

#### Is Now Part of



# ON Semiconductor®

# To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to Fairchild <a href="guestions@onsemi.com">guestions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer



June 2008

### NC7WV14

## TinyLogic® ULP-A Dual Inverter with Schmitt Trigger Input

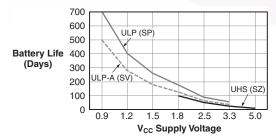
#### **Features**

- 0.9V to 3.6V V<sub>CC</sub> supply operation
- 3.6V overvoltage tolerant I/O's at V<sub>CC</sub> from 0.9V to
- Extremely High Speed t<sub>PD</sub>:
  - 1.5ns typ. for 2.7V to 3.6V V<sub>CC</sub>
  - 1.8ns typ. for 2.3V to 2.7V  $V_{CC}$
  - 2.0ns typ. for 1.65V to 1.95V  $V_{CC}$
  - 3.2ns typ. for 1.4V to 1.6V  $V_{CC}$
  - 5.9ns typ. for 1.1V to 1.3V  $V_{CC}$
  - 12.0ns typ. for 0.9V  $V_{CC}$
- Power-Off high impedance inputs and outputs
- High Static Drive (I<sub>OH</sub>/I<sub>OL</sub>):
  - ±24mA @ 3.00V V<sub>CC</sub>
  - ±18mA @ 2.30V V<sub>CC</sub>
  - $\pm 6$ mA @ 1.65V V<sub>CC</sub>
  - ±4mA @ 1.4V V<sub>CC</sub>
  - ±2mA @ 1.1V V<sub>CC</sub>
  - ±0.1mA @ 0.9V V<sub>CC</sub>
- Uses patented Quiet Series™ noise/EMI reduction
- Ultra small MicroPak™ package
- Ultra low dynamic power

### **General Description**

The NC7WV14 is a dual inverter with Schmitt trigger from Fairchild's Ultra Low Power-A (ULP-A) Series of TinyLogic<sup>®</sup>. ULP-A is ideal for applications that require extreme high speed, high drive and low power. This product is designed for a wide low voltage operating range (0.9V to 3.6V V<sub>CC</sub>) and applications that require more drive and speed than the TinyLogic ULP series, but still offer best in class low power operation.

The NC7WV14 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.


### Ordering Information

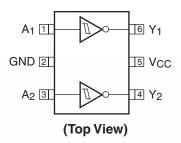
| Order<br>Number | Package<br>Number | Package Code<br>Top Mark | Package Description                    | Supplied As               |
|-----------------|-------------------|--------------------------|----------------------------------------|---------------------------|
| NC7WV14P6X      | MAA06A            | V14                      | 6-Lead SC70, EIAJ SC88,<br>1.25mm Wide | 3k Units on Tape and Reel |
| NC7WV14L6X      | MAC06A            | BD                       | 6-Lead MicroPak, 1.0mm Wide            | 5k Units on Tape and Reel |



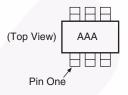
All packages are lead free per JEDEC: J-STD-020B standard.

### Battery Life vs. V<sub>CC</sub> Supply Voltage




TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly.

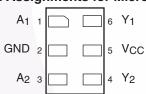
Battery Life = 
$$(V_{battery} \times I_{battery} \times 0.9) / (P_{device}) / 24hrs/day$$
  
Where,  $P_{device} = (I_{CC} \times V_{CC}) + (C_{PD} + C_L) \times V_{CC}^2 \times f$ 


Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with C<sub>1</sub> = 15pF load.

### **Connection Diagrams**

#### Pin Assignment for SC70



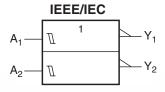

#### **Pin One Orientation Diagram**



AAA represents Product Code Top Mark - see ordering code

**Note:** Orientation of top mark determines pin one location. Read the top product code mark left to right. Pin one is the lower left pin (see diagram).

