Rugged Rotary Encoder

- Absolute model.
- External diameter of 50 mm .
- Resolution of up to 1,024 (10-bit).
- IP65 (improved oil-proof protection with sealed bearings)
- Optimum angle control possible in combination with PLC or Cam Positioner.

c ϵ

 page 7.
Ordering Information

Encoders [Refer to Dimensions on page 8.]

Power supply voltage	Output configuration	Output code	Resolution (pulses/rotation)	Connection method	Model
12 to 24 VDC	Open-collector output (NPN)	Gray	256, 360, (720) *2	Pre-wired Connector Model (1 m)	E6C3-AG5C-C (resolution) 1M Example: E6C3-AG5C-C 256P/R 1M
			256, 360, 720, 1,024	```Pre-wired Model (1 m) *1```	E6C3-AG5C (resolution) 1M Example: E6C3-AG5C 256P/R 1M
		Binary	32, 40		E6C3-AN5C (resolution) 1M Example: E6C3-AN5C 32P/R 1M
		BCD	6, 8, 12		E6C3-AB5C (resolution) 1M Example: E6C3-AB5C 6P/R 1M
	Open-collector output (PNP)	Gray	256, 360, 720, 1,024		E6C3-AG5B (resolution) 1M Example: E6C3-AG5B 256P/R 1M
		Binary	32, 40		E6C3-AN5B (resolution) 1M Example: E6C3-AN5B 32P/R 1M
		BCD	6, 8, 12		E6C3-AB5B (resolution) 1M Example: E6C3-AB5B 6P/R 1M
5 VDC	Voltage output	Binary	256		E6C3-AN1E 256P/R 1M
12 VDC					E6C3-AN2E 256P/R 1M

*1. Standard models are also available with 2-m cables. When ordering, specify the cable length at the end of the model number (example: E6C3-AG5C 360P/R 2M).
*2. When connecting to the H8PS, use the E6C3-AG5C-C 256, 360, 720P/R. (Only a $2-\mathrm{m}$ cable is available for the 720P/R Model.)
For the 360/720 resolutions, 2-m cables are standard in-stock.

Accessories (Order Separately)

[Dimensions: Refer to Accessories on page 8 for Extension Cable dimensions and Accessories for the dimensions of other accessories.]

Name	Model		
Couplings	E69-C08B		Remarks
	E69-C68B	Different end diameter (6 to 8 mm)	
Flanges	E69-FCA03		
	E69-FCA04	E69-2 Servo Mounting Bracket provided.	
Servo Mounting Bracket	E69-2	Provided with E69-FCA04 Flange.	
	E69-DF5	5 m	Applicable to the E6C3-AG5C-C.
	E69-DF10	10 m	
	E69-DF20	20 m	

Refer to Accessories for details.

