BIPOLAR DIGITAL INTEGRATED CIRCUITS UPB1506GV,UPB1507GV

3GHz INPUT DIVIDE BY 256, 128, 64 PRESCALER IC FOR ANALOG DBS TUNERS

The UPB1506GV and UPB1507GV are 3.0 GHz input, high division silicon prescaler ICs for analog DBS tuner applications. These ICs divide-by-256, 128 and 64 contribute to produce analog DBS tuners with kit-use of 17 K series DTS controller or standard CMOS PLL synthesizer IC. The UPB1506GV/UPB1507GV are shrink package versions of the UPB586G/588G or UPB1505GR so that these smaller packages contribute to reduce the mounting space replacing from conventional ICs.

The UPB1506GV and UPB1507GV are manufactured using NEC's hightf NESAT ${ }^{\text {TM }}$ IV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, these ICs have excellent performance, uniformity and reliability.

FEATURES

- High toggle frequency : fin $=0.5 \mathrm{GHz}$ to 3.0 GHz
- High-density surface mounting : 8-pin plastic SSOP (175 mil)
- Low current consumption : $5 \mathrm{~V}, 19 \mathrm{~mA}$
- Selectable high division : $\div 256, \div 128, \div 64$
. Pin connection variation : UPB1506GV and UPB1507GV

PLEASE NOTE:
The following part number from this datasheet is NOT RECOMMENDED for New Designs:
UPB1506GV.

Please contact your local sales office for details.

APPLICATION

These ICs can use as a prescaler between local oscillator and PLL frequency synthesizer included modulus prescaler. For example, following application can be chosen;

- Analog DBS tuner's synthesizer
- Analog CATV converter synthesizer

ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKING	
UPB1506GV-E1-A	8-pin plastic	150	SUPPLYING FORM
	Embossed tape 8 mm wide. Pin 1 is in tape pull-out		
UPB1507GV-E1-A	SSOP (175 mil)	1507	

Remarks To order evaluation samples, please contact your local sales office.
(Part number for sample order: UPB1506GV-A, UPB1507GV-A)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTION (Top View)

Pin NO.	PB1506GV	PB1507GV
1	SW1	IN
2	IN	Vcc
3	$\overline{\mathrm{IN}}$	SW1
4	GND	OUT
5	NC	GND
6	SW2	SW2
7	OUT	NC
8	Vcc	$\overline{I N}$

PRODUCT LINE-UP

Features (division, Freq.)	Part No.	Icc (mA)	fin (GHz)	Vcc (V)	Package	Pin connection
$\div 512, \div 256,2.5 \mathrm{GHz}$	UPB586G	28	0.5 to 2.5	4.5 to 5.5	8 pin SOP 225 mil	NEC original
$\div 128, \div 64,2.5 \mathrm{GHz}$	UPB588G	26	0.5 to 2.5	4.5 to 5.5		
$\div 256, \div 128, \div 64$	UPB1505GR	14	0.5 to 3.0	4.5 to 5.5		Standard
	UPB1506GV	19	0.5 to 3.0	4.5 to 5.5	8 pin SSOP 175 mil	NEC original
	UPB1507GV	19	0.5 to 3.0	4.5 to 5.5		Standard

Remarks . This table shows the TYP values of main parameters. Please refer to ELECTRICAL CHARACTERISTICS.
UPB586G and UPB588G are discontinued.

