4,294,967,295 0 1
1 Destination is treated as an unsigned value.

Explanation
SUBABS subtracts the absolute of SValue from Value and stores the result into the Value
register.

If the WZ effect is specified, the Z flag is set (1) if Value − |SValue| equals zero. If the WC
effect is specified, the C flag is set (1) if the subtraction resulted in an unsigned borrow
(32-bit overflow). The result is written to Value unless the NR effect is specified.

Page 350 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – SUBS

SUBS
Instruction: Subtract two signed values.

SUBS SValue1, 〈#〉 SValue2
Result: Difference of signed SValue1 and signed SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to subtract SValue2 from, and is
the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is subtracted from SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110101 001i 1111 ddddddddd sssssssss D - S = 0 Signed Overflow Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $0000_0001; 1 - - wz wc $0000_0000; 0 1 0

$0000_0001; 1 $0000_0002; 2 - - wz wc $FFFF_FFFF; -1 0 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 - - wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $FFFF_FFFE; -2 - - wz wc $0000_0001; 1 0 0

$8000_0001; -2,147,483,647 $0000_0001; 1 - - wz wc $8000_0000; -2,147,483,648 0 0

$8000_0001; -2,147,483,647 $0000_0002; 2 - - wz wc $7FFF_FFFF; 2,147,483,647 0 1

$7FFF_FFFE; 2,147,483,646 $FFFF_FFFF; -1 - - wz wc $7FFF_FFFF; 2,147,483,647 0 0

$7FFF_FFFE; 2,147,483,646 $FFFF_FFFE; -2 - - wz wc $8000_0000; -2,147,483,648 0 1

Explanation
SUBS subtracts the signed SValue2 from the signed SValue1 and stores the result into the
SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 − SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the subtraction resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

To subtract signed, multi-long values, use SUB, possibly SUBX, and finally SUBSX. See SUBSX
on page 352 for more information.

Propeller Manual v1.1 · Page 351

jmartin
New

jmartin
Improved

jmartin
New

SUBSX – Assembly Language Reference

SUBSX
Instruction: Subtract signed value plus C from another signed value.

SUBSX SValue1, 〈#〉 SValue2
Result: Difference of signed SValue1, and signed SValue2 plus C flag, is stored in SValue1.

• SValue1 (d-field) is the register containing the value to subtract SValue2 plus C from,
and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value plus C is subtracted from
SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110111 001i 1111 ddddddddd sssssssss Z & (D–(S+C) = 0) Signed Overflow Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $0000_0001; 1 0 0 wz wc $0000_0000; 0 0 0

$0000_0001; 1 $0000_0001; 1 1 0 wz wc $0000_0000; 0 1 0

$0000_0001; 1 $0000_0001; 1 x 1 wz wc $FFFF_FFFF; -1 0 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 0 0 wz wc $0000_0000; 0 0 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 1 0 wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 x 1 wz wc $FFFF_FFFF; -1 0 0

$8000_0001; -2,147,483,647 $0000_0001; 1 x 0 wz wc $8000_0000; -2,147,483,648 0 0

$8000_0001; -2,147,483,647 $0000_0001; 1 x 1 wz wc $7FFF_FFFF; 2,147,483,647 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 x 0 wz wc $8000_0000; -2,147,483,648 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 x 1 wz wc $7FFF_FFFF; 2,147,483,647 0 0

Explanation
SUBSX (Subtract Signed, Extended) subtracts the signed value of SValue2 plus C from
SValue1, and stores the result into the SValue1 register. The SUBSX instruction is used to
perform signed multi-long subtraction; 64-bit subtractions, for example.

In a signed multi-long operation, the first instruction is unsigned (ex: SUB), any middle
instructions are unsigned, extended (ex: SUBX), and the last instruction is signed, extended

Page 352 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
New

3: Assembly Language Reference – SUBSX

Propeller Manual v1.1 · Page 353

(ex: SUBSX). Make sure to use the WC, and optionally WZ, effect on the leading SUB and SUBX
instructions.

For example, a signed double-long (64-bit) subtraction may look like this:

 sub XLow, YLow wc wz 'Subtract low longs; save C and Z
 subsx XHigh, YHigh 'Subtract high longs

After executing the above, the double-long (64-bit) result is in the long registers
XHigh:XLow. If XHigh:XLow started out as $0000_0000:0000_0001 (1) and YHigh:YLow
was $0000_0000:0000_0002 (2) the result in XHigh:XLow would be
$FFFF_FFFF:FFFF_FFFF (-1). This is demonstrated below.

 Hexadecimal Decimal
 (high) (low)
 (XHigh:XLow) $0000_0000:0000_0001 1
 - (YHigh:YLow) - $0000_0000:0000_0002 - 2
 ---------------------- ---------------
 = $FFFF_FFFF:FFFF_FFFF = -1

A signed triple-long (96-bit) subtraction would look similar but with a SUBX instruction
inserted between the SUB and SUBSX instructions:

 sub XLow, YLow wc wz 'Subtract low longs; save C and Z
 subx XMid, YMid wc wz 'Subtract middle longs; save C and Z
 subsx XHigh, YHigh 'Subtract high longs

Of course, it may be necessary to specify the WC and WZ effects on the final instruction, SUBSX,
in order to watch for a result of zero or signed overflow condition. Note that during this
multi-step operation the Z flag always indicates if the result is turning out to be zero, but the
C flag indicates unsigned borrows until the final instruction, SUBSX, in which it indicates
signed overflow.

For SUBSX, if the WZ effect is specified, the Z flag is set (1) if Z was previously set and
SValue1 − (SValue2 + C) equals zero (use WC and WZ on preceding SUB and SUBX instructions).
If the WC effect is specified, the C flag is set (1) if the subtraction resulted in a signed
overflow. The result is written to SValue1 unless the NR effect is specified).

SUBX – Assembly Language Reference

SUBX
Instruction: Subtract unsigned value plus C from another unsigned value.

SUBX Value1, 〈#〉 Value2
Result: Difference of unsigned Value1, and unsigned Value2 plus C flag, is stored in Value1.

• Value1 (d-field) is the register containing the value to subtract Value2 plus C from,
and is the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value plus C is subtracted from
Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110011 001i 1111 ddddddddd sssssssss Z & (D–(S+C) = 0) Unsigned Borrow Written 4

Concise Truth Table:
In Out

Destination
1 Source

1 Z C Effects Destination Z C
$0000_0001; 1 $0000_0001; 1 0 0 wz wc $0000_0000; 0 0 0

$0000_0001; 1 $0000_0001; 1 1 0 wz wc $0000_0000; 0 1 0

$0000_0001; 1 $0000_0001; 1 x 1 wz wc $FFFF_FFFF; 4,294,967,295 0 1
1 Both Source and Destination are treated as unsigned values.

Explanation
SUBX (Subtract Extended) subtracts the unsigned value of Value2 plus C from the unsigned
Value1 and stores the result into the Value1 register. The SUBX instruction is used to perform
multi long subtraction; 64-bit subtractions, for example.

In a multi-long operation, the first instruction is unsigned (ex: SUB), any middle instructions
are unsigned, extended (ex: SUBX), and the last instruction is unsigned, extended (SUBX) or
signed, extended (SUBSX) depending on the nature of the original multi-long values. We’ll
discuss unsigned multi-long values here; see SUBSX on page 352 for examples with signed,
multi-long values. Make sure to use the WC, and optionally WZ, effect on the leading SUB and
SUBX instructions.

Page 354 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

jmartin
New

3: Assembly Language Reference – SUBX

Propeller Manual v1.1 · Page 355

For example, an unsigned double-long (64-bit) subtraction may look like this:

 sub XLow, YLow wc wz 'Subtract low longs; save C and Z
 subx XHigh, YHigh 'Subtract high longs

After executing the above, the double-long (64-bit) result is in the long registers
XHigh:XLow. If XHigh:XLow started out as $0000_0001:0000_0000 (4,294,967,296) and
YHigh:YLow was $0000_0000:0000_0001 (1) the result in XHigh:XLow would be
$0000_0000:FFFF_FFFF (4,294,967,295). This is demonstrated below.

 Hexadecimal Decimal
 (high) (low)
 (XHigh:XLow) $0000_0001:0000_0000 4,294,967,296
 - (YHigh:YLow) - $0000_0000:0000_0001 - 1
 ---------------------- ---------------
 = $0000_0000:FFFF_FFFF = 4,294,967,295

Of course, it may be necessary to specify the WC and WZ effects on the final instruction, SUBX,
in order to watch for a result of zero or an unsigned borrow condition.

For SUBX, if the WZ effect is specified, the Z flag is set (1) if Z was previously set and
Value1 - (Value2 + C) equals zero (use WC and WZ on preceding SUB and SUBX instructions). If
the WC effect is specified, the C flag is set (1) if the subtraction resulted in an unsigned borrow
(32-bit overflow). The result is written to Value1 unless the NR effect is specified.

SUMC – Assembly Language Reference

SUMC
Instruction: Sum a signed value with another whose sign is inverted depending on C.

SUMC SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and ±SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to sum with either –SValue2 or
SValue2, and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is sign-affected by C and
summed into SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100100 001i 1111 ddddddddd sssssssss D ± S = 0 Signed Overflow Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $0000_0001; 1 - 0 wz wc $0000_0002; 2 0 0

$0000_0001; 1 $0000_0001; 1 - 1 wz wc $0000_0000; 0 1 0

$0000_0001; 1 $FFFF_FFFF; -1 - 0 wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 - 0 wz wc $FFFF_FFFE; -2 0 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 - 1 wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $0000_0001; 1 - 0 wz wc $0000_0000; 0 1 0

$8000_0000; -2,147,483,648 $0000_0001; 1 - 0 wz wc $8000_0001; -2,147,483,647 0 0

$8000_0000; -2,147,483,648 $0000_0001; 1 - 1 wz wc $7FFF_FFFF; 2,147,483,647 0 1

$8000_0000; -2,147,483,648 $FFFF_FFFF; -1 - 0 wz wc $7FFF_FFFF; 2,147,483,647 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 - 0 wz wc $7FFF_FFFE; 2,147,483,646 0 0

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 - 1 wz wc $8000_0000; -2,147,483,648 0 1

$7FFF_FFFF; 2,147,483,647 $0000_0001; 1 - 0 wz wc $8000_0000; -2,147,483,648 0 1

Explanation
SUMC (Sum with C-affected sign) adds the signed value of SValue1 to –SValue2 (if C = 1) or
to SValue2 (if C = 0) and stores the result into the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 ± SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.
Page 356 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – SUMNC

SUMNC
Instruction: Sum a signed value with another whose sign is inverted depending on !C.

SUMNC SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and ±SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to sum with either SValue2 or
-SValue2, and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is sign-affected by !C and
summed into SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100101 001i 1111 ddddddddd sssssssss D ± S = 0 Signed Overflow Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $0000_0001; 1 - 0 wz wc $0000_0000; 0 1 0

$0000_0001; 1 $0000_0001; 1 - 1 wz wc $0000_0002; 2 0 0

$0000_0001; 1 $FFFF_FFFF; -1 - 1 wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 - 0 wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 - 1 wz wc $FFFF_FFFE; -2 0 0

$FFFF_FFFF; -1 $0000_0001; 1 - 1 wz wc $0000_0000; 0 1 0

$8000_0000; -2,147,483,648 $0000_0001; 1 - 0 wz wc $7FFF_FFFF; 2,147,483,647 0 1

$8000_0000; -2,147,483,648 $0000_0001; 1 - 1 wz wc $8000_0001; -2,147,483,647 0 0

$8000_0000; -2,147,483,648 $FFFF_FFFF; -1 - 1 wz wc $7FFF_FFFF; 2,147,483,647 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 - 0 wz wc $8000_0000; -2,147,483,648 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 - 1 wz wc $7FFF_FFFE; 2,147,483,646 0 0

$7FFF_FFFF; 2,147,483,647 $0000_0001; 1 - 1 wz wc $8000_0000; -2,147,483,648 0 1

Explanation
SUMNC (Sum with !C-affected sign) adds the signed value of SValue1 to SValue2 (if C = 1) or
to –SValue2 (if C = 0) and stores the result into the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 ± SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

Propeller Manual v1.1 · Page 357

jmartin
New

jmartin
Improved

SUMNZ – Assembly Language Reference

SUMNZ

Instruction: Sum a signed value with another whose sign is inverted depending on !Z.

SUMNZ SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and ±SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to sum with either SValue2 or
-SValue2, and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is sign-affected by !Z and
summed into SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100111 001i 1111 ddddddddd sssssssss D ± S = 0 Signed Overflow Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $0000_0001; 1 0 - wz wc $0000_0000; 0 1 0

$0000_0001; 1 $0000_0001; 1 1 - wz wc $0000_0002; 2 0 0

$0000_0001; 1 $FFFF_FFFF; -1 1 - wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 0 - wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 1 - wz wc $FFFF_FFFE; -2 0 0

$FFFF_FFFF; -1 $0000_0001; 1 1 - wz wc $0000_0000; 0 1 0

$8000_0000; -2,147,483,648 $0000_0001; 1 0 - wz wc $7FFF_FFFF; 2,147,483,647 0 1

$8000_0000; -2,147,483,648 $0000_0001; 1 1 - wz wc $8000_0001; -2,147,483,647 0 0

$8000_0000; -2,147,483,648 $FFFF_FFFF; -1 1 - wz wc $7FFF_FFFF; 2,147,483,647 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 0 - wz wc $8000_0000; -2,147,483,648 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 1 - wz wc $7FFF_FFFE; 2,147,483,646 0 0

$7FFF_FFFF; 2,147,483,647 $0000_0001; 1 1 - wz wc $8000_0000; -2,147,483,648 0 1

Explanation
SUMNZ (Sum with !Z-affected sign) adds the signed value of SValue1 to SValue2 (if Z = 1) or
to –SValue2 (if Z = 0) and stores the result into the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 ± SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

Page 358 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – SUMZ

SUMZ
Instruction: Sum a signed value with another whose sign is inverted depending on Z.