Ratings and Specifications

Item	Model	$\begin{gathered} \text { E6C3- } \\ \text { AG5C-C } \end{gathered}$	E6C3AG5C	E6C3AN5C	E6C3AB5C	$\begin{aligned} & \text { E6C3- } \\ & \text { AG5B } \end{aligned}$	E6C3AN5B	$\begin{aligned} & \text { E6C3- } \\ & \text { AB5B } \end{aligned}$	E6C3AN1E	$\begin{aligned} & \hline \text { E6C3- } \\ & \text { AN2E } \end{aligned}$				
Power supply voltage		12 VDC -10% to 24 VDC $+15 \%$, ripple (p-p): 5% max.							$\begin{aligned} & \text { 5 VDC } \\ & \pm 5 \% \end{aligned}$	$\begin{aligned} & \hline 12 \text { VDC } \\ & \pm 10 \% \end{aligned}$				
Current consumption*1		70 mA max.												
Resolution*2 (pulses/rotation)		$\begin{aligned} & 256,360, \\ & 720 \end{aligned}$	$\begin{aligned} & 256,360, \\ & 720,1,024 \\ & \hline \end{aligned}$	32, 40	6, 8, 12	$\begin{aligned} & \hline 256,360, \\ & 720,1,024 \\ & \hline \end{aligned}$	32, 40	6, 8, 12	256					
Output code		Gray code		Binary	BCD	Gray code	Binary	BCD	Binary					
Output configuration		NPN open-collector output				PNP open-collector output			Voltage output					
Output capacity		Applied voltage: 30 VDC max. Sink current: 35 mA max. Residual voltage: 0.4 V max. (at sink current of 35 mA)				Source current: 35 mA max. Residual voltage: 0.4 V max. (at source current of 35 mA)			Output resistance: $2.4 \mathrm{k} \Omega$	Output resistance: $8.2 \mathrm{k} \Omega$				
		Sink current: 35 mA max. Residual voltage: 0.4 V max. (at sink current of 35 mA)												
Rise and fall times of output						$1 \mu \mathrm{~s} \mathrm{max}$. (Cable length: 2 m , Sink current: 35 mA)							Rise: $3 \mu \mathrm{~s}$ max., Fall: $1 \mu \mathrm{~s}$ max.	Rise: $10 \mu \mathrm{~s}$ max. Fall: $1 \mu \mathrm{~s}$ max.
Maximum response frequency*3		20 kHz							10 kHz					
Logic		Negative logic (high = 0, low = 1)				Positive logic (high = 1, low =0)								
Direction of rotation*4		Output code increases for CW (as viewed from end of shaft).							Switched using rotation direction input.					
Strobe signal		None		Supported		None	Supported		None					
Positioning sig	gnal	None			Supported	None		Supported	None					
Parity signal		None		Supported (even)	None		Supported (even)	None						
Starting torque		$10 \mathrm{mN} \cdot \mathrm{m}$ max. at room temperature, $30 \mathrm{mN} \cdot \mathrm{m}$ max. at low temperature												
Moment of inertia		$2.3 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$												
Shaft loading	Radial	80 N												
	Thrust	50 N												
Maximum permissible speed		5,000 r/min												
Ambient temperature range		Operating: -10 to $70^{\circ} \mathrm{C}$ (with no icing), Storage: -25 to $85^{\circ} \mathrm{C}$ (with no icing)												
Ambient humidity range		Operating/Storage: 35% to 85% (with no condensation)												
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between current-carrying parts and case												
Dielectric strength		$500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case												
Vibration resistance		Destruction: 10 to $500 \mathrm{~Hz}, 150 \mathrm{~m} / \mathrm{s}^{2}$ or 2-mm double amplitude for 11 min 3 times each in X, Y, and Z directions												
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in X, Y, and Z directions												
Degree of protection		IEC 60529 IP65, in-house standards: oilproof												
Connection method		Connector Models *6	Pre-wired Models (Standard cable length: 1 m)											
Material		Case: Aluminum, Main unit: Aluminum, Shaft: SUS303												
Weight (packed state)		Approx. 300 g												
Accessories		Instruction manual Note: Coupling, mounting bracket and hex-head spanner are sold separately.												

*1. An inrush current of approximately 6 A will flow for approximately 0.8 ms when the power is turned ON
*2. The code is as follows:

Output code	Resolu- tion	Code No.
Binary	32	1 to 32
	40	1 to 40
	256	0 to 255
BCD	6	0 to 5
	8	0 to 7
	12	0 to 11
	256	0 to 255
	360	76 to 435 (gray after 76)
	720	152 to 871 (gray after 152)
	1,024	0 to 1,023

*3. The maximum electrical response speed is determined by the resolution and maximum response frequency as follows:

Maximum electrical response speed $(r p m)=$ Maximum response frequency $\times 60$
Resolution
This means that the Rotary Encoder will not operate electrically if its speed exceeds the maximum electrical response speed
*4. For the E6C3-AN1E and E6C3-AN2E, the rotation direction input (wire color: pink) can be connected to high (Vcc) to increase the output code for CW rotation and connected to low (0 V) to decrease the output code for CW rotation. E6C3-AN1E: High $=1.5$ to 5 V , Low $=0$ to 0.8 V

E6C3-AN2E: $\mathrm{High}=2.2$ to 12 V , Low $=0$ to 1.2 V

Read the code 10μ s or more after the LSB $\left(2^{0}\right)$ of the code changes for the E6C3-AN1E or E6C3-AN2E.
*5. The minimum address of the absolute code is output when cut face D on the shaft and the cable connection direction are as shown in the diagram at the right (output position range: $\pm 15^{\circ}$).

*6. Resolution of 360 or 720: Standard cable
length: 2 m
Resolution of 256: Standard cable length: 1 m

I/O Circuit Diagrams

Model	E6C3-AG5C/-AG5C-C ${ }^{\text {E6C3-AG5B }}$	E6C3-AN5C E6C3-AN5B
Output Circuits	Note: The circuit is the same for all bit outputs. Each E6C3-A Rotary Encoder has one main circuit. Note: The circuit is the same for all bit outputs. Each E6C3-A Rotary Encoder has one main circuit.	Note: The circuit is the same for all bit outputs. Each E6C3-A Rotary Encoder has one main circuit. Note: The circuit is the same for all bit outputs. Each E6C3-A Rotary Encoder has one main circuit.
Output mode	Direction of rotation: CW (as viewed from the end of the shaft)	Direction of rotation: CW (as viewed from the end of the shaft) Resolution/40

