

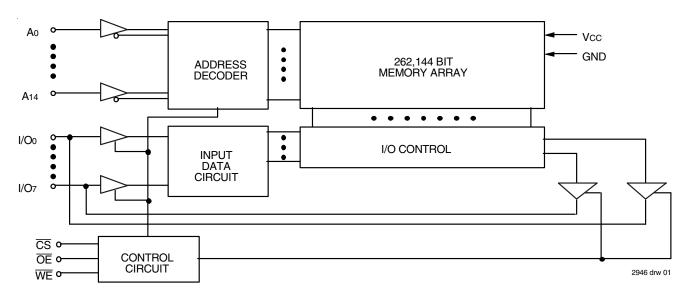
CMOS Static RAM 256K (32K x 8-Bit)

IDT71256S IDT71256L

Features

- High-speed address/chip select time
 - Military: 25/35/45/55/70/85/100ns (max.)
 - Commercial/Industrial: 20/25/35ns (max.) low power only
- Low-power operation
- Battery Backup operation 2V data retention
- Produced with advanced high-performance CMOS technology
- Input and output directly TTL-compatible
- Available in standard 28-pin (300 or 600 mil) ceramic DIP, 28-pin (300 mil) SOJ
- Military product compliant to MIL-STD-883, Class B

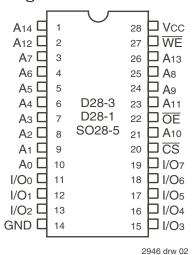
Description


The IDT 71256 is a 262,144-bit high-speed static RAM organized as 32K x 8. It is fabricated using high-performance, high-reliability CMOS technology.

Address access times as fast as 20ns are available with power consumption of only 350mW (typ.). The circuit also offers a reduced power standby mode. When \overline{CS} goes HIGH, the circuit will automatically go to and remain in, a low-power standby mode as long as \overline{CS} remains HIGH. This capability provides significant system level power and cooling savings. The low-power (L) version also offers a battery backup data retention capability where the circuit typically consumes only $5\mu W$ when operating off a 2V battery.

The IDT71256 is packaged in a 28-pin (300 or 600 mil) ceramic DIP, a 28-pin 300 mil SOJ providing high board level packing densities.

The IDT71256 military RAM is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.


Functional Block Diagram

SEPTEMBER 2013

© 2019 Renesas Electronics Corporation

Pin Configurations

DIP/SOJ Top View

Pin Descriptions

Name	Description
A0 - A14	Address Inputs
I/Oo - I/O7	Data Input/Output
₹	Chip Select
WE	Write Enable
ŌĒ	Output Enable
GND	Ground
Vcc	Power

2946 tbl 01

Truth Table⁽¹⁾

WE	<u></u> C S	ŌĒ	I/O	Function
Х	Н	Х	High-Z	Standby (ISB)
Х	VHC	Χ	High-Z	Standby (ISB1)
Н	L	Н	High-Z	Output Disabled
Н	L	L	Dout	Read Data
L	L	Χ	Din	Write Data

2946 tbl 02

2946 tbl 03

NOTE:

1. H = VIH, L = VIL, X = Don't care.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Com'l.	Ind.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	-0.5 to +7.0	V
Та	Operating Temperature	0 to +70	-40 to +85	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-55 to +125	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	1.0	1.0	1.0	W
Іоит	DC Output Current	50	50	50	mA

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those
indicated in the operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect
reliability.