#### **Pad Assignments for MicroPak**




(Top Through View)

### **Pin Description**

| Pin Names                       | Description |
|---------------------------------|-------------|
| A <sub>1</sub> , A <sub>2</sub> | Data Inputs |
| Y <sub>1</sub> , Y <sub>2</sub> | Output      |

### **Logic Symbol**



#### **Function Table**

$$Y = \overline{A}$$

| Input | Output |
|-------|--------|
| A     | Y      |
| L     | Н      |
| Н     | L      |

H = HIGH Logic Level

L = LOW Logic Level

### **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

|                                                                         | Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supply Voltage                                                          | -0.5V to +4.6V                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DC Input Voltage                                                        | -0.5V to +4.6V                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DC Output Voltage HIGH or LOW State <sup>(1)</sup> V <sub>CC</sub> = 0V | -0.5V to V <sub>CC</sub> +0.5V<br>-0.5V to +4.6V                                                                                                                                                                                                                                                                                                                                                                                                           |
| DC Input Diode Current @ V <sub>IN</sub> < 0V                           | -50mA                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DC Output Diode Current                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $V_{OUT} < 0V$                                                          | -50mA                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $V_{OUT} > V_{CC}$                                                      | +50mA                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DC Output Source/Sink Current                                           | ±50mA                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DC V <sub>CC</sub> or Ground Current per Supply Pin                     | ±50mA                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Storage Temperature Range                                               | −65°C to +150°C                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Junction Temperature Under Bias                                         | 150°C                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Junction Lead Temperature (Soldering, 10 seconds)                       | 260°C                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Power Dissipation @ +85°C<br>SC70-6                                     | 185mW<br>210mW                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         | DC Input Voltage  DC Output Voltage  HIGH or LOW State <sup>(1)</sup> V <sub>CC</sub> = 0V  DC Input Diode Current @ V <sub>IN</sub> < 0V  DC Output Diode Current  V <sub>OUT</sub> < 0V  V <sub>OUT</sub> > V <sub>CC</sub> DC Output Source/Sink Current  DC V <sub>CC</sub> or Ground Current per Supply Pin  Storage Temperature Range  Junction Temperature Under Bias  Junction Lead Temperature (Soldering, 10 seconds)  Power Dissipation @ +85°C |

### Recommended Operating Conditions<sup>(2)</sup>

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol                           | Parameter                                                                        | Rating                |
|----------------------------------|----------------------------------------------------------------------------------|-----------------------|
| V <sub>CC</sub>                  | Supply Voltage                                                                   | 0.9V to 3.6V          |
| V <sub>IN</sub>                  | Input Voltage                                                                    | 0V to 3.6V            |
| V <sub>OUT</sub>                 | Output Voltage                                                                   |                       |
|                                  | HIGH or LOW State                                                                | 0V to V <sub>CC</sub> |
|                                  | $V_{CC} = 0V$                                                                    | 0V to 3.6V            |
| I <sub>OH</sub> /I <sub>OL</sub> | Output Current in I <sub>OH</sub> /I <sub>OL</sub>                               |                       |
|                                  | $V_{CC} = 3.0V \text{ to } 3.6V$                                                 | ±24mA                 |
|                                  | $V_{CC} = 2.3V \text{ to } 2.7V$                                                 | ±18mA                 |
|                                  | $V_{CC} = 1.65V$ to 1.95V                                                        | ±6mA                  |
|                                  | $V_{CC} = 1.4V \text{ to } 1.6V$                                                 | ±4mA                  |
|                                  | $V_{CC} = 1.1V \text{ to } 1.3V$                                                 | ±2mA                  |
|                                  | $V_{CC} = 0.9V$                                                                  | ±0.1mA                |
| T <sub>A</sub>                   | Free Air Operating Temperature                                                   | -40°C to +85°C        |
| Δt/ΔV                            | Minimum Input Edge Rate @ V <sub>IN</sub> = 0.8V to 2.0V, V <sub>CC</sub> = 3.0V | 10ns/V                |
| $\theta_{JA}$                    | Thermal Resistance                                                               |                       |
|                                  | SC70-6                                                                           | 350°C/W               |
|                                  | Micropak-6                                                                       | 310°C/W               |

#### Notes:

- 1. I<sub>O</sub> Absolute Maximum Rating must be observed.
- 2. Unused inputs must be held HIGH or LOW. They may not float.