SUMZ SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and ±SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to sum with either –SValue2 or
SValue2, and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is sign-affected by Z and
summed into SValue1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100110 001i 1111 ddddddddd sssssssss D ± S = 0 Signed Overflow Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0001; 1 $0000_0001; 1 0 - wz wc $0000_0002; 2 0 0

$0000_0001; 1 $0000_0001; 1 1 - wz wc $0000_0000; 0 1 0

$0000_0001; 1 $FFFF_FFFF; -1 0 - wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 0 - wz wc $FFFF_FFFE; -2 0 0

$FFFF_FFFF; -1 $FFFF_FFFF; -1 1 - wz wc $0000_0000; 0 1 0

$FFFF_FFFF; -1 $0000_0001; 1 0 - wz wc $0000_0000; 0 1 0

$8000_0000; -2,147,483,648 $0000_0001; 1 0 - wz wc $8000_0001; -2,147,483,647 0 0

$8000_0000; -2,147,483,648 $0000_0001; 1 1 - wz wc $7FFF_FFFF; 2,147,483,647 0 1

$8000_0000; -2,147,483,648 $FFFF_FFFF; -1 0 - wz wc $7FFF_FFFF; 2,147,483,647 0 1

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 0 - wz wc $7FFF_FFFE; 2,147,483,646 0 0

$7FFF_FFFF; 2,147,483,647 $FFFF_FFFF; -1 1 - wz wc $8000_0000; -2,147,483,648 0 1

$7FFF_FFFF; 2,147,483,647 $0000_0001; 1 0 - wz wc $8000_0000; -2,147,483,648 0 1

Explanation
SUMZ (Sum with Z-affected sign) adds the signed value of SValue1 to –SValue2 (if Z = 1) or to
SValue2 (if Z = 0) and stores the result into the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 ± SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

Propeller Manual v1.1 · Page 359

jmartin
New

jmartin
Improved

Symbols – Assembly Language Reference

Symbols
The symbols in Table 3-6 below serve one or more special purposes in Propeller Assembly
code. For Spin symbols, see Symbols on page 207. Each symbol’s purpose is described
briefly with references to other sections that describe it directly or use it in examples.

Table 3-6: Symbols

Symbol Purpose(s)

% Binary indicator: used to indicate that a value is being expressed in binary (base-2). See
Value Representations on page 45.

%% Quaternary indicator: used to indicate a value is being expressed in quaternary (base-4).
See Value Representations on page 45.

$

1) Hexadecimal indicator: used to indicate a value is being expressed in hexadecimal
(base-16). See Value Representations on page 45.

2) Assembly Here indicator: used to indicate current address in assembly instructions.
See JMP on page 298.

" String designator: used to begin and end a string of text characters. See Data blocks on
page 99.

_
1) Delimiter: used as a group delimiter in constant values (where a comma ‛,’ or period ‘.’

may normally be used as a number group delimiter). See Value Representations on
page 45.

2) Underscore: used as part of a symbol. See Symbol Rules on page 45.

Assembly Literal indicator: used to indicate an expression or symbol is a literal value rather
than a register address. See Where Does an Instruction Get Its Data? on page 240.

Page 360 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – Symbols

Propeller Manual v1.1 · Page 361

Table 3-6: Symbols (continued)

Symbol Purpose(s)

: Assembly local label indicator: appears immediately before a local label. See Global and
Local Labels on page 242.

, List delimiter: used to separate items in lists. See the DAT section’s Declaring
Data(Syntax 1) on page 100.

' Code comment designator: used to enter single-line code comments (non-compiled text)
for code viewing purposes. See “Using the Propeller Tool” in the software’s Help file.

'' Document comment designator: used to enter single-line document comments (non-
compiled text) for documentation viewing purposes.

{ } In-line/multi-line code comment designators: used to enter multi-line code comments (non-
compiled text) for code viewing purposes.

{{ }}
In-line/multi-line document comment designators: used to enter multi-line document
comments (non-compiled text) for documentation viewing purposes. See “Using the
Propeller Tool” in the software’s Help file.

TEST – Assembly Language Reference

TEST
Instruction: Bitwise AND two values to affect flags only.

TEST Value1, 〈#〉 Value2
Result: Optionally, zero-result and parity of result is written to the Z and C flags.

• Value1 (d-field) is the register containing the value to bitwise AND with Value2.
• Value2 (s-field) is a register or a 9-bit literal whose value is bitwise ANDed with

Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011000 000i 1111 ddddddddd sssssssss D = 0 Parity of Result Not Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

$0000_000A; 10 $0000_0005; 5 - - wr wz wc $0000_0000; 0 1 0

$0000_000A; 10 $0000_0007; 7 - - wr wz wc $0000_0002; 2 0 1

$0000_000A; 10 $0000_000F; 15 - - wr wz wc $0000_000A; 10 0 0
1 Destination is not written unless the WR effect is given. NOTE: the TEST instruction with a WR effect is an AND instruction.

Explanation
TEST is similar to AND except it doesn’t write a result to Value1; it performs a bitwise AND of
the values in Value1 and Value2 and optionally stores the zero-result and parity of the result
in the Z and C flags.

If the WZ effect is specified, the Z flag is set (1) if Value1 AND Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

Page 362 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – TESTN

TESTN
Instruction: Bitwise AND a value with the NOT of another to affect flags only.

TESTN Value1, 〈#〉 Value2
Result: Optionally, zero-result and parity of result is written to the Z and C flags.

• Value1 (d-field) is the register containing the value to bitwise AND with !Value2.
• Value2 (s-field) is a register or a 9-bit literal whose value is inverted (bitwise NOT)

and bitwise ANDed with Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011001 000i 1111 ddddddddd sssssssss D = 0 Parity of Result Not Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

$F731_125A; -147,778,982 $FFFF_FFFA; -6 - - wr wz wc $0000_0000; 0 1 0

$F731_125A; -147,778,982 $FFFF_FFF8; -8 - - wr wz wc $0000_0002; 2 0 1

$F731_125A; -147,778,982 $FFFF_FFF0; -16 - - wr wz wc $0000_000A; 10 0 0
1 Destination is not written unless the WR effect is given. NOTE: the TESTN instruction with a WR effect is an ANDN instruction.

Explanation
TESTN is similar to ANDN except it doesn’t write a result to Value1; it performs a bitwise AND
NOT of Value2 into Value1 and optionally stores the zero-result and parity of the result in the
Z and C flags.

If the WZ effect is specified, the Z flag is set (1) if Value1 AND NOT Value2 equals zero. If
the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1)
bits.

Propeller Manual v1.1 · Page 363

jmartin
New

TJNZ – Assembly Language Reference

TJNZ
Instruction: Test value and jump to address if not zero.

TJNZ Value, 〈#〉 Address

• Value (d-field) is the register to test.
• Address (s-field) is the register or a 9-bit literal whose value is the address to jump to

when Value contains a non-zero number.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111010 000i 1111 ddddddddd sssssssss D = 0 0 Not Written 4 or 8

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

$0000_0000; 0 $----_----; - - - wr wz wc $0000_0000; 0 1 0

$0000_0001; 1 $----_----; - - - wr wz wc $0000_0001; 1 0 0
1 Destination is not written unless the WR effect is given.

Explanation
TJNZ tests the Value register and jumps to Address if it contains a non-zero number.

When the WZ effect is specified, the Z flag is set (1) if the Value register contains zero.

TJNZ requires a different amount of clock cycles depending on whether or not it has to jump.
If it must jump it takes 4 clock cycles, if no jump occurs it takes 8 clock cycles. Since loops
utilizing TJNZ need to be fast, it is optimized in this way for speed.

Page 364 · Propeller Manual v1.1

jmartin
New

jmartin
Improved

3: Assembly Language Reference – TJZ

TJZ
Instruction: Test value and jump to address if zero.

TJZ Value, 〈#〉 Address

• Value (d-field) is the register to test.
• Address (s-field) is the register or a 9-bit literal whose value is the address to jump to

when Value contains zero.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111011 000i 1111 ddddddddd sssssssss D = 0 0 Not Written 4 or 8

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

$0000_0000; 0 $----_----; - - - wr wz wc $0000_0000; 0 1 0

$0000_0001; 1 $----_----; - - - wr wz wc $0000_0001; 1 0 0
1 Destination is not written unless the WR effect is given.

Explanation
TJZ tests the Value register and jumps to Address if it contains zero.

When the WZ effect is specified, the Z flag is set (1) if the Value register contains zero.

TJZ requires a different amount of clock cycles depending on whether or not it has to jump. If
it must jump it takes 4 clock cycles, if no jump occurs it takes 8 clock cycles.

Propeller Manual v1.1 · Page 365

jmartin
New

jmartin
Improved

VCFG – Assembly Language Reference

VCFG
Register: Video configuration register.

DAT

 〈Label〉 〈Condition〉 Instruction VCFG, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, VCFG 〈Effects〉

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. VCFG may be used in either the

assembly instruction’s DestOperand or SrcOperand fields.
• SrcOperand is a constant expression used by Instruction to operate on, and optionally

write to, the VCFG register in DestOperand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of VCFG in SrcOperand.

Explanation
VCFG is one of two registers (VCFG and VSCL) that affect the behavior of a cog’s Video
Generator. Each cog has a video generator module that facilitates transmitting video image
data at a constant rate. The VCFG register contains the configuration settings of the video
generator.

The following code sets the Video Configuration register to enable video in composite mode
1 with four colors, baseband chroma (color) enabled, on pin group 1, lower 4 pins (which is
pins P11:8).

 mov vcfg, VidCfg

VidCfg long %0_10_1_0_1_000_00000000000_001_0_00001111

See Registers, page 338, and the Spin language VCFG section, page 213, for more information.

Page 366 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – VSCL

VSCL
Register: Video scale register

DAT

 〈Label〉 〈Condition〉 Instruction VSCL, SrcOperand 〈Effects〉
DAT

 〈Label〉 〈Condition〉 Instruction DestOperand, VSCL 〈Effects〉

• Label is an optional statement label. See Common Syntax Elements, page 250.
• Condition is an optional execution condition. See Common Syntax Elements, page 250.
• Instruction is the desired assembly instruction. VSCL may be used in either the

assembly instruction’s DestOperand or SrcOperand fields.
• SrcOperand is a constant expression used by Instruction to operate on, and optionally

write to, the VSCL register in DestOperand.
• DestOperand is a constant expression indicating the register that is operated on, and

optionally written to, using the value of VSCL in SrcOperand.

Explanation
VSCL is one of two registers (VCFG and VSCL) that affect the behavior of a cog’s Video
Generator. Each cog has a video generator module that facilitates transmitting video image
data at a constant rate. The VSCL register sets the rate at which video data is generated.

The following code sets the Video Scale register for 160 pixel clocks and 2,560 frame clocks
(for a 16-pixel by 2-bit color frame). Of course, the actual rate at which pixels clock out
depends on the frequency of PLLA in combination with this scale factor.

 mov vcfg, VscCfg

VscCfg long %000000000000_10100000_101000000000

See Registers, page 338, and the Spin language VSCL section, page 216, for more information.

Propeller Manual v1.1 · Page 367

jmartin
New

WAITCNT – Assembly Language Reference

Page 368 · Propeller Manual v1.1

WAITCNT
Instruction: Pause a cog’s execution temporarily.

WAITCNT Target, 〈#〉 Delta
Result: Target + Delta is stored in Target.

• Target (d-field) is the register with the target value to compare against the System
Counter (CNT). When the System Counter has reached Target’s value, Delta is added
to Target and execution continues at the next instruction.

T

• Delta (s-field) is the register or a 9-bit literal whose value is added to Target’s value in
preparation for the next WAITCNT instruction. This creates a synchronized delay
window.

T

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111110 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry Written 5+

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_0000; 0 $0000_0000; 0 - - wz wc $0000_0000; 0 1 0

$FFFF_FFFF; 4,294,967,295 $0000_0001; 1 - - wz wc $0000_0000; 0 1 1

$0000_0000; 0 $0000_0001; 1 - - wz wc $0000_0001; 1 0 0

Explanation
WAITCNT, “Wait for System Counter,” is one of four wait instructions (T WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. The WAITCNT
instruction pauses the cog until the global System Counter equals the value in the Target
register, then it adds Delta to Target and execution continues at the next instruction. The
WAITCNTT instruction behaves similar to Spin’s WAITCNT command for Synchronized Delays;
see

T

WAITCNT on page . 218

If the WZ effect is specified, the Z flag will be set (1) if the sum of Target and Delta is zero. If
the WC effect is specified, the C flag will be set (1) if the sum of Target and Delta resulted in a
32-bit carry (overflow). The result will be written to Target unless the NR effect is specified.

jmartin
New

3: Assembly Language Reference – WAITPEQ

Propeller Manual v1.1 · Page 369

WAITPEQ
Instruction: Pause a cog’s execution until I/O pin(s) match designated state(s).

WAITPEQ State, 〈#〉 Mask

• State (d-field) is the register with the target state(s) to compare against INx ANDed
with Mask.

• Mask (s-field) is the register or a 9-bit literal whose value is bitwise ANDed with INx
before the comparison with State.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111100 000i 1111 ddddddddd sssssssss --- --- Not Written 5+

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

$0000_0000; 0 $0000_0000; 0 - - wr wz wc $0000_0000; 0 1 0

$0000_0000; 0 $0000_0001; 1 - - wr wz wc $0000_0001; 1 0 0

$0000_0001; 1 $0000_0001; 1 - - wr wz wc $0000_0002; 2 0 0

$0000_0000; 0 $0000_0002; 2 - - wr wz wc $0000_0002; 2 0 0

$0000_0002; 2 $0000_0002; 2 - - wr wz wc $0000_0004; 4 0 0
1 Destination is not written unless the WR effect is given.