Connection Specifications

Connector Models

ModelPin No.	E6C3-AG5C-C		
	Output signal		
	8-bit (256)	9-bit (360)	10-bit (720)
1	$\}$ Connected	Not connected	2^{9}
2	$\}$ internally	2^{8}	2^{8}
3	2^{5}	2^{5}	2^{5}
4	2^{1}	2^{1}	2^{1}
5	2^{0}	2^{0}	2^{0}
6	2^{7}	2^{7}	2^{7}
7	2^{4}	2^{4}	2^{4}
8	2^{2}	2^{2}	2^{2}
9	2^{3}	2^{3}	2^{3}
10	2^{6}	2^{6}	2^{6}
11		Shield (ground)	
12		12 to 24 VDC	
13		0 V (common)	

[^0]Pre-wired Models

Model	E6C3-AG5C/E6C3-AG5B		
	Output signal		
Brown	8-bit (256)	9-bit (360)	10-bit (720 or $\mathbf{1 , 0 2 4)}$
Orange	2^{0}	2^{0}	2^{0}
Yellow	2^{2}	2^{1}	2^{1}
Green	2^{3}	2^{2}	2^{2}
Blue	2^{4}	2^{3}	2^{3}
Purple	2^{5}	2^{4}	2^{4}
Gray	2^{6}	2^{5}	2^{5}
White	2^{7}	2^{6}	2^{6}
Pink	Not connected	2^{7}	2^{7}
Light blue	Not connected	Not connected	2^{8}
---	Shield (ground)		
Red	12 to 24 VDC		
Black	0 V (common)		

I/O Circuit Diagrams

Connection Specifications

Pre-wired Models

Wire color Model	E6C3-AN5C/-AN5B	E6C3-AB5C/-AB5B		E6C3-AN1E/-AN2E
	Output signal	Output signal		Output signal
	6-bit (32 or 40)	3-bit (6 or 8)	5-bit (12)	8-bit (256)
Brown	2^{0}	2^{0}	2^{0}	2^{0}
Orange	2^{1}	2^{1}	2^{1}	2^{1}
Yellow	2^{2}	2^{2}	2^{2}	2^{2}
Green	2^{3}	Not connected	2^{3}	2^{3}
Blue	2^{4}	Not connected	$2^{0} \times 10$	2^{4}
Purple	2^{5}	Not connected	Not connected	2^{5}
Gray	Parity	Positioning	Positioning	2^{6}
White	Strobe	Strobe	Strobe	2^{7}
Pink	Not connected	Not connected	Not connected	Rotation Direction Input
Light blue	Not connected	Not connected	Not connected	Not connected
---	Shield (ground)			
Red	12 to 24 VDC			5 or 12 VDC
Black	0 V (common)			

[^1]
Connection Example

H8PS Cam Positioner Connection Example

Specifications

Rated voltage	24 VDC
Cam precision	0.5° (for 720 resolution), 1° (for 256/360 resolution)
No. of output points	8-point output type: 8 cam outputs, 1 RUN output, 1 pulse output 16-point output type: 16 cam outputs, 1 RUN output, 1 pulse output 32-point output type: 32 cam outputs, 1 RUN output, 1 pulse output
Encoder response	RUN mode, test mode: 256/360 resolution 1,600 r/min max. (1,200 r/min when advance compensation is set for four cams or more) 720 resolution $800 \mathrm{r} / \mathrm{min}$ max. ($600 \mathrm{r} / \mathrm{min}$ when advance compensation is set for four cams or more)
Additional functions	- Origin compensation (zeroing) - Rotation direction switching - Angle display switching - Teaching - Pulse output - Angle/number of rotations display switching - Puncture * - Angle advance - Number of rotations alarm output - Setting with support software (order separately) *

* For 16-point and 32-point output types only

Programmable Controller Connection Example

Connection to the CPM1A

(720 Resolution)

Ladder Programming Example

Wiring between the E6C3-AG5C and CPM1A

E6C3-AG5C out- put signal	CPM1A input signal
Brown $\left(2^{0}\right)$	00000
Orange $\left(2^{1}\right)$	00001
Yellow $\left(2^{2}\right)$	00002
Green $\left(2^{3}\right)$	00003
Blue $\left(2^{4}\right)$	00004
Purple $\left(2^{5}\right)$	00005
Gray $\left(2^{6}\right)$	00006
White $\left(2^{7}\right)$	00007
Pink $\left(2^{8}\right)$	00008
Light blue $\left(2^{9}\right)$	00009

Output Timing

DM6200	0000	$\left[\begin{array}{l} \text { Lower limit } 1 \\ \text { Upper limit } 1 \end{array}\right] \text { Bit CIO } 20300$	
6201	0540		
6202	0090	$\left[\begin{array}{l} \text { Lower limit 2 } \\ \text { Upper limit 2 } 2 \end{array}\right] \text { Bit CIO } 20301$	
6203	0360		
6204	0180	$\left[\begin{array}{l}\text { Lower limit } 3 \\ \text { Upper limit } 3\end{array}\right]$ Bit CIO 20302	
6205	0659		
6206	0000	Lower limit 4	
			Not used in this example.
6231	0000	Upper limit 16	

CPM1A For details, refer to the SYSMAC C200HX/HG/HE/C200H/C200HS/CQM1/CPM1A/SRM1 Command Reference Manual (SCCC-304).