### **DC Electrical Characteristics**

|                   |                      |                               |                       | T <sub>A</sub> = +     | 25°C | T <sub>A</sub> = -40°C | to +85°C |       |
|-------------------|----------------------|-------------------------------|-----------------------|------------------------|------|------------------------|----------|-------|
| Symbol            | Parameter            | V <sub>CC</sub> (V)           | Conditions            | Min.                   | Max. | Min.                   | Max.     | Units |
| V <sub>P</sub>    | Positive             | 0.90                          |                       | 0.3                    | 0.7  | 0.3                    | 0.7      | V     |
| Threshold Voltage | 1.10                 |                               | 0.4                   | 1.0                    | 0.4  | 1.0                    |          |       |
|                   | voltage              | 1.40                          |                       | 0.5                    | 1.4  | 0.5                    | 1.4      |       |
|                   |                      | 1.65                          |                       | 0.7                    | 1.5  | 0.7                    | 1.5      |       |
|                   |                      | 2.30                          |                       | 1.0                    | 1.8  | 1.0                    | 1.8      |       |
|                   |                      | 2.70                          |                       | 1.3                    | 2.2  | 1.3                    | 2.2      |       |
| V <sub>N</sub>    | Negative             | 0.90                          |                       | 0.10                   | 0.6  | 0.10                   | 0.6      | V     |
|                   | Threshold<br>Voltage | 1.10                          |                       | 0.15                   | 0.7  | 0.15                   | 0.7      |       |
|                   | voltage              | 1.40                          |                       | 0.20                   | 0.8  | 0.20                   | 0.8      |       |
|                   |                      | 1.65                          |                       | 0.25                   | 0.9  | 0.25                   | 0.9      | 1     |
|                   |                      | 2.30                          |                       | 0.4                    | 1.15 | 0.4                    | 1.15     |       |
|                   |                      | 2.70                          |                       | 0.6                    | 1.5  | 0.6                    | 1.5      |       |
| V <sub>H</sub>    | Hysteresis           | 0.90                          |                       | 0.07                   | 0.5  | 0.07                   | 0.5      | V     |
|                   | Voltage              | 1.10                          |                       | 0.08                   | 0.6  | 0.08                   | 0.6      |       |
|                   |                      | 1.40                          |                       | 0.10                   | 0.8  | 0.10                   | 0.8      | 1     |
|                   |                      | 1.65                          |                       | 0.15                   | 1.0  | 0.15                   | 1.0      |       |
|                   |                      | 2.30                          |                       | 0.25                   | 1.1  | 0.25                   | 1.1      |       |
|                   |                      | 2.70                          |                       | 0.40                   | 1.2  | 0.40                   | 1.2      |       |
| V <sub>OH</sub>   | HIGH Level           | 0.90                          | $I_{OH} = -100 \mu A$ | V <sub>CC</sub> - 0.1  |      | V <sub>CC</sub> - 0.1  |          | V     |
|                   | Output Voltage       | $1.10 \le V_{CC} \le 1.30$    |                       | V <sub>CC</sub> - 0.1  |      | V <sub>CC</sub> - 0.1  |          |       |
|                   |                      | 1.40 ≤ V <sub>CC</sub> ≤ 1.60 |                       | V <sub>CC</sub> - 0.2  |      | V <sub>CC</sub> - 0.2  |          |       |
|                   |                      | $1.65 \le V_{CC} \le 1.95$    |                       | V <sub>CC</sub> - 0.2  |      | V <sub>CC</sub> - 0.2  |          |       |
|                   |                      | $2.30 \le V_{CC} < 2.70$      |                       | V <sub>CC</sub> - 0.2  |      | V <sub>CC</sub> - 0.2  |          |       |
|                   |                      | $2.70 \le V_{CC} \le 3.60$    |                       | V <sub>CC</sub> - 0.2  |      | V <sub>CC</sub> - 0.2  |          |       |
|                   |                      | $1.10 \le V_{CC} \le 1.30$    | $I_{OH} = -2mA$       | 0.75 x V <sub>CC</sub> |      | 0.75 x V <sub>CC</sub> |          |       |
|                   |                      | 1.40 ≤ V <sub>CC</sub> ≤ 1.60 | $I_{OH} = -4mA$       | 0.75 x V <sub>CC</sub> |      | 0.75 x V <sub>CC</sub> |          |       |
|                   |                      | $1.65 \le V_{CC} \le 1.95$    | $I_{OH} = -6mA$       | 1.25                   |      | 1.25                   |          |       |
|                   |                      | 2.30 ≤ V <sub>CC</sub> < 2.70 |                       | 2.0                    |      | 2.0                    |          | 1     |
|                   |                      | $2.30 \le V_{CC} < 2.70$      | $I_{OH} = -12mA$      | 1.8                    |      | 1.8                    |          | 1     |
|                   |                      | $2.70 \le V_{CC} \le 3.60$    | ]                     | 2.2                    |      | 2.2                    |          |       |
|                   |                      | $2.30 \le V_{CC} < 2.70$      | $I_{OH} = -18mA$      | 1.7                    |      | 1.7                    |          | 1     |
|                   |                      | $2.70 \le V_{CC} \le 3.60$    |                       | 2.4                    |      | 2.4                    |          | ]     |
|                   |                      | 2.70 ≤ V <sub>CC</sub> ≤ 3.60 | $I_{OH} = -24mA$      | 2.2                    |      | 2.2                    |          |       |