Explanation
WAITPEQ, “Wait for Pin(s) to Equal,” is one of four wait instructions (WAITCNT, T WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. The WAITPEQ
instruction pauses the cog until the result of INx ANDed with Mask equals the value in the
State register. INx is either INA or INB depending on the value of the C flag upon execution;
INA if C = 0, INB if C = 1 (the P8X32A is an exception to this rule; it always tests INA).

The WAITPEQ instruction behaves similar to Spin’s WAITPEQ command; see WAITPEQ on page
222.

jmartin
New

jmartin
Improved

WAITPNE – Assembly Language Reference

Page 370 · Propeller Manual v1.1

WAITPNE
Instruction: Pause a cog’s execution until I/O pin(s) do not match designated state(s).

WAITPNE State, 〈#〉 Mask

• State (d-field) is the register with the target state(s) to compare against INx ANDed
with Mask.

• Mask (s-field) is the register or a 9-bit literal whose value is bitwise ANDed with INx
before the comparison with State.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111101 000i 1111 ddddddddd sssssssss --- --- Not Written 5+

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

$0000_0000; 0 $0000_0000; 0 - - wr wz wc $0000_0000; 0 1 1

$0000_0000; 0 $0000_0001; 1 - - wr wz wc $0000_0002; 2 0 0

$0000_0001; 1 $0000_0001; 1 - - wr wz wc $0000_0003; 3 0 0

$0000_0000; 0 $0000_0002; 2 - - wr wz wc $0000_0003; 3 0 0

$0000_0002; 2 $0000_0002; 2 - - wr wz wc $0000_0002; 2 0 0
1 Destination is not written unless the WR effect is given.

Explanation
WAITPNE, “Wait for Pin(s) to Not Equal,” is one of four wait instructions (WAITCNT, T WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. The WAITPNE
instruction pauses the cog until the result of INx ANDed with Mask does not match the value
in the State register. INx is either INA or INB depending on the value of the C flag upon
execution; INA if C = 0, INB if C = 1 (the P8X32A is an exception to this rule; it always tests
INA). The WAITPNE instruction behaves similar to Spin’s WAITPNE command; see WAITPNE on
page 224.

jmartin
New

jmartin
Improved

3: Assembly Language Reference – WAITVID

WAITVID
Instruction: Pause a cog’s execution until its Video Generator is available to take pixel data.

WAITVID Colors, 〈#〉 Pixels

• Colors (d-field) is the register with four byte-sized color values, each describing the
four possible colors of the pixel patterns in Pixels.

• Pixels (s-field) is the register or a 9-bit literal whose value is the next 16-pixel by 2-bit
(or 32-pixel by 1-bit) pixel pattern to display.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111111 000i 1111 ddddddddd sssssssss D + S = 0 Unsigned overflow Not Written 5+

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z C

$0000_0002; 2 $FFFF_FFFD; -3 - - wr wz wc $FFFF_FFFF; -1 0 0

$0000_0002; 2 $FFFF_FFFE; -2 - - wr wz wc $0000_0000; 0 1 1

$0000_0002; 2 $FFFF_FFFF; -1 - - wr wz wc $0000_0001; 1 0 1

$0000_0002; 2 $0000_0000; 0 - - wr wz wc $0000_0002; 2 0 0
1 Destination is not written unless the WR effect is given.

Explanation
WAITVID, “Wait for Video Generator,” is one of four wait instructions (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. The WAITVID
instruction pauses the cog until its Video Generator hardware is ready for the next pixel data,
then the Video Generator accepts that data (Colors and Pixels) and the cog continues
execution with the next instruction. The WAITVID instruction behaves similar to Spin’s
WAITVID command; see WAITVID on page 225.

If the WZ effect is specified, the Z flag will be set (1) if the Colors and Pixels are equal.

Make sure to start the cog’s Video Generator module and Counter A before executing the
WAITVID command or it will wait forever. See VCFG on page 213, VSCL on page 216, and CTRA,
CTRB

 on page 95.

Propeller Manual v1.1 · Page 371

jmartin
New

jmartin
Improved

WC – Assembly Language Reference

WC
Effect: Cause assembly instruction to modify the C flag.

〈Label〉 〈Condition〉 Instruction Operands WC
Result: C flag is updated with status from the Instruction‘s execution.

• Label is an optional statement label. See Common Syntax Elements on page 250.
• Condition is an optional execution condition. See Common Syntax Elements on page 250.
• Instruction is the desired assembly instruction.
• Operands is zero, one, or two operands as required by the Instruction.

Explanation
WC (Write C flag) is one of four optional effects (NR, WR, WZ, and WC) that influence the behavior
of assembly instructions. WC causes an executing assembly instruction to modify the C flag in
accordance with its results.

For example, the CMP (Compare Unsigned) instruction compares two values (destination and
source) but does not automatically write the results to the C and Z flags. You can determine
if the destination value is less than the source value by using the CMP instruction with the WC
effect:

 cmp value1, value2 WC 'C = 1 if value1 < value2

The above CMP instruction compares value1 with value2 and sets C high (1) if value1 is
less than value2.

See Effects on page 291 for more information.

Page 372 · Propeller Manual v1.1

jmartin
New

3: Assembly Language Reference – WR

WR
Effect: Cause assembly instruction to write a result.

〈Label〉 〈Condition〉 Instruction Operands WR
Result: Instruction’s destination register is changed to the result value.

• Label is an optional statement label. See Common Syntax Elements on page 250.
• Condition is an optional execution condition. See Common Syntax Elements on page 250.
• Instruction is the desired assembly instruction.
• Operands is zero, one, or two operands as required by the Instruction.

Explanation
WR (Write Result) is one of four optional effects (WC, WZ, NR, and WR) that influence the
behavior of assembly instructions. WR causes an executing assembly instruction to write its
result value to the destination register.

For example, by default the COGINIT (Cog Initialize) instruction does not write a result to the
destination register. This is fine when wanting to start a cog with a specific ID, but when
asking to start the next available cog (i.e., destination register value bit 3 is high) you may
like to know what cog was actually started, by ID. You can get the new cog’s ID from the
COGINIT instruction by using the WR effect:

 coginit launch_value WR 'Launch new cog, get ID back

Assuming launch_value points to a register that contained a high (1) in bit 3, the COGINIT
instruction starts the next available cog and writes its ID back to the launch_value register.

See Effects on page 291 for more information.

Propeller Manual v1.1 · Page 373

jmartin
New

WRBYTE – Assembly Language Reference

WRBYTE
Instruction: Write a byte to main memory.

WRBYTE Value, 〈#〉 Address

• Value (d-field) is the register containing the 8-bit value to write to main memory.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to write to.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000000 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z

2 C
$----_----; - $----_----; - - - wz wc n/a 1 0

1 Destination Out doesn’t exist since including a WR effect would turn WRBYTE into a RDBYTE instruction.
2 The Z flag is set (1) unless the main memory address is on a long boundary.

Explanation
WRBYTE synchronizes to the Hub and writes the lowest byte in Value to main memory at
Address.

The WR effect can not be used with WRBYTE as that would change it to a RDBYTE instruction.

WRBYTE is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

Page 374 · Propeller Manual v1.1

jmartin
New

jmartin
New

3: Assembly Language Reference – WRLONG

WRLONG
Instruction: Write a long to main memory.

WRLONG Value, 〈#〉 Address

• Value (d-field) is the register containing the 32-bit value to write to main memory.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to write to.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000010 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z

2 C
$----_----; - $----_----; - - - wz wc n/a 0 0

1 Destination Out doesn’t exist since including a WR effect would turn WRLONG into a RDLONG instruction.
2 The Z flag is always cleared (0) since the main memory address (bits 13:2) is always on a long boundary.

Explanation
WRLONG synchronizes to the Hub and writes the long in Value to main memory at Address.

The WR effect can not be used with WRLONG as that would change it to a RDLONG instruction.

WRLONG is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. Hub on page 24 for more information.

Propeller Manual v1.1 · Page 375

jmartin
New

jmartin
New

WRWORD – Assembly Language Reference

WRWORD
Instruction: Write a word to main memory.

WRWORD Value, 〈#〉 Address

• Value (d-field) is the register containing the 16-bit value to write to main memory.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to write to.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000001 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22

Concise Truth Table:
In Out

Destination Source Z C Effects Destination
1 Z

2 C
$----_----; - $----_----; - - - wz wc n/a 1 0

1 Destination Out doesn’t exist since including a WR effect would turn WRWORD into a RDWORD instruction.
2 The Z flag is set (1) unless the main memory address (bits 13:1) is on a long boundary.

Explanation
WRWORD synchronizes to the Hub and writes the lowest word in Value to main memory at
Address.

The WR effect can not be used with WRWORD as that would change it to a RDWORD instruction.

WRWORD is a hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

Page 376 · Propeller Manual v1.1

jmartin
New

jmartin
New

3: Assembly Language Reference – WZ

WZ
Effect: Cause assembly instruction to modify the Z flag.

〈Label〉 〈Condition〉 Instruction Operands WZ
Result: Z flag is updated with status from the Instruction‘s execution.

• Label is an optional statement label. See Common Syntax Elements on page 250.
• Condition is an optional execution condition. See Common Syntax Elements on page 250.
• Instruction is the desired assembly instruction.
• Operands is zero, one, or two operands as required by the Instruction.

Explanation
WZ (Write Z flag) is one of four optional effects (NR, WR, WC, and WZ) that influence the
behavior of assembly instructions. WZ causes an executing assembly instruction to modify the
Z flag in accordance with its results.

For example, the CMP (Compare Unsigned) instruction compares two values (destination and
source) but does not automatically write the results to the C and Z flags. You can determine
if the destination value is equal to the source value by using the CMP instruction with the WZ
effect:

 cmp value1, value2 WZ 'Z = 1 if value1 = value2

The above CMP instruction compares value1 with value2 and sets Z high (1) if value1 is
equal to value2.

See Effects on page 291 for more information.

Propeller Manual v1.1 · Page 377

jmartin
New

XOR – Assembly Language Reference

XOR
Instruction: Bitwise XOR two values.

XOR Value1, 〈#〉 Value2
Result: Value1 XOR Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to bitwise XOR with Value2 and is
the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is bitwise XORed with
Value1.

Opcode Table:
 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011011 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Concise Truth Table:
In Out

Destination Source Z C Effects Destination Z C
$0000_000A; 10 $0000_0005; 5 - - wz wc $0000_000F; 15 0 0

$0000_000A; 10 $0000_0007; 7 - - wz wc $0000_000D; 13 0 1

$0000_000A; 10 $0000_000A; 10 - - wz wc $0000_0000; 0 1 0

$0000_000A; 10 $0000_000D; 13 - - wz wc $0000_0007; 7 0 1

$0000_000A; 10 $0000_000F; 15 - - wz wc $0000_0005; 5 0 0

Explanation
XOR (bitwise exclusive OR) performs a bitwise XOR of the value in Value2 into that of
Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 XOR Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
The result is written to Value1 unless the NR effect is specified.

Page 378 · Propeller Manual v1.1

jmartin
New

Appendix A: Reserved Word List

Propeller Manual v1.1 · Page 379

Appendix A: Reserved Word List
These words are always reserved, whether programming in Spin or Propeller Assembly.

Table A-0-1: Propeller Reserved Word List
_CLKFREQs
_CLKMODEs
_FREEs
_STACKs
_XINFREQs
ABORTs
ABSa
ABSNEGa
ADDa
ADDABSa
ADDSa
ADDSXa
ADDXa
ANDd
ANDNa
BYTEs
BYTEFILLs
BYTEMOVEs
CALLa
CASEs
CHIPVERs
CLKFREQs
CLKMODEs
CLKSETd
CMPP

a
CMPSa
CMPSUBa
CMPSXa
CMPXa
CNTd
COGIDd
COGINITd
COGNEWs
COGSTOPd

CONs

CONSTANTs
CTRAd
CTRBd
DATT

s
DIRAd
DIRBd#
DJNZa
ELSEs
ELSEIFs
ELSEIFNOTs
ENCa
FALSEd
FILEs
FITT

a
FLOATs
FROMs
FRQAd
FRQBd
HUBOPa
IFs
IFNOTs
IF_Aa
IF_AEa
IF_ALWAYSa
IF_Ba
IF_BEa
IF_Ca
IF_C_AND_NZa
IF_C_AND_Za
IF_C_EQ_Za
IF_C_NE_Za
IF_C_OR_NZa
IF_C_OR_Za
IF_Ea
IF_NCa

IF_NC_AND_NZa

IF_NC_AND_Za
IF_NC_OR_NZa
IF_NC_OR_Za
IF_NEa
IF_NEVERa
IF_NZa
IF_NZ_AND_Ca
IF_NZ_AND_NCa
IF_NZ_OR_Ca
IF_NZ_OR_NCa
IF_Za
IF_Z_AND_Ca
IF_Z_AND_NCa
IF_Z_EQ_Ca
IF_Z_NE_Ca
IF_Z_OR_Ca
IF_Z_OR_NCa
INAd
INBd#
JMPa
JMPRETa
LOCKCLRd
LOCKNEWd
LOCKRETd
LOCKSETd
LONGs
LONGFILLs
LONGMOVEs
LOOKDOWNs
LOOKDOWNZs
LOOKUPs
LOOKUPZs
MAXa
MAXSa