INTERNAL BLOCK DIAGRAM

SYSTEM APPLICATION EXAMPLE

RF unit block of Analog DBS tuners

RF unit block of Analog CATV converter

PIN EXPLANATION

Pin name	Applied voltage V	Pin voltage V	Functions and explanation				Pin no.	
							UPB1506GV	UPB1507GV
IN	-	2.9	Signal input pin. This pin should be coupled to signal source with capacitor (e.g. 1000 pF) for DC cut.				2	1
$\overline{\mathrm{IN}}$	-	2.9	Signal input bypass pin. This pin must be equipped with bypass capacitor (e.g. 1000 pF) to minimize ground impedance.				3	8
GND	0	-	Ground pin. Ground pattern on the board should be formed as wide as possible to minimize ground impedance.				4	5
SW1	H/L	-	Divide ratio input pin. The ratio can be determined by following applied level to these pins. These pins should be equipped with bypass capacitor (e.g. 1000 pF) to minimize ground impedance.				1	3
SW2							6	6
Vcc	4.5 to 5.5	-	Power supply pin. This pin must be equipped with bypass capacitor (e.g. 10000 pF) to minimize ground impedance.				8	2
OUT	-	2.6 to 4.7	Divided frequency output pin. This pin is designed as emitter follower output. This pin can be connected to CMOS input due to 1.2 V -p MIN output.				7	4
NC	-	-	Non connection pin. This pin must be openned.				5	7

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITION	RATINGS	UNIT
Supply voltage	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5 to +6.0	V
Input voltage	$\mathrm{V}_{\text {in }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5 to $\mathrm{Vcc}+0.5$	V
Total power dissipation	PD	Mounted on double sided copper clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass $\mathrm{PWB}\left(\mathrm{T}_{\mathrm{A}}=\right.$ $\left.+85^{\circ} \mathrm{C}\right)$	250	mW
Operating ambient temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTICE
Supply voltage	Vcc	4.5	5.0	5.5	V	
Operating ambient temperature	TA_{A}	-40	+25	+85	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Zs}=50 \Omega$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Circuit current	Icc	No signals	12.5	19	26.5	mA
Upper limit operating frequency	fin(u)	$P_{\text {in }}=-15$ to +6 dBm	3.0	-	-	GHz
Lower limit operating frequency 1	$\mathrm{fin}^{(L)} 1$	$\operatorname{Pin}_{\text {in }}=-10$ to +6 dBm	-	-	0.5	GHz
Lower limit operating frequency 2	$\mathrm{fin}^{(L) 2}$	$\mathrm{Pin}_{\text {in }}=-15$ to +6 dBm	-	-	1.0	GHz
Input power 1	Pin1	$\mathrm{fin}_{\text {in }}=1.0$ to 3.0 GHz	-15	-	+6	dBm
Input power 2	Pin2	$\mathrm{fin}_{\text {i }}=0.5$ to 1.0 GHz	-10	-	+6	dBm
Output Voltage	Vout	$\mathrm{CL}=8 \mathrm{pF}$	1.2	1.6	-	Vp-p
Divide ratio control input high	$\mathrm{V}_{\mathrm{H} 1}$	Connection in the test circuit	Vcc	Vcc	Vcc	
Divide ratio control input low	VIL1	Connection in the test circuit	OPEN or GND	OPEN or GND	OPEN or GND	
Divide ratio control input high	$\mathrm{V}_{\mathbf{H} 2}$	Connection in the test circuit	Vcc	Vcc	Vcc	
Divide ratio control input low	VIL2	Connection in the test circuit	OPEN or GND	OPEN or GND	OPEN or GND	

TYPICAL CHARACTERISTICS (Unless otherwise specified TA $=+25^{\circ} \mathrm{C}$)

Divide by 64 mode

Divide by 128 mode

Divide by 256 mode

UPB1506GV
S_{11} vs. INPUT FREQUENCY
$\mathrm{Vcc}=5.0 \mathrm{~V}$

FREQUENCY	S_{11}	
MHz	MAG	ANG
500.0000	.868	-26.6
600.0000	.828	-32.6
700.0000	.794	-37.4
800.0000	.761	-41.9
900.0000	.721	-46.5
1000.0000	.706	-49.3
1100.0000	.662	-54.0
1200.0000	.629	-57.2
1300.0000	.595	-60.2
1400.0000	.554	-62.9
1500.0000	.516	-64.8
1600.0000	.440	-61.9
1700.0000	.428	-51.0
1800.0000	.543	-61.5
1900.0000	.555	-68.4
2000.0000	.560	-74.7
2100.0000	.558	-79.5
2200.0000	.564	-84.9
2300.0000	.570	-90.9
2400.0000	.574	-98.3
2500.0000	.574	-107.9
2600.0000	.564	-118.3
2700.0000	.530	-131.4
2800.0000	.476	-144.6
2900.0000	.411	-159.1
3000.0000	.331	-175.8