### DC Electrical Characteristics (Continued)

|                  |                              |                               |                             | T <sub>A</sub> = | +25°C                  | T <sub>A</sub> = -40° | C to +85°C             |       |
|------------------|------------------------------|-------------------------------|-----------------------------|------------------|------------------------|-----------------------|------------------------|-------|
| Symbol           | Parameter                    | V <sub>CC</sub> (V)           | Conditions                  | Min.             | Max.                   | Min.                  | Max.                   | Units |
| V <sub>OL</sub>  | LOW Level                    | 0.90                          | $I_{OL} = 100 \mu A$        |                  | 0.1                    |                       | 0.1                    | V     |
|                  | Output Voltage               | 1.10 ≤ V <sub>CC</sub> ≤ 1.30 |                             |                  | 0.1                    |                       | 0.1                    |       |
|                  |                              | 1.40 ≤ V <sub>CC</sub> ≤ 1.60 |                             |                  | 0.2                    |                       | 0.2                    |       |
|                  |                              | 1.65 ≤ V <sub>CC</sub> ≤ 1.95 |                             |                  | 0.2                    |                       | 0.2                    |       |
|                  |                              | 2.30 ≤ V <sub>CC</sub> < 2.70 |                             |                  | 0.2                    |                       | 0.2                    |       |
|                  |                              | $2.70 \le V_{CC} \le 3.60$    |                             |                  | 0.2                    |                       | 0.2                    |       |
|                  |                              | 1.10 ≤ V <sub>CC</sub> ≤ 1.30 | I <sub>OL</sub> = 2mA       |                  | 0.25 x V <sub>CC</sub> |                       | 0.25 x V <sub>CC</sub> |       |
|                  |                              | 1.40 ≤ V <sub>CC</sub> ≤ 1.60 | I <sub>OL</sub> = 4mA       |                  | 0.25 x V <sub>CC</sub> |                       | 0.25 x V <sub>CC</sub> |       |
|                  |                              | 1.65 ≤ V <sub>CC</sub> ≤ 1.95 | I <sub>OL</sub> = 6mA       |                  | 0.3                    |                       | 0.3                    |       |
|                  |                              | 2.30 ≤ V <sub>CC</sub> < 2.70 | I <sub>OL</sub> = 12mA      |                  | 0.4                    |                       | 0.4                    |       |
|                  |                              | $2.70 \le V_{CC} \le 3.60$    |                             |                  | 0.4                    |                       | 0.4                    |       |
|                  |                              | $2.30 \le V_{CC} < 2.70$      | I <sub>OL</sub> = 18mA      |                  | 0.6                    |                       | 0.6                    |       |
|                  |                              | $2.70 \le V_{CC} \le 3.60$    |                             |                  | 0.4                    |                       | 0.4                    |       |
|                  |                              | $2.70 \le V_{CC} \le 3.60$    | I <sub>OL</sub> = 24mA      |                  | 0.55                   |                       | 0.55                   |       |
| I <sub>IN</sub>  | Input Leakage<br>Current     | 0.90 to 3.60                  | $0 \le V_1 \le 3.6V$        |                  | ±0.1                   |                       | ±0.5                   | μA    |
| I <sub>OFF</sub> | Power Off<br>Leakage Current | 0                             | $0 \le (V_I, V_O) \le 3.6V$ |                  | 0.5                    |                       | 0.5                    | μA    |
| I <sub>CC</sub>  | Quiescent                    | 0.90 to 3.60                  | $V_I = V_{CC}$ or GND       |                  | 0.9                    |                       | 0.9                    | μΑ    |
|                  | Supply Current               |                               | $V_{CC} \le V_I \le 3.6V$   |                  |                        |                       | ±0.9                   |       |