MINa

MINSa
MOVa
MOVDa
MOVIa
MOVSa
MULa#
MULSa#
MUXCa
MUXNCa
MUXNZa
MUXZa
NEGa
NEGCa
NEGNCa
NEGNZa
NEGXd
NEGZa
NEXTs
NOPa
NOTT

s
NRa
OBJs
ONESa#
ORd
ORGa
OTHERs
OUTAd
OUTBd#
PARd
PHSAd
PHSBd
PId
PLL1Xs

PLL2Xs

PLL4Xs
PLL8Xs
PLL16Xs
POSXd
PRIs
PUBs
QUITs
RCFASTs
RCLa
RCRa
RCSLOWs
RDBYTEa
RDLONGa
RDWORDa
REBOOTs
REPEATs
RESa
RESULTs
RETT

a
RETURNs
REVa
ROLa
RORa
ROUNDs
SARa
SHLa
SHRa
SPRs
STEPs
STRCOMPs
STRINGs
STRSIZEs
SUBa
SUBABSa
SUBSa

SUBSXa
SUBXa
SUMCa
SUMNCa
SUMNZa
SUMZa
TESTa

TESTNa

TJNZa
TJZa
TOs
TRUEd
TRUNCs
UNTILs
VARs
VCFGd
VSCLd
WAITCNTd
WAITPEQd
WAITPNEd
WAITVIDd
WCa
WHILEs
WORDs
WORDFILLs
WORDMOVEs
WRa
WRBYTEa
WRLONGa
WRWORDa
WZa
XINPUTs
XORa
XTAL1s
XTAL2s
XTAL3s

a = Assembly element; s = Spin element; d = dual (available in both languages); # = reserved for future use

jmartin
Improved

Appendix B: Math Samples and Function Tables

Appendix B: Math Samples and Function Tables
Multiplication, Division, and Square Root
Multiplication, division, and square root can be computed by using add, subtract, and shift
instructions. Here is an unsigned multiplier routine that multiplies two 16-bit values to yield
a 32-bit product:
'' Multiply x[15..0] by y[15..0] (y[31..16] must be 0)
' on exit, product in y[31..0]
'
multiply shl x,#16 'get multiplicand into x[31..16]
 mov t,#16 'ready for 16 multiplier bits
 shr y,#1 wc 'get initial multiplier bit into c
:loop if_c add y,x wc 'if c set, add multiplicand to product
 rcr y,#1 wc 'put next multiplier in c, shift prod.
 djnz t,#:loop 'loop until done
multiply_ret ret 'return with product in y[31..0]

The above routine's execution time could be cut by ~1/3 if the loop was unrolled, repeating
the ADD / RCR sequence and getting rid of the DJNZ instruction.

Division is like multiplication, but backwards. It is potentially more complex, though,
because a comparison test must be performed before a subtraction can take place. To remedy
this, there don’t is a special CMPSUB D, S instructions which tests to see if a subtraction can be
performed without causing an underflow. If no underflow would occur, the subtraction takes
place and the C output is 1. If an underflow would occur, D is left alone and the C output is 0.

Here is an unsigned divider routine that divides a 32-bit value by a 16-bit value to yield a 16-
bit quotient and a 16-bit remainder:
' Divide x[31..0] by y[15..0] (y[16] must be 0)
' on exit, quotient is in x[15..0] and remainder is in x[31..16]
'
divide shl y,#15 'get divisor into y[30..15]
 mov t,#16 'ready for 16 quotient bits
:loop cmpsub x,y wc 'y =< x? Subtract it, quotient bit in c
 rcl x,#1 'rotate c into quotient, shift dividend
 djnz t,#:loop 'loop until done
divide_ret ret 'quotient in x[15..0],
 'remainder in x[31..16]

Page 380 · Propeller Manual v1.1

jmartin
New

Appendix B: Math Samples and Function Tables
Like the multiplier routine, this divider routine could be recoded with a sequence of 16
CMPSUB + RCL instruction pairs to get rid of the DJNZ and cut execution time by ~1/3. By
making such changes, speed can often be gained at the expense of code size.

Here is a square-root routine that uses the CMPSUB instruction:
'
' Compute square-root of y[31..0] into x[15..0]
'
root mov a,#0 'reset accumulator
 mov x,#0 'reset root
 mov t,#16 'ready for 16 root bits
:loop shl y,#1 wc 'rotate top two bits of y to accumulator
 rcl a,#1
 shl y,#1 wc
 rcl a,#1
 shl x,#2 'determine next bit of root
 or x,#1
 cmpsub a,x wc
 shr x,#2
 rcl x,#1
 djnz t,#:loop 'loop until done
root_ret ret 'square root in x[15..0]

Many complex math functions can be realized by additions, subtractions, and shifts. Though
specific examples were given here, these types of algorithms may be coded in many different
ways to best suit the application.

Log and Anti-Log Tables ($C000-DFFF)
The log and anti-log tables are useful for converting values between their number form and
exponent form.

When numbers are encoded into exponent form, simple math operations take on more
complex effects. For example ‘add’ and ‘subtract’ become ‘multiply’ and ‘divide,’ ‘shift-left’
becomes ‘square’ and ‘shift-right’ becomes ‘square-root,’ and ‘divide by 3’ will produce
‘cube root.’ Once the exponent is converted back to a number, the result will be apparent.
This process is imperfect, but quite fast.

For applications where many multiplies and divides must be performed in the absence of
many additions and subtractions, exponential encoding can greatly speed things up.
Exponential encoding is also useful for compressing numbers into fewer bits – sacrificing
resolution at higher magnitude. In many applications, such as audio synthesis, the nature of
signals is logarithmic in both frequency and magnitude. Processing such data in exponent

Propeller Manual v1.1 · Page 381

Appendix B: Math Samples and Function Tables
form is quite natural and efficient, as it lends a ‘linear’ simplicity to what is actually
logarithmic.

The code examples given below use each tables’ samples verbatim. Higher resolution could
be achieved by linearly interpolating between table samples, since the slope change is very
slight from sample to sample. The cost, though, would be larger code and lower execution
speed.

Log Table ($C000-$CFFF)
The log table contains data used to convert unsigned numbers into base-2 exponents.

The log table is comprised of 2,048 unsigned words which make up the base-2 fractional
exponents of numbers. To use this table, you must first determine the integer portion of the
exponent of the number you are converting. This is simply the leading bit position. For
$60000000 this would be 30 ($1E). This integer portion will always fit within 5 bits. Isolate
these 5 bits into the result so that they occupy bit positions 20..16. In our case of $60000000,
we would now have a partial result of $001E0000. Next, top-justify and isolate the first 11
bits below the leading bit into positions 11..1. This would be $0800 for our example. Add
$C000 for the log table base and you now have the actual word address of the fractional
exponent. By reading the word at $C800, we get the value $95C0. Adding this into the partial
result yields $001E95C0 – that's $60000000 in exponent form. Note that bits 20..16 make up
the integer portion of the exponent, while bits 15..0 make up the fractional portion, with bit
15 being the ½, bit 14 being the ¼, and so on, down to bit 0. The exponent can now be
manipulated by adding, subtracting, and shifting. Always insure that your math operations
will never drive the exponent below 0 or cause it to overflow bit 20. Otherwise, it may not
convert back to a number correctly.

Here is a routine that will convert an unsigned number into its base-2 exponent using the log
table:
' Convert number to exponent
'
' on entry: num holds 32-bit unsigned value
' on exit: exp holds 21-bit exponent with 5 integer bits and 16 fractional bits
'
numexp mov exp,#0 'clear exponent

 test num,num4 wz 'get integer portion of exponent
 muxnz exp,exp4 'while top-justifying number
 if_z shl num,#16
 test num,num3 wz
 muxnz exp,exp3
 if_z shl num,#8

Page 382 · Propeller Manual v1.1

Appendix B: Math Samples and Function Tables
 test num,num2 wz
 muxnz exp,exp2
 if_z shl num,#4
 test num,num1 wz
 muxnz exp,exp1
 if_z shl num,#2
 test num,num0 wz
 muxnz exp,exp0
 if_z shl num,#1

 shr num,#30-11 'justify sub-leading bits as word
offset
 and num,table_mask 'isolate table offset bits
 add num,table_log 'add log table address
 rdword num,num 'read fractional portion of exponent
 or exp,num 'combine fractional & integer portions

numexp_ret ret '91..106 clocks
 '(variance due to HUB sync on RDWORD)

num4 long $FFFF0000
num3 long $FF000000
num2 long $F0000000
num1 long $C0000000
num0 long $80000000
exp4 long $00100000
exp3 long $00080000
exp2 long $00040000
exp1 long $00020000
exp0 long $00010000
table_mask long $0FFE 'table offset mask
table_log long $C000 'log table base

num long 0 'input
exp long 0 'output

Propeller Manual v1.1 · Page 383

Appendix B: Math Samples and Function Tables
Anti-Log Table ($D000-$DFFF)
The anti-log table contains data used to convert base-2 exponents into unsigned numbers.

The anti-log table is comprised of 2,048 unsigned words which are each the lower 16-bits of a
17-bit mantissa (the 17th bit is implied and must be set separately). To use this table, shift the
top 11 bits of the exponent fraction (bits 15..5) into bits 11..1 and isolate. Add $D000 for the
anti-log table base. Read the word at that location into the result – this is the mantissa. Next,
shift the mantissa left to bits 30..15 and set bit 31 – the missing 17th bit of the mantissa. The
last step is to shift the result right by 31 minus the exponent integer in bits 20..16. The
exponent is now converted to an unsigned number.

Here is a routine that will convert a base-2 exponent into an unsigned number using the anti-
log table:
' Convert exponent to number
'
' on entry: exp holds 21-bit exponent with 5 integer bits and 16 fraction bits
' on exit: num holds 32-bit unsigned value
'
expnum mov num,exp 'get exponent into number
 shr num,#15-11 'justify exponent fraction as word
offset
 and num,table_mask 'isolate table offset bits
 or num,table_antilog 'add anti-log table address
 rdword num,num 'read mantissa word into number
 shl num,#15 'shift mantissa into bits 30..15
 or num,num0 'set top bit (17th bit of mantissa)
 shr exp,#20-4 'shift exponent integer into bits 4..0
 xor exp,#$1F 'inverse bits to get shift count
 shr num,exp 'shift number into final position

expnum_ret ret '47..62 clocks
 '(variance is due to HUB sync on
RDWORD)

num0 long $80000000 '17th bit of the mantissa
table_mask long $0FFE 'table offset mask
table_antilog long $C000 'anti-log table base

exp long 0 'input
num long 0 'output

Page 384 · Propeller Manual v1.1

Appendix B: Math Samples and Function Tables

Propeller Manual v1.1 · Page 385

Sine Table ($E000-$F001)
The sine table provides 2,049 unsigned 16-bit sine samples spanning from 0° to 90°,
inclusively (0.0439° resolution).

A small amount of assembly code can mirror and flip the sine table samples to create a full-
cycle sine/cosine lookup routine that has 13-bit angle resolution and 17-bit sample resolution:
' Get sine/cosine
'
' quadrant: 1 2 3 4
' angle: $0000..$07FF $0800..$0FFF $1000..$17FF $1800..$1FFF
' table index: $0000..$07FF $0800..$0001 $0000..$07FF $0800..$0001
' mirror: +offset -offset +offset -offset
' flip: +sample +sample -sample -sample
'
' on entry: sin[12..0] holds angle (0° to just under 360°)
' on exit: sin holds signed value ranging from $0000FFFF ('1') to
' $FFFF0001 ('-1')
'
getcos add sin,sin_90 'for cosine, add 90°
getsin test sin,sin_90 wc 'get quadrant 2|4 into c
 test sin_sin_180 wz 'get quadrant 3|4 into nz
 negc sin,sin 'if quadrant 2|4, negate offset
 or sin,sin_table 'or in sin table address >> 1
 shl sin,#1 'shift left to get final word address
 rdword sin,sin 'read word sample from $E000 to $F000
 negnz sin,sin 'if quadrant 3|4, negate sample
getsin_ret
getcos_ret ret '39..54 clocks
 '(variance due to HUB sync on RDWORD)

sin_90 long $0800
sin_180 long $1000
sin_table long $E000 >> 1 'sine table base shifted right

sin long 0

As with the log and anti-log tables, linear interpolation could be applied to the sine table to
achieve higher resolution.