UPB1506GV

S22 vs. OUTPUT FREQUENCY
Divide by 64 mode, $\mathrm{Vcc}=5.0 \mathrm{~V}$

FREQUENCY MHz	S S	
	MAG	ANG
45.000	.542	-1.4
50.000	.602	-.3
55.000	.616	0.0
60.000	.605	1.1
65.000	.609	.7
70.000	.616	.3
75.000	.620	.1
80.000	.622	0.0
85.000	.619	.6
90.000	.610	.9
95.000	.626	-.7
100.000	.623	-1.7

UPB1506GV

S22 vs. OUTPUT FREQUENCY
Divide by 128 mode, $\mathrm{Vcc}=5.0 \mathrm{~V}$

UPB1506GV
S22 vs. OUTPUT FREQUENCY
Divide by 256 mode, Vcc $=5.0 \mathrm{~V}$

FREQUENCY MHz	S 22	
	MAG	ANG
45.000	.601	-.9
50.000	.609	-1.6
55.000	.611	-1.5
60.000	.620	-1.4
65.000	.607	-2.1
70.000	.615	-1.9
75.000	.613	-3.2
80.000	.611	-2.8
85.000	.607	-2.5
90.000	.605	-2.4
95.000	.610	-3.0
100.000	.608	-2.8

UPB1507GV

S11 vs. INPUT FREQUENCY

FREQUENCY	S_{11}	
MHz	MAG	ANG
500.0000	.857	-27.5
600.0000	.849	-32.0
700.0000	.800	-38.9
800.0000	.764	-43.8
900.0000	.725	-49.0
1000.0000	.665	-50.9
1100.0000	.619	-55.3
1200.0000	.573	-59.3
1300.0000	.531	-61.3
1400.0000	.484	-62.8
1500.0000	.439	-63.0
1600.0000	.377	-59.1
1700.0000	.340	-54.1
1800.0000	.377	-54.7
1900.0000	.441	-59.5
2000.0000	.464	-67.2
2100.0000	.443	-67.4
2200.0000	.466	-74.5
2300.0000	.465	-81.3
2400.0000	.454	-89.4
2500.0000	.433	-99.2
2600.0000	.383	-109.6
2700.0000	.350	-114.0
2800.0000	.332	-124.2
2900.0000	.271	-141.2
3000.0000	.185	-163.6

UPB1507GV

S22 vs. OUTPUT FREQUENCY
Divide by 64 mode, $\mathrm{Vcc}=5.0 \mathrm{~V}$

FREQUENCY MHz	S22	
	MAG	ANG
45.000	.580	3.4
50.000	.572	2.5
55.000	.574	3.0
60.000	.574	2.7
65.000	.584	3.0
70.000	.587	2.6
75.000	.592	2.4
80.000	.587	2.6
85.000	.589	2.9
90.000	.591	2.9
95.000	.573	1.7
100.000	.604	2.9

UPB1507GV

S22 vs. OUTPUT FREQUENCY
Divide by 128 mode, $\mathrm{Vcc}=5.0 \mathrm{~V}$

FREQUENCY MHz	S_{22}	
	MAG	ANG
45.000	.578	3.2
50.000	.571	2.8
55.000	.572	3.3
60.000	.576	3.0
65.000	.584	3.1
70.000	.587	2.8
75.000	.589	2.4
80.000	.589	2.8
85.000	.588	3.0
90.000	.593	2.8
95.000	.598	3.0
100.000	.602	2.9