Capacitance (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit	
CIN	Input Capacitance	VIN = 0V	11	pF	
Cvo	I/O Capacitance	Vout = 0V	11	pF	

NOTE:

 This parameter is determined by device characterization, but is not production tested

Recommended Operating Temperature and Supply Voltage

Grade		Temperature	GND	Vcc
Military		-55°C to +125°C	0V	5V ± 10%
Industrial		-40°C to +85°C	0V	5V ± 10%
Commercial		0°C to +70°C	0V	5V ± 10%

2946 tbl 05

Recommended DC Operating Conditions

Symbol	Parameter	Parameter Min.		Max.	Unit	
Vcc	Supply Voltage	4.5	5.0	5.5	٧	
GND	Ground	0	0	0	٧	
VIH	Input High Voltage	2.2	_	6.0	٧	
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	٧	

2946 tbl 06

NOTE

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

DC Electrical Characteristics (1,2) (Vcc = 5.0V ± 10%, VLc = 0.2V, VHc = Vcc - 0.2V)

			71256S/L20	71256	S/L25	71256	S/L35	71256S/L45	
Symbol	Parameter	Power	Com'l. & Ind	Com'l & Ind	Mil.	Com'l. & Ind	Mil.	Mil.	Unit
Icc			_		150	_	140	135	mA
			135	125	130	115	120	115	
ISB	ISB Standby Power Supply Current (TTL Level), $\overline{CS} \ge VH$, $Vcc = Max.$, Outputs Open, $f = fmax^{(2)}$		_		20		20	20	mA
			3	3	3	3	3	3	
ISB1	ISB1 Full Standby Power Supply Current (CMOS Level), CS ≥ VHC,		_		20	_	20	20	mA
	Vcc = Max., $f = 0$	L	0.6	0.6	1.5	0.6	1.5	1.5	

2946 tbl 07

			71256S/L55	71256S/L70	71256S/L85	71256S/L100	
Symbol	Parameter	Power	Mil.	Mil.	Mil.	Mil.	Unit
Icc	Dynamic Operating Current CS ≤ VIL, Outputs Open	S	135	135	135	135	mA
	Vcc = Max., fmax ⁽²⁾	L	115	115	115	115	
ISB	Standby Power Supply Current	S	20	20	20	20	mA
	Standby Power Supply Current (TTL Level), $\overline{CS} \ge VIH$, $VCC = Max.$, Outputs Open, $f = fMax^{(2)}$	L	3	3	3	3	
ISB1			20	20	20	20	mA
	(CMOS Level), CS ≥ VHC, Vcc = Max., f = 0	L	1.5	1.5	1.5	1.5	

NOTES:

- 1. All values are maximum guaranteed values.
- 2. fmax = 1/trc, all address inputs are cycling at fmax; f = 0 means no address pins are cycling.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2946 tbl 09

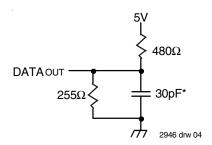


Figure 1. AC Test Load

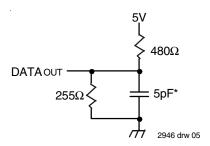


Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

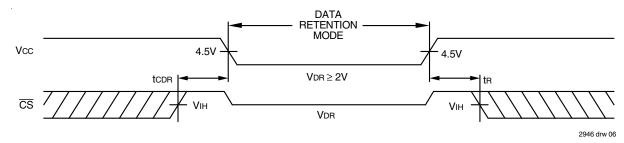
*Includes scope and jig capacitances

DC Electrical Characteristics (Vcc = 5.0V ± 10%)

					IDT71256S						
	Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
	lu	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	MIL. COM"L & IND.			10 5			5 2	μΑ
	ILO	Output Leakage Current	VCC = Max., \overline{CS} = VIH, VOUT = GND to VCC	MIL. COM"L & IND.			10 5			5 2	μΑ
	Vol	Output Low Voltage	IOL = 8mA, Vcc = Min.				0.4			0.4	V
L			IOL = 10mA, Vcc = Min.				0.5			0.5	
	Vон	Output High Voltage	IOH = -4mA, Vcc = Min.		2.4			2.4			V

2946 tbl 10

Data Retention Characteristics Over All Temperature Ranges


(L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)

					Тур. ⁽¹⁾ Vcc @		Max. Vcc @		
Symbol	Parameter	Test Condition		Min.	2.0V	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention	_		2.0	_	_	_	_	٧
ICCDR	Data Retention Current		MIL. COM'L. & IND.		_	_	500 120	800 200	μА
tcdr	Chip Deselect to Data Retention Time	CS ≥ VHC		0		_			ns
t _R (3)	Operation Recovery Time			trc ⁽²⁾	_	_	_	_	ns

NOTES:

- 1. TA = +25°C.
- 2. trc = Read Cycle Time.
- 3. This parameter is guaranteed by device characterization, but is not production tested.