Index

Index
_

_CLKFREQ (spin), 65–66
_CLKMODE (spin), 68–70
_FREE (spin), 110
_STACK (spin), 202
_XINFREQ (spin), 236–37

A
Abort

Status, 47
Trap, 48, 208

ABORT (spin), 47–50
ABS (asm), 257
ABSNEG (asm), 258
Absolute Negative 'ABSNEG', 258
Absolute Value ‘||’, 156
Absolute Value 'ABS', 257
Access collisions, 122
ADC, 95
ADD (asm), 259
Add ‘+’, ‘+=’, 149
ADDABS (asm), 260
Address ‘@’, 173
Address Plus Symbol ‘@@’, 173
Addressing main memory, 54, 131, 231
Addressing, optimized, 185, 212
ADDS (asm), 261
ADDSX (asm), 262–63
ADDX (asm), 264–65
Align data, 100
Analog-to-digital conversion, 95
AND (asm), 266
AND, Bitwise ‘&’, ‘&=’, 164
AND, Boolean (spin) ‘AND’, ‘AND=’, 113, 167
ANDN (asm), 267
Anti-log table, 381, 384
Application

Defined, 18
Initial clock mode, 68
Initial frequency, 65

Architecture, 14–15
Array index designators, [], 208

Assembly language, 238
ABS, 257
ABSNEG, 258
ADD, 259
ADDABS, 260
ADDS, 261
ADDSX, 262–63
ADDX, 264–65
AND, 266
ANDN, 267
Binary operators, 249
Branching, 245, 268, 290, 298, 300, 342, 364,

365
CALL, 268–70
CLKSET, 271
CMP, 272–73
CMPS, 274–75
CMPSUB, 276
CMPSX, 277–79
CMPX, 280–81
CNT, 282, 338
Cog control, 243, 283, 284, 286
Cog RAM, 240
COGID, 283
COGINIT, 284–85
COGSTOP, 286
Common syntax elements, 250
CON field, 251
Concise truth tables, 252
Condition field, 250
Conditions, 243, 287, 295
Conditions (table), 296
Configuration, 243, 271
CTRA, CTRB, 288, 338
DEST field, 251
DIRA, DIRB, 289, 338
Directives, 243, 292, 328, 339
DJNZ, 290
Dual commands, 103
Effects, 245, 291, 325, 372, 373, 377
Effects (table), 291
Effects field, 250
FALSE, 93
FIT, 292

Page 386 · Propeller Manual v1.1

Index
Flow control, 245, 268, 290, 298, 300, 342, 364,

365
FRQA, FRQB, 293, 338
Global label, 242
Here indicator, $, 360
Hub instructions, 256
HUBOP, 294
IF_x (conditions), 295
INA, INB, 297, 338
INSTR field, 251
Instruction field, 250
JMP, 298–99
JMPRET, 300–302
Label field, 250
Launching into a cog, 77, 81, 103
Literal indicator, #, 240, 241, 360
Local label, 242
Local label indicator, :, 242, 361
LOCKCLR, 303
LOCKNEW, 304
LOCKRET, 305
LOCKSET, 306
Main memory access, 245, 335, 336, 337, 374,

375, 376
Master table, 254–55
MAX, 307
MAXS, 308
MIN, 309
MINS, 310
MOV, 311
MOVD, 312
MOVI, 313
MOVS, 314
Multi-long addition, 262, 264
Multi-long comparison, 278, 281
Multi-long subtraction, 352, 354
MUXC, 315
MUXNC, 316
MUXNZ, 317
MUXZ, 318
NEG, 319
NEGC, 320
NEGNC, 321
NEGNZ, 322
NEGX, 93, 94
NEGZ, 323
NOP, 324
NR, 325

Operands field, 250
Operators, 326
OR, 327
ORG, 328–29
OUTA, OUTB, 330, 338
PAR, 338
PHSA, PHSB, 332, 338
PI, 93, 94
POSX, 93, 94
Process control, 243, 303, 304, 305, 306, 368,

369, 370, 371
RAM, cog, 240
RCL, 333
RCR, 334
RDBYTE, 335
RDLONG, 336
RDWORD, 337
Registers, 338
RES, 339–41
RET, 342
REV, 343
ROL, 344
ROR, 345
SAR, 346
SHL, 347
SHR, 348
SRC field, 251
Starting address (cog), 23, 239
Structure, 238
SUB, 349
SUBABS, 350
SUBS, 351
SUBSX, 352–53
SUBX, 354–55
SUMC, 356
SUMNC, 357
SUMNZ, 358
SUMZ, 359
Syntax definitions, 250
TEST, 362
TESTN, 363
TJNZ, 364
TJZ, 365
TRUE, 93
Unary operators, 248
VCFG, 338, 366
VSCL, 338, 367
WAITCNT, 368

Propeller Manual v1.1 · Page 387

Index
WAITPEQ, 369
WAITPNE, 370
WAITVID, 371
WC, 372
WR, 373
WRBYTE, 374
WRLONG, 375
WRWORD, 376
WZ, 377
XOR, 378
ZCRI field, 251

Assignment
Constant ‘=’, 148
Intermediate, 147
Variable ‘:=’, 149

Assignment / normal operators, 145

B
Bases, numerical, 45
Binary / Unary operators, 145
Binary indicator, %, 207, 360
Binary operators (asm), 249
Binary operators (spin), 43
Bitwise operators

AND ‘&’, ‘&=’, 164
AND Truth Table (table), 164
Decode ‘|<’, 160
Encode ‘>|’, 160
NOT ‘!’, 166
NOT Truth Table (table), 166
OR ‘|’, ‘|=’, 165
OR Truth Table (table), 165
Reverse ‘><’, ‘><=’, 163
Rotate Left ‘<-’, ‘<-=’, 162
Rotate Right ‘->’, ‘->=’, 162
Shift Left ‘<<’, ‘<<=’, 161
Shift Right ‘>>’, ‘>>=’, 161
XOR ‘^’, ‘^=’, 165
XOR Truth Table (table), 166

Block designators, 38, 84, 99, 141, 181, 182, 210
Block Diagram (figure), 20–21, 20–21, 20–21
BOEn (pin), 15
Boolean operators

AND ‘AND’, ‘AND=’, 167
Is Equal ‘==’, ‘===’, 169
Is Equal or Greater ‘=>’, ‘=>=’, 172

Is Equal or Less ‘=<’, ‘=<=’, 171
Is Greater Than ‘>’, ‘>=’, 171
Is Less Than ‘<’, ‘<=’, 170
Is Not Equal ‘<>’, ‘<>=’, 170
NOT ‘NOT’, 168
OR ‘OR’, ‘OR=’, 168

Boot Loader, 18, 34
Boot parameter, 23
Boot up, 26
Boot up procedure, 18
Branching (asm), 245, 268, 290, 298, 300, 342, 364,

365
Brown Out Enable (pin), 15
Byte

Data declaration, 52
Memory type, 16, 51
Of larger symbols, 55
Range of, 52
Reading/writing, 53, 335, 374
Variable declaration, 52

BYTE (spin), 51–56
Byte-aligned, 100
BYTEFILL (spin), 57
BYTEMOVE (spin), 58

C
Calculating time, 63, 221
CALL (asm), 268–70
Call Stack, 47, 196, 268, 300
CASE (spin), 59–61
Case statement separator, :, 208
Categorical listing

Propeller Assembly language, 243
Spin language, 38

Character
Definitions, 32
Interleaving, 33
Interleaving (figure), 33

CHIPVER (spin), 62
Clear, Post ‘~’, 156
CLK register, 28–30
CLK Register Structure (table), 28
CLKFREQ (spin), 63–64
CLKMODE (spin), 67
CLKSELx (table), 30
CLKSET (asm), 271

Page 388 · Propeller Manual v1.1

Index
CLKSET (spin), 71–72
Clock

Configuring, 28, 67
Frequency, 63, 65, 71
Frequency range, 29
Mode, 28, 31, 67, 68
Mode Setting Constants (table), 68, 69
PLL, 22, 28, 65
Sources, 22
System, 22

CMP (asm), 272–73
CMPS (asm), 274–75
CMPSUB (asm), 276
CMPSX (asm), 277–79
CMPX (asm), 280–81
CNT (asm), 23, 282, 338
CNT (spin), 23, 73–74, 200
Cog

Assembly pointer, 328
Boot parameter register, 178, 331
Control (asm), 243, 283, 284, 286
Control (spin), 39, 75, 76, 78, 83, 187
First instruction address, 23, 239
ID, 75, 283
RAM, 23, 240
RAM (spec), 16
RAM Map (figure), 23
Registers (table), 338
Start, 76–77, 78–82, 284
Stop, 83, 286
Structure, 20–21, 20–21, 20–21

Cog-Hub interaction, 21
Cog-Hub Interaction (figure), 25
COGID (asm), 283
COGID (spin), 75
COGINIT (asm), 284–85
COGINIT (spin), 76–77
COGNEW (spin), 78–82
Cogs (processors), 22
COGSTOP (asm), 286
COGSTOP (spin), 83
Collisions, resource, 122
Combining conditions, 113
Common resources, 22, 26, 27
Common syntax elements (asm), 250
CON (spin), 84–90
CON field (asm), 251
Concise truth tables, 252

Condition field (asm), 250
Conditional code (spin), 59, 112, 117
Conditional loops, 192
Conditions (asm), 243, 287, 295
Conditions, Assembly (table), 296
Configuration (asm), 243, 271
Configuration (spin), 38, 62, 63, 65, 67, 68, 71, 94,

110, 202, 236
CONSTANT (spin), 91–92
Constant Assignment ‘=’, 148
Constant block, 84
Constant Declarations, 85
Constant Expression Math/Logic Oper. (table), 326
Constant expression operators, 146
Constants (pre-defined), 93–94
Counted finite loops, 190
Counter

Control, 23, 95, 288
Frequency, 23, 111, 293
Modes (table), 98
Phase, 23, 180, 332
Registers, 95, 288

Crystal Input (pin), 15
Crystal oscillator, 28
Crystal Output (pin), 15
CTRA and CTRB Registers (table), 96
CTRA, CTRB (asm), 23, 288, 338
CTRA, CTRB (spin), 23, 95–98, 200
Current draw (spec), 16
Current source/sink (spec), 15, 16

D
DAC, 95
DAT (spin), 99–103
Data

Declaring bytes, 52
Declaring longs, 129
Declaring words, 229
Reading/writing, 53, 130, 229

Data block, 99
Data tables, 51, 100, 128, 136, 138, 227
Decimal point, ., 207
Declaring data, 100
Decode, Bitwise ‘|<’, 160
Decrement, pre- or post- ‘- -’, 151
Delay

Propeller Manual v1.1 · Page 389

Index
Fixed, 218
Fixed (figure), 220, 230
Synchronized, 219
Synchronized (figure), 221

Delimiter, _, 207, 360
DEST field (asm), 251
Digital-to-analog conversion, 95
DIP, 14
DIRA, DIRB (asm), 23, 289, 338
DIRA, DIRB (spin), 23, 104–6, 200
Direction register, 104–6, 289
Direction states, 23
Directives (asm), 243, 292, 328, 339
Directives (spin), 41, 91, 107, 108, 198, 205, 209
Discussion forum, 11
Divide ‘/’, ‘/=’, 154
DJNZ (asm), 290
Dual commands, 103
Duty-cycle measurement, 95

E
Editor’s Note, 11
EEPROM, 17
EEPROM communication, 18
EEPROM pins, 15
Effects (asm), 245, 291, 325, 372, 373, 377
Effects field (asm), 250
Effects, Assembly (table), 291
ELSE (spin), 114
ELSEIF (spin), 114
ELSEIFNOT (spin), 116
Encode, Bitwise ‘>|’, 160
Enumeration Set, #, 207
Enumerations, 87
Example Data in Memory (table), 100
Exiting a method, 185
Expression workspace, 143
External clock speed (spec), 16
External crystal frequency, 236
External files, 107

F
FALSE, 93
Figures

Block Diagram, 20–21, 20–21, 20–21

Character Interleaving, 33
Fixed Delay Timing, 220, 230
Hardware Connections, 17
Main Memory Map, 31
Propeller Font Characters, 32
Run-time CALL Procedure, 269
Synchronized Delay Timing, 221

FILE (spin), 107
FIT (asm), 292
Fixed delay, 218
Fixed Delay Timing (figure), 220, 230
FLOAT (spin), 108–9
Floating-point, 85, 108, 198, 209
Flow control (asm), 245, 268, 290, 298, 300, 342,

364, 365
Flow control (spin), 39, 47, 59, 112, 117, 140, 186,

188, 196
Font, Parallax, 33
Forum, discussion, 11
Free space, 110
Frequency measurement, 95
Frequency register, 111, 293
Frequency synthesis, 95
FROM (spin), 188, 190
FRQA, FRQB (asm), 23, 293, 338
FRQA, FRQB (spin), 23, 111, 200
Functional Block Diagram (figure), 20

G
Global label (asm), 242
Global optimized addressing, 212
Guarantee, 2

H
Hardware, 14–15
Hardware connections, 17
Hardware Connections (figure), 17
Here indicator, $, 360
Hexadecimal indicator, $, 207, 360
Host communication, 18
Hub, 21, 24
Hub Access Window, 24
Hub instructions, clock cycles for, 256
HUBOP (asm), 294

Page 390 · Propeller Manual v1.1

Index
I

I/O pins, 26
Direction, 104–6, 289
Inputs, 118–19, 297
Outputs, 175–77, 330
Rules, 105, 176

I/O pins (spec), 15, 16
I/O Sharing Examples (table), 27
ID of cog, 75, 283
IEEE-754, 109
IF (spin), 112–16
IF_x (asm) (conditions), 295
IFNOT (spin), 117
Import external file, 107
INA, INB (asm), 23, 297, 338
INA, INB (spin), 23, 118–19, 200
Increment, pre- or post- ‘+ +’, 152
Indention, 59, 113, 189
Infinite loops, 189
Initial clock mode, 68
Initial frequency, 65
Input register, 118–19, 297
Input states, 23
INSTR field (asm), 251
Instruction field (asm), 250
Intermediate assignments, 147
Internal RC Oscillator (spec), 16
Is Equal or Greater, Boolean ‘=>’, ‘=>=’, 172
Is Equal or Less, Boolean ‘=<’, ‘=<=’, 171
Is Equal, Boolean ‘==’, ‘===’, 169
Is Greater Than, Boolean ‘>’, ‘>=’, 171
Is Less Than, Boolean ‘<’, ‘<=’, 170
Is Not Equal, Boolean ‘<>’, ‘<>=’, 170

J
JMP (asm), 298–99
JMPRET (asm), 300–302

L
Label field (asm), 250
Labels, global and local (asm), 242
Launching a new cog, 76, 78, 284
Launching assembly code, 77, 81, 103
Launching Spin code, 77, 79, 80

Least Significant Bit (LSB), 159
Length of string, 206
Level of precedence, 143, 146
LFSR, 159
Limit Maximum ‘<#’, ‘<#=’, 155
Limit Minimum ‘#>’, ‘#>=’, 155
Linear Feedback Shift Register (LFSR), 159
List delimiter (,), 208
Literal indicator (asm), #, 240, 241, 360
Local label (asm), 242
Local label indicator (asm), :, 242, 361
Local optimized addressing, 185
Local variable separator, |, 208
Local variables, 184
Lock, 30, 120, 122, 125, 126, 303, 304, 305, 306
Lock rules, 123
LOCKCLR (asm), 303
LOCKCLR (spin), 120–21
LOCKNEW (asm), 304
LOCKNEW (spin), 122–24
LOCKRET (asm), 305
LOCKRET (spin), 125
LOCKSET (asm), 306
LOCKSET (spin), 126–27
Log and anti-log tables, 34, 381
Log table, 382
Logic threshold, 15
Long