UPB1507GV

S22 vs. OUTPUT FREQUENCY
Divide by 256 mode, Vcc $=5.0 \mathrm{~V}$

FREQUENCY MHz	S $_{22}$	
	MAG	ANG
45.000	.580	3.0
50.000	.572	2.8
55.000	.571	2.9
60.000	.576	2.9
65.000	.585	3.2
70.000	.590	2.8
75.000	.589	2.5
80.000	.590	2.6
85.000	.588	2.9
90.000	.597	2.9
95.000	.600	3.1
100.000	.601	3.1

TEST CIRCUIT

UPB1506GV

SG (HP-8665A)
Counter (HP5350B) : To measure input sensitivity
or
Oscilloscope \quad : To measure output voltage swing

COMPONENT LIST

	UPB1506GV	UPB1507GV
C1 to C5	1000 pF	1000 pF
C6	10000 pF	10000 pF
Stray cap.	Aprox 4 pF	Aprox 5 pF
C 7	$3.5 \mathrm{pF}^{\star}$	$2.5 \mathrm{pF}^{\star}$

* Capacitance $C\llcorner=8 \mathrm{pF}$ for DUT includes

C 7 value + stray capacitance on the
board and measurement equipment.

Divide ratio setting

		SW2	
		H	L
SW1	H	$1 / 64$	$1 / 128$
	L	$1 / 128$	$1 / 256$

H: Connect to Vcc
L: Connect to GND or OPEN

TEST CIRCUIT

UPB1507GV

- SG (HP-8665A)
- Counter (HP5350B) : To measure input sensitivity
or
Oscilloscope : To measure output voltage swing

Divide ratio setting

		SW2	
		H	L
SW1	H	$1 / 64$	$1 / 128$
	L	$1 / 128$	$1 / 256$

H: Connect to Vcc
L: Connect to GND or OPEN

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD UPB1506GV

UPB1507GV

EVALUATION BOARD CHARACTERS
(1) $35 \mu \mathrm{~m}$ thick double-sided copper clad $50 \quad 50 \quad 0.4 \mathrm{~mm}$ polyimide board
(2) Back side: GND pattern
(3) Solder plated patterns
(4) $\circ \bigcirc$: Through holes

PACKAGE DIMENSIONS

8 PIN PLASTIC SSOP (UNIT: mm) (175 mil)

NOTE CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired operation).
(3) Keep the wiring length of the ground pins as short as possible.
(4) Connect a bypass capacitor (e.g. 10000 pF) to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.

UPB1506GV, UPB1507GV

Soldering method	Soldering conditions	Recommended condition symbol		
Infrared ray reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Hour: within $30 \mathrm{~s} .\left(\right.$ more than $210^{\circ} \mathrm{C}$), Time: 3 times, Limited days: no. ${ }^{*}$	IR35-00-3		
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Hour: within $40 \mathrm{~s} .\left(\right.$ more than $\left.200^{\circ} \mathrm{C}\right)$, Time: 3 times, Limited days: no. ${ }^{*}$	VP15-00-3		
Wave soldering	Soldering tub temperature: less than $260^{\circ} \mathrm{C}$, Hour: within 10 s., Time: 1 time, Limited days: no.	WS60-00-1		
Pin part heating	Pin area temperature: less than $300^{\circ} \mathrm{C}$, Hour: within $3 \mathrm{s./pin}$,			
Limited days: no.			\quad	
:---				

* It is the storage days after opening a dry pack, the storage conditions are $25^{\circ} \mathrm{C}$, less than $65 \% \mathrm{RH}$.

Caution The combined use of soldering method is to be avoided (However, except the pin area heating method).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

CEL California Eastern Laboratories UPB1506GV, UPB1507GV
[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	-A	-AZ
Mercury	<1000 PPM	Not Detected	(*)
Cadmium	<100 PPM	Not Detected	
Hexavalent Chromium	<1000 PPM	Not Detected	
PBB	<1000 PPM	Not Detected	
PBDE	<1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.