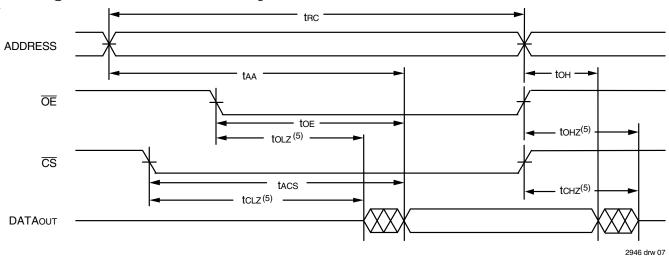
Low Vcc Data Retention Waveform

AC Electrical Characteristics (Vcc = 5.0V ± 10%, All Temperature Ranges)

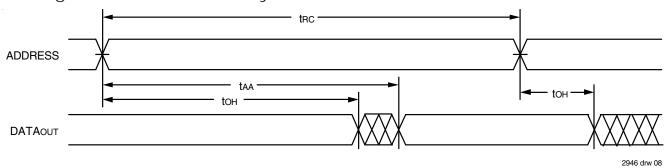
		71256	5L20 ⁽¹⁾		6S25 ⁽³⁾ 66L25	71256S35 ⁽³⁾ 71256L35		71256S45 ⁽³⁾ 71256L45 ⁽³⁾		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle									
trc	Read Cycle Time	20	_	25	_	35	_	45	_	ns
taa	Address Access Time	_	20		25		35		45	ns
tacs	Chip Select Access Time	_	20		25		35		45	ns
tclz ⁽²⁾	Chip Select to Output in Low-Z	5	_	5	_	5	_	5	_	ns
tchz ⁽²⁾	Chip Deselect to Output in High-Z	_	10	_	11	_	15	_	20	ns
toe	Output Enable to Output Valid	_	10		11		15		20	ns
tolz ⁽²⁾	Output Enable to Output in Low-Z	2	_	2	_	2	_	0	_	ns
tohz ⁽²⁾	Output Disable to Output in High-Z	2	8	2	10	2	15		20	ns
tон	Output Hold from Address Change	5	_	5	_	5		5		ns
Write Cy	rcle									
twc	Write Cycle Time	20	_	25	_	35	_	45	_	ns
tcw	Chip Select to End-of-Write	15		20		30	_	40		ns
taw	Address Valid to End-of-Write	15		20		30	_	40		ns
tas	Address Set-up Time	0		0	_	0		0		ns
twp	Write Pulse Width	15		20		30		35		ns
twr	Write Recovery Time	0	_	0	_	0	_	0	_	ns
tow	Data to Write Time Overlap	11	_	13	_	15	_	20	_	ns
twHZ ⁽²⁾	Write Enable to Output in High-Z	_	10	_	11	_	15	_	20	ns
ton	Data Hold from Write Time	0	_	0	_	0	_	0	_	ns
tow ⁽²⁾	Output Active from End-of-Write	5		5		5	_	5		ns
	•									

NOTES:

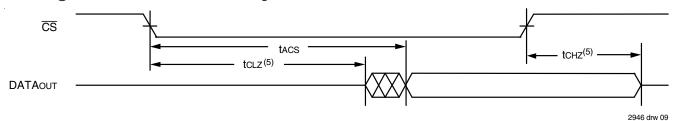
- 1. 0° to +70°C or -40° to +85°C temperature range only.
- 2. This parameter is guaranteed by device characterization, but is not production tested.
- 3. -55°C to +125°C temperature range only.