Data declaration, 129
Global optimized addressing, 212
Local optimized addressing, 185
Memory type, 16, 128
Range of, 128
Reading/writing, 130, 336, 375
Variable declaration, 129

LONG (spin), 128–33
Long-aligned, 100
LONGFILL (spin), 134
LONGMOVE (spin), 135
LOOKDOWN, LOOKDOWNZ (spin), 136–37
LOOKUP, LOOKUPZ (spin), 138–39
Loops

Conditional, 192
Early termination, 140, 186
Examples, 188
Finite, counted, 190
Finite, simple, 190
Infinite, 189

Propeller Manual v1.1 · Page 391

Index
LQFP, 14
LSB, 159

M
Main memory, 30
Main memory access (asm), 245, 335, 336, 337,

374, 375, 376
Main Memory Map (figure), 31
Main RAM, 23, 31
Main RAM/ROM (spec), 16
Main ROM, 23, 32
Master clock frequency, 28, 31
Math function tables, 380
Math/Logic Operators (table), 144
MAX (asm), 307
Maximum, Limit ‘<#’, ‘<#=’, 155
MAXS (asm), 308
Memory

Access (asm), 245, 335, 336, 337, 374, 375, 376
Access (spin), 40, 51, 57, 58, 128, 134, 135, 136,

138, 203, 206, 227, 234, 235
Addressing Main RAM, 54, 131, 231
Alternate reference, 55, 132, 231
Cog, 240
Copying, 58, 135, 235
Data tables, 51, 100, 128, 227
Filling, 57, 134, 234
Main, 30
Main RAM, 31
Main ROM, 32
Reserving (asm), 339
Reserving (spin), 110

Memory type
Byte, 16, 51
Long, 16, 128
Word, 16, 227

Method termination, 47, 196
MIN (asm), 309
Minimum, Limit ‘#>’, ‘#>=’, 155
MINS (asm), 310
Modulus ‘//’, ‘//=’, 154
Most Significant Bit (MSB), 159
MOV (asm), 311
MOVD (asm), 312
MOVI (asm), 313
MOVS (asm), 314

MSB, 159
Multi-decision block, 59, 112, 117
Multi-line code comment, { }, 208, 361
Multi-line doc comment, {{ }}, 208, 361
Multi-long addition (asm), 262, 264
Multi-long comparison (asm), 278, 281
Multi-long subtraction (asm), 352, 354
Multiply, Return High ‘**’, ‘**=’, 153
Multiply, Return Low ‘*’, ‘*=’, 153
Multi-processing, 75, 76, 78, 83, 283, 284, 286
Multi-tasking, single-process (asm), 301
Mutually exclusive resource, 22, 24, 123
MUXC (asm), 315
MUXNC (asm), 316
MUXNZ (asm), 317
MUXZ (asm), 318

N
NEG (asm), 319
Negate ‘-’, 150
NEGC (asm), 320
NEGNC (asm), 321
NEGNZ (asm), 322
NEGX, 93, 94
NEGZ (asm), 323
NEXT (spin), 140
NOP (asm), 324
Normal / assignment operators, 145
NOT, Bitwise ‘!’, 166
NOT, Boolean ‘NOT’, 168
NR (asm), 325
Numerical bases, 45

O
OBJ (spin), 141–42
Object Address Plus Symbol ‘@@’, 173
Object assignment, :, 208
Object block, 141
Object Exchange, 11
Object reference, 141
Object-Constant Reference, #, 207
Object-Method Reference, ., 207
Objects, structure of, 36
Opcode tables, 251
Operands field (asm), 250

Page 392 · Propeller Manual v1.1

Index
Operator attributes, 143
Operator Precedence Levels (table), 145
Operators, 143–74, 326

- - (Decrement, pre- or post-), 151
- (Negate), 150
! (Bitwise NOT), 166
#>, #>= (Limit Minimum), 155
&, &= (Bitwise AND), 164
**, **= (Multiply, Return High), 153
*, *= (Multiply, Return Low), 153
-, -= (Subtract), 150
/, /= (Divide), 154
//, //= (Modulus), 154
:= (Variable Assignment), 149
? (Random), 159
@ (Symbol Address), 173
@@ (Object Address Plus Symbol), 173
^, ^= (Bitwise XOR), 165
^^ (Square Root), 156
|, |= (Bitwise OR), 165
|| (Absolute Value), 156
|< (Bitwise Decode), 160
~ (Sign-Extend 7 or Post-Clear), 156
~~ (Sign-Extend 15 or Post-Set), 157
~>, ~>= (Shift Arithmetic Right), 158
+ (Positive), 150
+ + (Increment, pre- or post-), 152
+, += (Add), 149
<#, <#= (Limit Maximum), 155
<-, <-= (Bitwise Rotate Left), 162
<, <= (Boolean Is Less Than), 170
<<, <<= (Bitwise Shift Left), 161
<>, <>= (Boolean Is Not Equal), 170
= (Constant Assignment), 148
=<, =<= (Boolean Is Equal or Less), 171
==, === (Boolean Is Equal), 169
=>, =>= (Boolean Is Equal or Greater), 172
->, ->= (Bitwise Rotate Right), 162
>, >= (Boolean Is Greater Than), 171
>| (Bitwise Encode), 160
><, ><= (Bitwise Reverse), 163
>>, >>= (Bitwise Shift Right), 161
AND, AND= (Boolean AND), 167
Constant expression, 146
Intermediate assigments, 147
Normal / assignment, 145
NOT (Boolean), 168
OR, OR= (Boolean OR), 168

Precedence level, 146
Unary / binary, 145
Variable expression, 146

Optimized addressing, 185, 212
OR (asm), 327
OR (spin), 113
OR, Bitwise ‘|’, ‘|=’, 165
OR, Boolean ‘OR’, ‘OR=’, 168
ORG (asm), 328–29
Organization of variables, 212
OSCENA (table), 29
OSCMx (table), 29
OTHER (spin), 60
OUTA, OUTB (asm), 23, 330, 338
OUTA, OUTB (spin), 23, 175–77, 200
Output register, 175–77, 330
Output states, 23

P
Package types, 14–15
PAR (asm), 23, 331, 338
PAR (spin), 23, 178–79, 178–79, 200
Parallax True Type® font, 33
Parameter list designators, (), 208
Parameter register, 178, 331
Parameters, 184
Pause execution, 218
Phase registers, 180, 332
PHSA, PHSB (asm), 23, 332, 338
PHSA, PHSB (spin), 23, 180, 200
PI, 93, 94
Pin descriptions, 15
Pinout, 14–15
PLL16X, 68, 93, 94
PLL1X, 68, 93, 94
PLL2X, 68, 93, 94
PLL4X, 68, 93, 94
PLL8X, 68, 93, 94
PLLDIV Field (table), 96
PLLENA (table), 29
Positive ‘+’, 150
Post-Clear ‘~’, 156
Post-Decrement ‘- -’, 151
Post-Increment ‘+ +’, 152
Post-Set ‘~~’, 157
POSX, 93, 94

Propeller Manual v1.1 · Page 393

Index
Power requirements (spec), 16
Power up, 18
Precedence level, 143, 146
Pre-Decrement ‘- -’, 151
Pre-Increment ‘+ +’, 152
PRI (spin), 181
Private method block, 181
Process Control (asm), 243, 303, 304, 305, 306,

368, 369, 370, 371
Process control (spin), 39, 120, 122, 125, 126, 218,

222, 224, 225
Processors (cogs), 22
Programming connections, 17
Programming pins, 15
Propeller Application

Defined, 18
Propeller Assembly. See Assembly Language
Propeller Assembly Instructions (table), 254–55
Propeller Assembly language, categorical, 243
Propeller chip

Architecture, 14–15
Block Diagram (figure), 20
Boot Loader, 18
Boot up procedure, 18
Cogs (processors), 22
Discussion forum, 11
EEPROM, 17
Hardware, 13
Hardware connections, 17
Package types, 14–15
Pin descriptions, 15
Pinout, 14–15
Power up, 18
Reset, 18
Run-time procedure, 18
Shared resources, 22
Shutdown procedure, 19
Specifications, 16
Version, 62
Warranty, 2

Propeller Font Characters (figure), 32
Propeller Object Exchange, 11
Propeller Plug, 17
Propeller Programming Tutorial, 11
Propeller Spin. See Spin Language
Propeller Tool

Using, 11
PUB (spin), 182–85

Public method block, 182
Pulse counting, 95
Pulse measurement, 95
Pulse-width modulation (PWM), 95

Q
QFN, 14
QFP, 14
Quaternary indicator, %%, 207, 360
QUIT (spin), 186

R
RAM

Cog, 23, 240
Cog (spec), 16
Main, 31
Main (spec), 16

Random ‘?’, 159
Range indicator, .., 207
Range of

Byte, 52
Long, 128
Word, 228

Range of variables, 211
RC oscillator, 28
RCFAST, 30, 68, 93, 94
RCL (asm), 333
RCR (asm), 334
RCSLOW, 30, 68, 93, 94
RDBYTE (asm), 335
RDLONG (asm), 336
RDWORD (asm), 337
Reading/writing

Bytes of main memory, 53, 335, 374
Longs of main memory, 130, 336, 375
Words of main memory, 229, 337, 376

Read-only registers, 23, 73–74, 118–19, 178–79,
282, 297, 331

REBOOT (spin), 187
Registers, 41, 248, 282, 338

CLK, 28–30
CNT (asm), 23, 282, 338
CNT (spin), 23, 73–74
CTRA, CTRB (asm), 23, 288, 338
CTRA, CTRB (spin), 23, 95–98

Page 394 · Propeller Manual v1.1

Index
DIRA, DIRB (asm), 23, 289, 338
DIRA, DIRB (spin), 23, 104–6
FRQA, FRQB (asm), 23, 293, 338
FRQA, FRQB (spin), 23, 111
INA, INB (asm), 23, 297, 338
INA, INB (spin), 23, 118–19
OUTA, OUTB (asm), 23, 330, 338
OUTA, OUTB (spin), 23, 175–77
PAR (asm), 23, 331, 338
PAR (spin), 23, 178–79
PHSA, PHSB (asm), 23, 332, 338
PHSA, PHSB (spin), 23, 180
Read-only, 23, 73–74, 118–19, 178–79, 282,

297, 331
VCFG (asm), 23, 338, 366
VCFG (spin), 23, 213–15
VSCL (asm), 23, 338, 367
VSCL (spin), 23, 216–17

Registers, special purpose (table), 23, 338
REPEAT (spin), 188–93

NEXT, 140
QUIT, 186

RES (asm), 339–41
Reserved Words (table), 379
Reserving memory (asm), 339
Reserving memory (spin), 110
Reset, 18
Reset (pin), 15
Reset (table), 28
Reset, software, 28
RESn (pin), 15
Resource collisions, 122
Resources

Common, 22, 26, 27
Mutually exclusive, 22, 24
Shared, 22

RESULT (spin), 194–95
Result variable, 183, 194
RET (asm), 342
RETURN (spin), 196–97
Return value, 183, 194
Return value separator, :, 208
REV (asm), 343
Reverse, Bitwise ‘><’, ‘><=’, 163
ROL (asm), 344
ROM, main (spec), 16
ROR (asm), 345
Rotate Left, Bitwise ‘<-’, ‘<-=’, 162

Rotate Right, Bitwise ‘->’, ‘->=’, 162
ROUND (spin), 198–99
Run-time CALL Procedure (figure), 269
Run-time procedure, 18

S
SAR (asm), 346
Scope of constants, 89
Scope of object symbols, 142
Scope of variables, 212
Self-modifying code, 312, 313, 314
Semaphore, 30, 120, 122, 125, 126, 303, 304, 305,

306
Semaphore rules, 123
Set, Post ‘~~’, 157
Shared resources, 22
Shift Arithmetic Right ‘~>’, ‘~>=’, 158
Shift Left, Bitwise ‘<<’, ‘<<=’, 161
Shift Right, Bitwise ‘>>’, ‘>>=’, 161
SHL (asm), 347
SHR (asm), 348
Shutdown procedure, 19
Sign-Extend 15 ‘~~’, 157
Sign-Extend 7 ‘~’, 156
Simple finite loops, 190
Sine table, 34, 385
Single-line code comment, ', 208, 361
Single-line doc comment, ' ', 208, 361
Size of

Byte, 52
Long, 128
Word, 228

Software reset, 28, 187
Source/Sink, current, 15
Special purpose registers, 200
Special Purpose Registers (table), 23, 200
Specifications

Propeller Chip, 16
Spin Interpreter, 34
Spin language, 35

_CLKFREQ, 65–66
_CLKMODE, 68–70
_FREE, 110
_STACK, 202
_XINFREQ, 236–37
ABORT, 47–50

Propeller Manual v1.1 · Page 395

Index
AND, 113
Binary operators, 43
Block designators, 38, 84, 99, 141, 181, 182,

210
BYTE, 51–56
BYTEFILL, 57
BYTEMOVE, 58
CASE, 59–61
Categorical listing, 38
CHIPVER, 62
CLKFREQ, 63–64
CLKMODE, 67
CLKSET, 71–72
CNT, 73–74
Cog control, 39, 75, 76, 78, 83, 187
COGID, 75
COGINIT, 76–77
COGNEW, 78–82
CON, 84–90
Configuration, 38, 62, 63, 65, 67, 68, 71, 94,

110, 202, 236
CONSTANT, 91–92
Constants (pre-defined), 93–94
CTRA, CTRB, 95–98
DAT, 99–103
DIRA, DIRB, 104–6
Directives, 41, 91, 107, 108, 198, 205, 209
Dual commands, 103
ELSE, 114
ELSEIF, 114
ELSEIFNOT, 116
FALSE, 93
FILE, 107
FLOAT, 108–9
Flow control, 39, 47, 59, 112, 117, 140, 186,