### **Electrical Characteristics**

|                                     |                               |                            |                                             | T <sub>A</sub> = +25°C |      | T <sub>A</sub> = -40°C to<br>+85°C |      |      | Figure |          |
|-------------------------------------|-------------------------------|----------------------------|---------------------------------------------|------------------------|------|------------------------------------|------|------|--------|----------|
| Symbol                              | Parameter                     | V <sub>CC</sub> (V)        | Conditions                                  | Min.                   | Тур. | Max.                               | Min. | Max. | Units  | Number   |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Propagation                   | 0.90                       | $C_L = 15pF, R_L = 1M\Omega$                |                        | 12   |                                    |      |      | ns     | Figure 1 |
|                                     | Delay                         | $1.10 \le V_{CC} \le 1.30$ | $C_L = 15pF, R_L = 2k\Omega$                | 2.0                    | 5.9  | 11.5                               | 1.0  | 15.6 |        | Figure 2 |
|                                     |                               | $1.40 \le V_{CC} \le 1.60$ |                                             | 1.0                    | 3.2  | 6.3                                | 0.9  | 7.0  |        |          |
|                                     |                               | $1.65 \le V_{CC} \le 1.95$ | $C_L = 30 \text{pF}, R_L = 500 \Omega$      | 1.0                    | 2.0  | 5.2                                | 0.7  | 6.2  |        |          |
|                                     |                               | $2.30 \le V_{CC} < 2.70$   |                                             | 8.0                    | 1.8  | 3.7                                | 0.6  | 4.4  |        |          |
|                                     |                               | $2.70 \le V_{CC} \le 3.60$ |                                             | 0.7                    | 1.5  | 3.3                                | 0.5  | 3.8  |        |          |
| C <sub>IN</sub>                     | Input<br>Capacitance          | 0                          |                                             |                        | 2.0  |                                    |      |      | pF     |          |
| C <sub>PD</sub>                     | Power Dissipation Capacitance | 0.90 to 3.60               | $V_I = 0V \text{ or } V_{CC},$<br>f = 10MHz |                        | 14   |                                    |      |      | pF     |          |