AC Electrical Characteristics (Vcc = 5.0V ± 10%, Military Temperature Ranges)

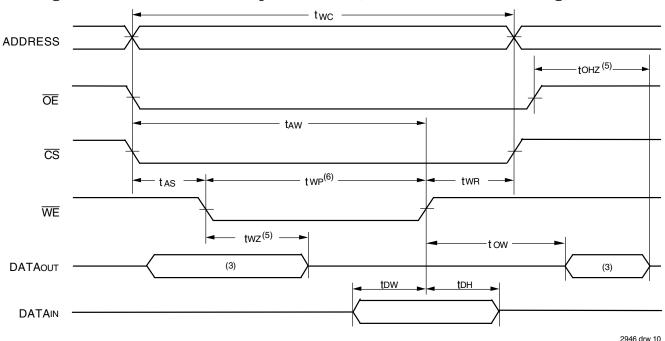
		71256 71256	5S55 ⁽¹⁾ 5L55 ⁽¹⁾	71256S70 ⁽¹⁾ 71256L70 ⁽¹⁾		71256S85 ⁽¹⁾ 71256L85 ⁽¹⁾		71256S100 ⁽¹⁾ 71256L100 ⁽¹⁾		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle									
trc	Read Cycle Time	55	_	70	_	85	_	100		ns
taa	Address Access Time	_	55		70		85		100	ns
tacs	Chip Select Access Time		55		70		85		100	ns
tcLz ⁽²⁾	Chip Select to Output in Low-Z	5	_	5	_	5	_	5	_	ns
tcHz ⁽²⁾	Chip Deselect to Output in High-Z		25	_	30	_	35		40	ns
toe	Output Enable to Output Valid	_	25		30	_	35		40	ns
toLz ⁽²⁾	Output Enable to Output in Low-Z	0	_	0	_	0	_	0		ns
tонz ⁽²⁾	Output Disable to Output in High-Z	0	25	0	30	_	35	_	40	ns
tон	Output Hold from Address Change	5	_	5	_	5	_	5	_	ns
Write Cy	rcle									
twc	Write Cycle Time	55	_	70	_	85	_	100		ns
tcw	Chip Select to End-of-Write	50	_	60	_	70	_	80		ns
taw	Address Valid to End-of-Write			60	_	70		80		ns
tas	Address Set-up Time			0		0		0		ns
twp	Write Pulse Width			45		50		55		ns
twr	Write Recovery Time			0		0		0		ns
tow	Data to Write Time Overlap		_	30	_	35	_	40		ns
twHz ⁽²⁾	Write Enable to Output in High-Z		25		30		35		40	ns
tон	Data Hold from Write Time (WE)		_	0	_	0	_	0		ns
tow ⁽²⁾	Output Active from End-of-Write	5		5		5		5	_	ns

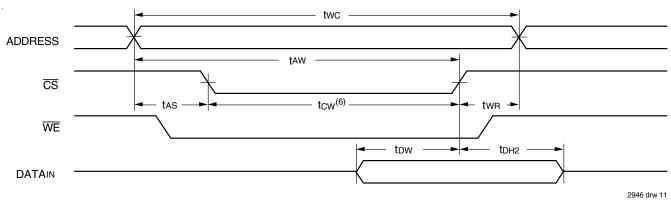

NOTES:

 ^{-55°} to +125°C temperature range only.
 This parameter is guaranteed by device characterization, but is not production tested.