188, 196
FROM, 188, 190
FRQA, FRQB, 111
IF, 112–16
IFNOT, 117
INA, INB, 118–19
Launching into another cog, 77, 79, 80
LOCKCLR, 120–21
LOCKNEW, 122–24
LOCKRET, 125
LOCKSET, 126–27
LONG, 128–33
LONGFILL, 134

LONGMOVE, 135
LOOKDOWN, LOOKDOWNZ, 136–37
LOOKUP, LOOKUPZ, 138–39
Memory, 40, 51, 57, 58, 128, 134, 135, 136,

138, 203, 206, 227, 234, 235
NEGX, 93, 94
NEXT, 140
OBJ, 141–42
Operators, 143–74
OR, 113
OTHER, 60
OUTA, OUTB, 175–77
PHSA, PHSB, 180
PI, 93, 94
PLL16X, 93, 94
PLL1X, 93, 94
PLL2X, 93, 94
PLL4X, 93, 94
PLL8X, 93, 94
POSX, 93, 94
PRI, 181
Process control, 39, 120, 122, 125, 126, 218,

222, 224, 225
PUB, 182–85
QUIT, 186
RCFAST, 93, 94
RCSLOW, 93, 94
REBOOT, 187
Registers, 41
REPEAT, 188–93
RESULT, 194–95
RETURN, 196–97
ROUND, 198–99
SPR, 200–201
STEP, 188, 191
STRCOMP, 203–4
STRING, 205
STRSIZE, 206
Symbols, 207–8
Syntax definitions, 46
TO, 188, 190
TRUE, 93
TRUNC, 209
Unary operators, 42
UNTIL, 189, 193
VAR, 210–12
VSCL, 216–17
WAITCNT, 218–21

Page 396 · Propeller Manual v1.1

Index
WAITPEQ, 222–23
WAITPNE, 224
WAITVID, 225–26
WHILE, 189, 192
WORD, 227–33
WORDFILL, 234
WORDMOVE, 235
XINPUT, 93, 94
XTAL1, 93, 94
XTAL2, 93, 94
XTAL3, 93, 94

Spin, structure of, 36
SPR (spin), 200–201
Square Root ‘^^’, 156
SRC field (asm), 251
Stack space, 76, 80
Starting a new cog, 76, 78, 284
Starting address (cog), 23, 239
Start-up clock frequency, 65
STEP (spin), 188, 191
Stopping a cog, 83, 286
STRCOMP (spin), 203–4
STRING (spin), 205
String comparison, 203
String constant, 205
String size, 206
STRSIZE (spin), 206
Structure of Propeller Assembly, 238
Structure of Propeller objects/spin, 36
SUB (asm), 349
SUBABS (asm), 350
SUBS (asm), 351
SUBSX (asm), 352–53
Subtract ‘-’, ‘-=’, 150
SUBX (asm), 354–55
SUMC (asm), 356
SUMNC (asm), 357
SUMNZ (asm), 358
SUMZ (asm), 359
Symbol Address ‘@’, 173
Symbol rules, 45
Symbols

- - (Decrement, pre- or post-), 151
' ' (single-line document comment), 208, 361
- (Negate), 150
' (single-line code comment), 208, 361
! (Bitwise NOT), 166
" (String designator), 100, 205, 207, 360

(multipurpose), 207, 360
#>, #>= (Limit Minimum), 155
$ (multipurpose), 207, 360
% (Binary indicator), 207, 360
%% (Quaternary indicator), 207, 360
&, &= (Bitwise AND), 164
() (parameter list designators), 208
\ (abort trap), 208
**, **= (Multiply, Return High), 153
*, *= (Multiply, Return Low), 153
, (list delimiter), 208
-, -= (Subtract), 150
. (multipurpose), 207
.. (Range indicator), 207
/, /= (Divide), 154
//, //= (Modulus), 154
: (multipurpose), 208
:= (Variable Assignment), 149
? (Random), 159
@ (Symbol Address), 173
@@ (Object Address Plus Symbol), 173
[] (array-index designators), 208
^, ^= (Bitwise XOR), 165
^^ (Square Root), 156
_ (multipurpose), 207, 360
{ } (In-line, multi-line code comments), 208,

361
{{ }} (In-line, multi-line doc comments), 208,

361
| (local variable separator), 208
|, |= (Bitwise OR), 165
|| (Absolute Value), 156
|< (Bitwise Decode), 160
~ (Sign-Extend 7 or Post-Clear), 156
~~ (Sign-Extend 15 or Post-Set), 157
~>, ~>= (Shift Arithmetic Right), 158
+ (Positive), 150
+ + (Increment, pre- or post-), 152
+, += (Add), 149
<#, <#= (Limit Maximum), 155
<-, <-= (Bitwise Rotate Left), 162
<, <= (Boolean Is Less Than), 170
<<, <<= (Bitwise Shift Left), 161
<>, <>= (Boolean Is Not Equal), 170
= (Constant Assignment), 148
=<, =<= (Boolean Is Equal or Less), 171
==, === (Boolean Is Equal), 169
=>, =>= (Boolean Is Equal or Greater), 172

Propeller Manual v1.1 · Page 397

Index
->, ->= (Bitwise Rotate Right), 162
>, >= (Boolean Is Greater Than), 171
>| (Bitwise Encode), 160
><, ><= (Bitwise Reverse), 163
>>, >>= (Bitwise Shift Right), 161
AND, AND= (Boolean AND), 167
NOT (Boolean), 168
OR, OR= (Boolean OR), 168

Symbols (table), 207–8, 207–8, 207–8
Synchronized delay, 219
Synchronized Delay Timing (figure), 221
Syntax definitions (asm), 250
Syntax definitions (spin), 46
System Clock, 22, 65, 71
System Clock frequency, 63
System Clock speed (spec), 16
System Clock Tick vs. Time (table), 63
System counter, 282
System Counter, 23, 27, 73–74

T
Tables

Bitwise AND Truth Table, 164
Bitwise NOT Truth Table, 166
Bitwise OR Truth Table, 165
Bitwise XOR Truth Table, 166
CLK Register Structure, 28
Clock Mode Setting Constants, 68, 69
Conditions, Assembly, 296
Counter Modes, 98
CTRA and CTRB Registers, 96
Effects, Assembly, 291
Example Data in Memory, 100
Math/Logic Operators, 144
Operator Precedence Levels, 145
Pin Descriptions, 15
PLLDIV Field, 96
Propeller Assembly Instructions, 254–55
Reserved Words, 379
Sharing Examples, 27
Special Purpose Registers, 23, 200, 338
Specifications, 16
Symbols, 207–8, 207–8, 207–8
System Clock Ticks vs. Time, 63
VCFG Register, 213
VSCL Register, 216

Terminating a cog, 83
TEST (asm), 362
TESTN (asm), 363
Threshold, logic, 15
Time, calculating, 221
Timing, 27
TJNZ (asm), 364
TJZ (asm), 365
TO (spin), 188, 190
TRUE, 93
TRUNC (spin), 209
Truth tables

Bitwise AND, 164
Bitwise NOT, 166
Bitwise OR, 165
Bitwise XOR, 166
Concise, 252

Tutorial
Programming, 11

U
Unary / binary operators, 145
Unary operators (asm), 248
Unary operators (spin), 42
Underscore, _, 207, 360
UNTIL (spin), 189, 193
Using Propeller Tool, 11

V
Value representations, 45
VAR (spin), 210–12
Variable Assignment ‘:=’, 149
Variable block, 210
Variable declarations, 52, 129, 210, 228
Variable expression operators, 146
Variable ranges, 211
Variable scope, 212
Variable type

Byte, 16, 51
Long, 16, 128
Word, 16, 227

VCFG (asm), 23, 338, 366
VCFG (spin), 23, 200, 213–15
VCFG Register (table), 213
Version number, 62

Page 398 · Propeller Manual v1.1

Index

Propeller Manual v1.1 · Page 399

Video configuration register, 23, 213, 366
Video scale register, 23, 216, 367
VSCL (asm), 23, 338, 367
VSCL (spin), 23, 200, 216–17
VSCL Register (table), 216

W
WAITCNT (asm), 368
WAITCNT (spin), 218–21
Waiting for transitions, 223
WAITPEQ (asm), 369
WAITPEQ (spin), 222–23
WAITPNE (asm), 370
WAITPNE (spin), 224
WAITVID (asm), 371
WAITVID (spin), 225–26
Warranty, 2
WC (asm), 372
WHILE (spin), 189, 192
Wired-OR, 105, 119, 176
Word

Aligned, 100
Data declaration, 229
Memory type, 16, 227
Of larger symbols, 233
Range of, 228
Reading/writing, 229, 337, 376
Variable declaration, 228

WORD (spin), 227–33
WORDFILL (spin), 234
WORDMOVE (spin), 235
WR (asm), 373
WRBYTE (asm), 374
WRLONG (asm), 375
WRWORD (asm), 376
WZ (asm), 377

X
XI (pin), 15
XI capacitance, 29
XINPUT, 29, 30, 68, 93, 94
XO (pin), 15
XOR (asm), 378
XOR, Bitwise ‘^’, ‘^=’, 165
XOUT resistance, 29
XTAL1, 29, 68, 93, 94
XTAL2, 29, 68, 93, 94
XTAL3, 29, 68, 93, 94

Z
ZCRI field (asm), 251
Zero-terminated strings, 204, 206
Z-strings, 204, 206

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Parallax:

 32300

http://www.mouser.com/parallax
http://www.mouser.com/access/?pn=32300

	Preface
	Editor’s Note: About Version 1.1

	Chapter 1 : Introducing the Propeller Chip
	Concept
	Package Types
	Pin Descriptions
	Specifications
	Hardware Connections
	Boot Up Procedure
	Run-Time Procedure
	Shutdown Procedure
	Block Diagram
	Shared Resources
	System Clock
	Cogs (processors)
	Hub
	I/O Pins
	System Counter
	CLK Register
	Locks
	Main Memory
	Main RAM
	Main ROM
	Character Definitions
	Log and Anti-Log Tables
	Sine Table
	Boot Loader and Spin Interpreter

	Chapter 2 : Spin Language Reference
	Structure of Propeller Objects/Spin
	Categorical Listing of Propeller Spin Language
	Block Designators
	Configuration
	Cog Control
	Process Control
	Flow Control
	Memory
	Directives
	Registers
	Constants
	Variable
	Unary Operators
	Binary Operators
	Syntax Symbols

	Spin Language Elements
	Symbol Rules
	Value Representations
	Syntax Definitions

	ABORT
	Explanation
	About the Call Stack
	Using ABORT
	The Abort Trap (\)
	Example Use Of Abort

	BYTE
	Explanation
	Range of Byte
	Byte Variable Declaration (Syntax 1)
	Byte Data Declaration (Syntax 2)
	Reading/Writing Bytes of Main Memory (Syntax 3)
	Addressing Main Memory
	An Alternative Memory Reference
	Other Addressing Phenomena
	Accessing Bytes of Larger-Sized Symbols (Syntax 4)

	BYTEFILL
	Explanation
	Using BYTEFILL

	BYTEMOVE
	Explanation
	Using BYTEMOVE

	CASE
	Explanation
	Indention is Critical
	Using CASE
	Using OTHER
	Variations of Statement(s)

	CHIPVER
	Explanation

	CLKFREQ
	Explanation
	CLKFREQ vs. _CLKFREQ

	_CLKFREQ
	Explanation
	_CLKFREQ vs CLKFREQ

	CLKMODE
	Explanation
	CLKMODE vs._CLKMODE

	_CLKMODE
	Explanation
	The _CLKFREQ and _XINFREQ Settings
	_CLKMODE vs.CLKMODE

	CLKSET
	Explanation

	CNT
	Explanation
	Using CNT

	COGID
	Explanation

	COGINIT
	Explanation
	Spin Code (Syntax 1)
	Propeller Assembly Code (Syntax 2)
	The Parameter Field

	COGNEW
	Explanation
	Spin Code (Syntax 1)
	The Need for Stack Space
	Spin Code Can Only be Launched by its Containing Object
	Propeller Assembly Code (Syntax 2))
	The Parameter Field

	COGSTOP
	Explanation

	CON
	Explanation
	Common Constant Declarations (Syntax 1)
	Enumerations (Syntax 2 and 3)
	Scope of Constants

	CONSTANT
	Explanation
	Using CONSTANT

	Constants (pre-defined)
	TRUE and FALSE
	POSX and NEGX
	PI
	RCFAST through PLL16X

	CTRA, CTRB
	Explanation
	Control Register Fields
	Using CTRA and CTRB

	DAT
	Explanation
	Declaring Data(Syntax 1)
	Declaring Repeating Data (Syntax 1)
	Writing Propeller Assembly Code (Syntax 2)
	Dual Commands

	DIRA, DIRB
	Explanation
	Using DIRA

	FILE
	Explanation
	Using FILE

	FLOAT
	Explanation
	Using FLOAT
	About Floating Point

	_FREE
	Explanation

	FRQA, FRQB
	Explanation
	Using FRQA and FRQB

	IF
	Explanation
	Indention is Critical
	Simple IF Statement
	Combining Conditions
	Using IF with ELSE
	Using IF with ELSEIF
	Using IF with ELSEIF and ELSE
	The ELSEIFNOT Condition

	IFNOT
	Explanation

	INA, INB
	Explanation
	Using INA

	LOCKCLR
	Explanation

	LOCKNEW
	Explanation
	About Locks
	Using LOCKNEW
	Suggested Rules for Locks

	LOCKRET
	Explanation

	LOCKSET
	Explanation

	LONG
	Explanation
	Range of Long
	Long Variable Declaration (Syntax 1)
	Long Data Declaration (Syntax 2)
	Reading/Writing Longs of Main Memory (Syntax 3)
	Addressing Main Memory
	An Alternative Memory Reference
	Other Addressing Phenomena