Safety Precautions

Refer to Warranty and Limitations of Liability.

\$ WARNING
This product is not designed or rated for ensuring
safety of persons either directly or indirectly.
Do not use it for such purposes.

Precautions for Correct Use

Do not use the Encoder under ambient conditions that exceed the ratings.

- Wiring

Connections

Cable Extension Characteristics

- Conditions will change according to frequency, noise, and other factors. As a guideline, use a cable length of $10 \mathrm{~m}^{*}$ or less.
* Recommended Cable

Conductor cross section: $0.2 \mathrm{~mm}^{2}$
Spiral shield
Conductor resistance: $92 \Omega / \mathrm{km}$ max. $\left(20^{\circ} \mathrm{C}\right)$
Insulation resistance: $5 \Omega / \mathrm{km} \mathrm{min}$. $\left(20^{\circ} \mathrm{C}\right)$

- The output waveform startup time changes not only according to the length of the cable, but also according to the load resistance and the cable type.
- Extending the cable length not only changes the startup time, but also increases the output residual voltage.

- Connection

Spurious pulses may be generated when power is turned ON and OFF. Wait at least 0.1 s after turning ON the power to the Encoder before using the connected device, and stop using the connected device at least 0.1 s before turning OFF the power to the Encoder. Also, turn ON the power to the load only after turning ON the power to the Encoder.

Dimensions Tolerance class IT16 applies to dimensions in this datasheet unless otherwise specified.

Encoder

E6C3-A $\square \square \square$
E6C3-AN $\square \mathrm{E}$

Note: The E69-C08B Coupling is sold separately.

 conductors (Conductor cross section: $0.2 \mathrm{~mm}^{2}$. Insulator diameter: 1.1 mm), Standard length: 1 m

E6C3-AG5C-C

Note: The E69-C08B Coupling is sold separately.

6-dia. oil-resistant PVC-insulated shielded cable with 12
conductors (Conductor cross section: $0.2 \mathrm{~mm}^{2}$, Insulato
diameter: 1.1 mm), Standard length: 1 m , Standard length for resolution of 360 or 720 : 2 m

Accessories (Order Separately)

Extension Cable

E69-DF5

*1. 6-dia. oil-resistant PVC-insulated shielded cable with 12 conductors (Conductor cross section: $0.2 \mathrm{~mm}^{2}$, Insulator diameter: 1.1 mm), Standard length: 5 m
Connects to connector on E6C3-AG5C-C
*3. Connects to H8PS Cam Positioner
Note: 1. The E69-DF5 (5 m) is also available with the following cable lengths: $10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$, and 98 m
2. Cable can be extended to 100 m when the H8PS Cam Positioner is connected

Couplings	Flanges
E69-C08B	E69-FCA03
E69-C68B	E69-FCA04

Servo Mounting Bracket
 E69-2

Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Omron:
E6C3-AB5C 12P/R 1M E6C3-AB5C 12P/R 2M E6C3-AB5C 6P/R 1M E6C3-AB5C 6P/R 2M E6C3-AB5C 8P/R 1M E6C3-AB5C 8P/R 2M E6C3-AG5B 1024P/R 1M E6C3-AG5B 1024P/R 2M E6C3-AG5B 256P/R 1M E6C3-AG5B 256P/R 2M E6C3-AG5B 360P/R 1M E6C3-AG5B 360P/R 2M E6C3-AG5B 720P/R 1M E6C3-AG5B 720P/R 2M E6C3-AG5C 1024P/R 1M E6C3-AG5C 1024P/R 2M E6C3-AG5C 256P/R 1M E6C3-AG5C 256P/R 2M E6C3-AG5C 360P/R 1M E6C3-AG5C 360P/R 2M E6C3-AG5C 720P/R 1M E6C3-AG5C 720P/R 2M E6C3-AG5C-C 256P/R 1M E6C3-AG5C-C 256P/R 2M E6C3-AG5C-C 360P/R 1M E6C3-AG5C-C 360P/R 2M E6C3-AN1E 256P/R 1M E6C3AN1E 256P/R 2M E6C3-AN5B 32P/R 1M E6C3-AN5B 32P/R 2M E6C3-AN5C 32P/R 1M E6C3-AN5C 32P/R 2M E6C3-AN5C 40P/R 1M E6C3-AN5C 40P/R 2M E6C3-AG5C 360P/R 5M

[^0]: Connector: RP13A-12PD-13SC (Hirose Electric Co., Ltd.)
 Note: Normally connect GND to 0 V or to an external ground.

[^1]: Note: Normally connect GND to 0 V or to an external ground.