Timing Waveform of Read Cycle No. 1(1)

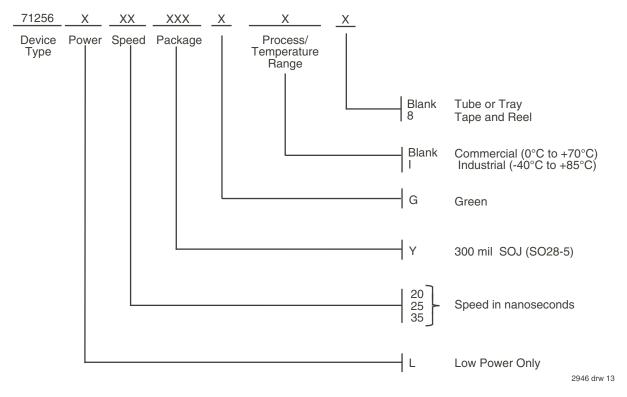
Timing Waveform of Read Cycle No. 2^(1,2,4)

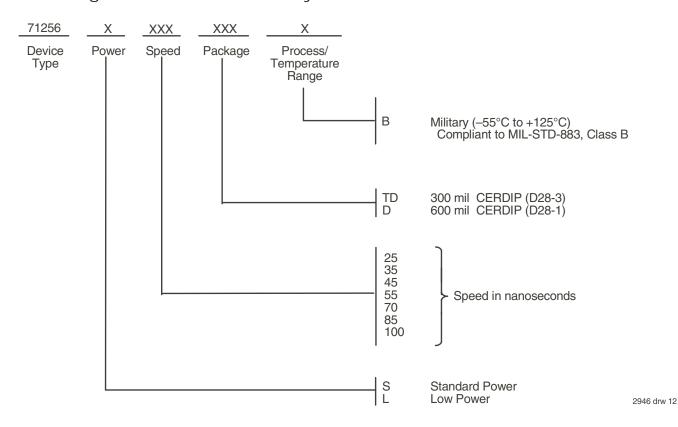

Timing Waveform of Read Cycle No. 2^(1,3,4)


NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, $\overline{\text{CS}}$ is LOW.
- 3. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.
- 4. $\overline{\mathsf{OE}}$ is LOW.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)(1,2,4,6)


Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1,2,4)


NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 2. twn is measured from the earlier of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going HIGH to the end of the write cycle.
- 3. During this period, I/O pins are in the output state so that the input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ±200mV from steady state.
- 6. If \overline{OE} is LOW during a \overline{WE} controlled write cycle, the write pulse width must be the larger of twp or (twHz +tbw) to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse width can be as short as the specified twp. For a CS controlled write cycle, \overline{OE} may be LOW with no degradation to tcw.

Ordering Information — Commercial & Industrial

Ordering Information — Military

Datasheet Document History

11/4/99:		Updated to newformat
	Pp. 1-5, 9	Added Industrial Temperature Range offerings
	Pg. 1	Removed 30, 120, and 150ns military and 45ns commercial speed grade offerings.
	Pg. 2	Removed P28-2 package from DIP/SOJ Top View
	Pg. 3	Removed 30ns and 45ns (Commercial only) speed grade offerings from DC Electrical table
	Ü	Revised notes and footnotes
	Pg. 5	Removed 30ns speed grade offering from AC Electrical table
	Ü	Revised notes and footnotes
	Pg. 6	Expressed Military Temperature range on AC Electrical table
		Revised notes and footnotes
	Pg. 8	Removed Note 1 and renumbered notes and footnotes
	Pg. 9	Revised Ordering Information and presented by temperature range offering
	Pg. 10	Added Datasheet Document History
08/09/00:		Not recommended for new designs
02/01/01:		Remove "Not recommended for new designs"
11/15/06:	Pg. 3	Changed power limits for commercial and industrial. Refer to PCN SR-0602-03. Added Restricted hazardous
		substance devce to ordering information.
11/01/08:	Pg. 2,9	Corrected typo on pin 21 in 32-Pin LCC diagram. Updated the ordering information by removing the
		"IDT" notation.
04/28/11:	Pg. 1, 2, 5, 9	Added 20ns to Industrial offering. Obsoleted 28-pin 600 mil, 32-pin LCC and Added Tape and Reel to
		Ordering information and updated description of Restricted hazardous substance device to Green.
09/26/13:	Pg. 1	In the Description: removed IDT's reference to fabrication and removed the sentence "In the full standby
		mode, the low-power device consumes less than 15 µW, typically".

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/