	LONGFILL
	Explanation
	Using LONGFILL

	LONGMOVE
	Explanation
	Using LONGMOVE

	LOOKDOWN, LOOKDOWNZ
	Explanation
	Using LOOKDOWN or LOOKDOWNZ

	LOOKUP, LOOKUPZ
	Explanation
	Using LOOKUP or LOOKUPZ

	NEXT
	Explanation
	Using NEXT

	OBJ
	Explanation
	Scope of Object Symbols

	Operators
	Expression Workspace
	Operator Attributes
	Unary / Binary
	Normal / Assignment
	Constant and/or Variable Expression
	Level of Precedence
	Intermediate Assignments
	Constant Assignment ‘=’
	Variable Assignment ‘:=’
	Add ‘+’, ‘+=’
	Positive ‘+’ (unary form of Add)
	Subtract ‘-’, ‘-=’
	Negate ‘-’ (unary form of Subtract)
	Decrement, pre- or post- ‘- -’
	Increment, pre- or post- ‘+ +’
	Multiply, Return Low ‘*’, ‘*=’
	Multiply, Return High ‘**’, ‘**=’
	Divide ‘/’, ‘/=’
	Modulus ‘//’, ‘//=’
	Limit Minimum ‘#>’, ‘#>=’
	Limit Maximum ‘<#’, ‘<#=’
	Square Root ‘^^’
	Absolute Value ‘||’
	Sign-Extend 7 or Post-Clear ‘~’
	Sign-Extend 15 or Post-Set ‘~~’
	Shift Arithmetic Right ‘~>’, ‘~>=’
	Random ‘?’
	Bitwise Decode ‘|<’
	Bitwise Encode ‘>|’
	Bitwise Shift Left ‘<<’, ‘<<=’
	Bitwise Shift Right ‘>>’, ‘>>=’
	Bitwise Rotate Left ‘<-’, ‘<-=’
	Bitwise Rotate Right ‘->’, ‘->=’
	Bitwise Reverse ‘><’, ‘><=’
	Bitwise AND ‘&’, ‘&=’
	Bitwise OR ‘|’, ‘|=’
	Bitwise XOR ‘^’, ‘^=’
	Bitwise NOT ‘!’
	Boolean AND ‘AND’, ‘AND=’
	Boolean OR ‘OR’, ‘OR=’
	Boolean NOT ‘NOT’
	Boolean Is Equal ‘==’, ‘===’
	Boolean Is Not Equal ‘<>’, ‘<>=’
	Boolean Is Less Than ‘<’, ‘<=’
	Boolean Is Greater Than ‘>’, ‘>=’
	Boolean Is Equal or Less ‘=<’, ‘=<=’
	Boolean Is Equal or Greater ‘=>’, ‘=>=’
	Symbol Address ‘@’
	Object Address Plus Symbol ‘@@’

	OUTA, OUTB
	Explanation
	Using OUTA

	PAR
	Explanation
	Using PAR

	PHSA, PHSB
	Explanation
	Using PHSA and PHSB

	PRI
	Explanation

	PUB
	Explanation
	Public Method Declaration
	The Return Value
	Parameters and Local Variables
	Optimized Addressing
	Exiting a Method

	QUIT
	Explanation
	Using QUIT

	REBOOT
	Explanation

	REPEAT
	Explanation
	Indention is Critical
	Infinite Loops (Syntax 1)
	Simple Finite Loops (Syntax 1)
	Counted Finite Loops (Syntax 2)
	Conditional Loops (Syntax 3 and 4)
	Other REPEAT Options

	RESULT
	Explanation
	Using RESULT

	RETURN
	Explanation
	About the Call Stack
	Using RETURN

	ROUND
	Explanation
	Using ROUND
	About Floating-Point Constants

	SPR
	Explanation
	Using SPR

	_STACK
	Explanation

	STRCOMP
	Explanation
	Using STRCOMP
	Zero-Terminated Strings

	STRING
	Explanation
	Using STRING

	STRSIZE
	Explanation
	Using STRSIZE
	Zero-Terminated Strings

	Symbols
	TRUNC
	Explanation
	Using TRUNC
	About Floating-Point Constants

	VAR
	Explanation
	Variable Declarations (Syntax 1)
	Variable Declarations (Syntax 2)
	Range of Variables
	Organization of Variables
	Optimized Addressing
	Scope of Variables
	Scope Extends Beyond a Single Cog

	VCFG
	Explanation
	VMode
	CMode
	Chroma1
	Chroma0
	AuralSub
	VGroup
	VPins
	Using VCFG

	VSCL
	Explanation
	PixelClocks
	FrameClocks
	Using VSCL

	WAITCNT
	Explanation
	Fixed Delays
	Synchronized Delays
	Calculating Time

	WAITPEQ
	Explanation
	Using WAITPEQ
	Using Variable Pin Numbers
	Waiting for Transitions

	WAITPNE
	Explanation
	Using WAITPNE

	WAITVID
	Explanation
	Using WAITVID

	WORD
	Explanation
	Range of Word
	Word Variable Declaration (Syntax 1)
	Word Data Declaration (Syntax 2)
	Reading/Writing Words of Main Memory (Syntax 3)
	Addressing Main Memory
	An Alternative Memory Reference
	Other Addressing Phenomena

	Accessing Words of Larger-Sized Symbols (Syntax 4)

	WORDFILL
	Explanation
	Using WORDFILL

	WORDMOVE
	Explanation
	Using WORDMOVE

	_XINFREQ
	Explanation

	Chapter 3 : Assembly Language Reference
	The Structure of Propeller Assembly
	Cog Memory
	Where Does an Instruction Get Its Data?
	Don't Forget the Literal Indicator '#'
	Literals Must Fit in 9 Bits
	Global and Local Labels

	Categorical Listing of Propeller Assembly Language
	Directives
	Configuration
	Cog Control
	Process Control
	Conditions
	Flow Control
	Effects
	Main Memory Access
	Common Operations
	Constants
	Registers
	Unary Operators
	Binary Operators

	Assembly Language Elements
	Syntax Definitions
	Common Syntax Elements

	Opcodes and Opcode Tables
	CLKSET Opcode Table:

	Concise Truth Tables
	ADDS Truth Table:

	Propeller Assembly Instruction Master Table
	Notes for Master Table
	Note 1: Clock Cycles for Hub Instructions
	Note 2: Clock Cycles for Modify-Branch Instructions

	ABS
	Opcode Table:
	Concise Truth Table:
	Explanation

	ABSNEG
	Opcode Table:
	Concise Truth Table:
	Explanation

	ADD
	Opcode Table:
	Concise Truth Table:
	Explanation

	ADDABS
	Opcode Table:
	Concise Truth Table:
	Explanation

	ADDS
	Opcode Table:
	Concise Truth Table:
	Explanation

	ADDSX
	Opcode Table:
	Concise Truth Table:
	Explanation

	ADDX
	Opcode Table:
	Concise Truth Table:
	Explanation

	AND
	Opcode Table:
	Concise Truth Table:
	Explanation

	ANDN
	Opcode Table:
	Concise Truth Table:
	Explanation

	CALL
	 Opcode Table:
	Concise Truth Table:
	Explanation

	CLKSET
	Opcode Table:
	Concise Truth Table:
	Explanation

	CMP
	Opcode Table:
	Concise Truth Table:
	Explanation

	CMPS
	Opcode Table:
	Concise Truth Table:
	Explanation

	CMPSUB
	Opcode Table:
	Concise Truth Table:
	Explanation

	CMPSX
	Opcode Table:
	Concise Truth Table:
	Explanation

	CMPX
	Opcode Table:
	Concise Truth Table:
	Explanation

	CNT
	Explanation

	COGID
	Opcode Table:
	Concise Truth Table:
	Explanation

	COGINIT
	Opcode Table:
	Concise Truth Table:
	Explanation

	COGSTOP
	Opcode Table:
	Concise Truth Table:
	Explanation

	Conditions (IF_x)
	CTRA, CTRB
	Explanation

	DIRA, DIRB
	Explanation

	DJNZ
	Opcode Table:
	Concise Truth Table:
	Explanation

	Effects (WC, WZ, WR, NR)
	FIT
	Explanation

	FRQA, FRQB
	Explanation

	HUBOP
	Opcode Table:
	Concise Truth Table:
	Explanation

	IF_x (Conditions)
	INA, INB
	Explanation

	JMP
	Opcode Table:
	Concise Truth Table:
	Explanation
	Conditional Jumps
	The Here Symbol ‘$’

	JMPRET
	Opcode Table:
	Concise Truth Table:
	Explanation

	LOCKCLR
	Opcode Table:
	Concise Truth Table:
	Explanation

	LOCKNEW
	Opcode Table:
	Concise Truth Table:
	Explanation

	LOCKRET
	Opcode Table:
	Concise Truth Table:
	Explanation

	LOCKSET
	Opcode Table:
	Concise Truth Table:
	Explanation

	MAX
	Opcode Table:
	Concise Truth Table:
	Explanation

	MAXS
	Opcode Table:
	Concise Truth Table:
	Explanation

	MIN
	Opcode Table:
	Concise Truth Table:
	Explanation

	MINS
	Opcode Table:
	Concise Truth Table:
	Explanation

	MOV
	Opcode Table:
	Concise Truth Table:
	Explanation

	MOVD
	Opcode Table:
	Concise Truth Table:
	Explanation

	MOVI
	Opcode Table:
	Concise Truth Table:
	Explanation

	MOVS
	Opcode Table:
	Concise Truth Table:
	Explanation

	MUXC
	Opcode Table:
	Concise Truth Table:
	Explanation

	MUXNC
	Opcode Table:
	Concise Truth Table:
	Explanation

	MUXNZ
	Opcode Table:
	Concise Truth Table:
	Explanation

	MUXZ
	Opcode Table:
	Concise Truth Table:
	Explanation

	NEG
	Opcode Table:
	Concise Truth Table:
	Explanation

	NEGC
	Opcode Table:
	Concise Truth Table:
	Explanation

	NEGNC
	Opcode Table:
	Concise Truth Table:
	Explanation

	NEGNZ
	Opcode Table:
	Concise Truth Table:
	Explanation

	NEGZ
	Opcode Table:
	Concise Truth Table:
	Explanation

	NOP
	Opcode Table:
	Concise Truth Table:
	Explanation

	NR
	Explanation

	Operators
	OR
	Opcode Table:
	Concise Truth Table:
	Explanation

	ORG
	Explanation

	OUTA, OUTB
	Explanation

	PAR
	Explanation

	PHSA, PHSB
	Explanation

	RCL
	Opcode Table:
	Concise Truth Table:
	Explanation

	RCR
	Opcode Table:
	Concise Truth Table:
	Explanation

	RDBYTE
	Opcode Table:
	Concise Truth Table:
	Explanation

	RDLONG
	Opcode Table:
	Concise Truth Table:
	Explanation

	RDWORD
	Opcode Table:
	Concise Truth Table:
	Explanation

	Registers
	RES
	Explanation
	Caution: Use RES Only After Instructions and Data

	RET
	Opcode Table:
	Concise Truth Table:
	Explanation

	REV
	Opcode Table:
	Concise Truth Table:
	Explanation

	ROL
	Opcode Table:
	Concise Truth Table:
	Explanation

	ROR
	Opcode Table:
	Concise Truth Table:
	Explanation

	SAR
	Opcode Table:
	Concise Truth Table:
	Explanation

	SHL
	Opcode Table:
	Concise Truth Table:
	Explanation

	SHR
	Opcode Table:
	Concise Truth Table:
	Explanation

	SUB
	Opcode Table:
	Concise Truth Table:
	Explanation

	SUBABS
	Opcode Table:
	Concise Truth Table:
	Explanation

	SUBS
	Opcode Table:
	Concise Truth Table:
	Explanation

	SUBSX
	Opcode Table:
	Concise Truth Table:
	Explanation

	SUBX
	Opcode Table:
	Concise Truth Table:
	Explanation

	SUMC
	Opcode Table:
	Concise Truth Table:
	Explanation

	SUMNC
	Opcode Table:
	Concise Truth Table:
	Explanation
	Opcode Table:
	Concise Truth Table:

	Explanation

	SUMZ
	Opcode Table:
	Concise Truth Table:
	Explanation

	Symbols
	TEST
	Opcode Table:
	Concise Truth Table:
	Explanation

	TESTN
	Opcode Table:
	Concise Truth Table:
	Explanation

	TJNZ
	Opcode Table:
	Concise Truth Table:
	Explanation

	TJZ
	Opcode Table:
	Concise Truth Table:
	Explanation

	VCFG
	Explanation

	VSCL
	Explanation

	WAITCNT
	Opcode Table:
	Concise Truth Table:
	Explanation

	WAITPEQ
	Opcode Table:
	Concise Truth Table:
	Explanation

	WAITPNE
	Opcode Table:
	Concise Truth Table:
	Explanation

	WAITVID
	Opcode Table:
	Concise Truth Table:
	Explanation

	WC
	Explanation

	WR
	Explanation

	WRBYTE
	Opcode Table:
	Concise Truth Table:
	Explanation

	WRLONG
	Opcode Table:
	Concise Truth Table:
	Explanation

	WRWORD
	Opcode Table:
	Concise Truth Table:
	Explanation

	WZ
	Explanation

	XOR
	Opcode Table:
	Concise Truth Table:
	Explanation

	Appendix A: Reserved Word List
	Appendix B: Math Samples and Function Tables
	Multiplication, Division, and Square Root
	Log and Anti-Log Tables ($C000-DFFF)
	Log Table ($C000-$CFFF)
	Anti-Log Table ($D000-$DFFF)
	Sine Table ($E000-$F001)

	Index