### **AC Loading and Waveforms**

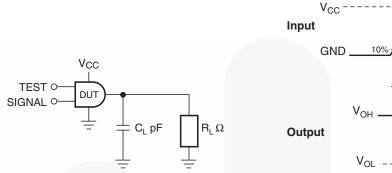


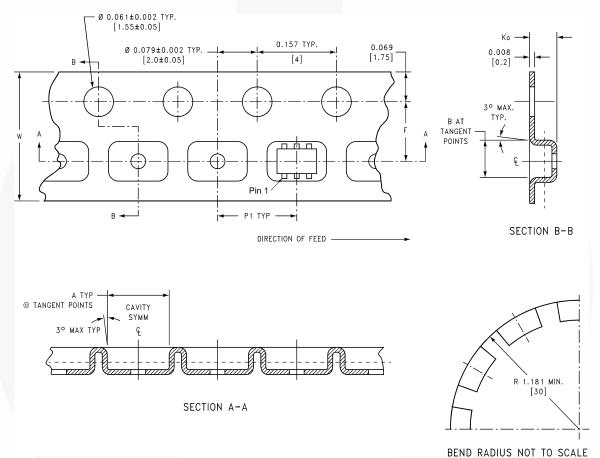

Figure 1. AC Test Circuit

Figure 2. AC Waveforms

 $t_{\mathsf{FALL}} = 3 \mathsf{ns}$ 

90%

 $t_{RISE} = 3ns$ 


|                 |                 | V <sub>CC</sub>    |                    |                    |                    |                    |  |  |
|-----------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--|
| Symbol          | $3.3V \pm 0.3V$ | 2.5V ± 0.2V        | 1.8V ± 0.15V       | 1.5V ± 0.1V        | 1.2V ± 0.1V        | 0.9V               |  |  |
| V <sub>mi</sub> | 1.5V            | V <sub>CC</sub> /2 |  |  |
| V <sub>mo</sub> | 1.5V            | V <sub>CC</sub> /2 |  |  |

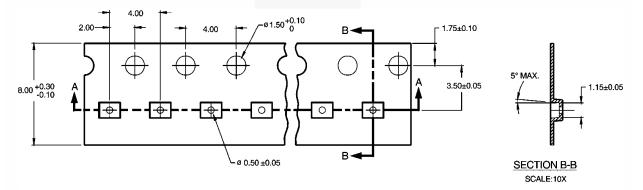
### **Tape and Reel Specification**

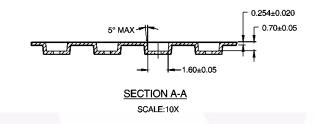
#### **Tape Format for SC70**

| Package<br>Designator | Tape<br>Section    | Number<br>Cavities | Cavity<br>Status | Cover Tape<br>Status |
|-----------------------|--------------------|--------------------|------------------|----------------------|
| P6X                   | Leader (Start End) | 125 (typ)          | Empty            | Sealed               |
|                       | Carrier            | 3000               | Filled           | Sealed               |
|                       | Trailer (Hub End)  | 75 (typ)           | Empty            | Sealed               |

### Tape Dimension inches (millimeters)

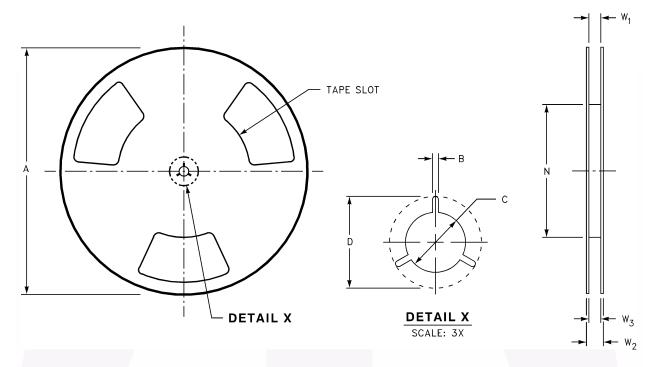



| Package | Tape Size | Dim A  | Dim B  | Dim F            | Dim K <sub>O</sub> | Dim P1 | Dim W             |
|---------|-----------|--------|--------|------------------|--------------------|--------|-------------------|
| SC70-6  | 8mm       | 0.093  | 0.096  | 0.138 ± 0.004    | $0.053 \pm 0.004$  | 0.157  | $0.315 \pm 0.004$ |
|         |           | (2.35) | (2.45) | $(3.5 \pm 0.10)$ | $(1.35 \pm 0.10)$  | (4)    | $(8 \pm 0.1)$     |


### Tape and Reel Specification (Continued)

### **Tape Format for MicroPak**

| Package<br>Designator | Tape<br>Section    | Number<br>Cavities | Cavity<br>Status | Cover Tape<br>Status |
|-----------------------|--------------------|--------------------|------------------|----------------------|
| L6X                   | Leader (Start End) | 125 (typ.)         | Empty            | Sealed               |
|                       | Carrier            | 3000               | Filled           | Sealed               |
|                       | Trailer (Hub End)  | 75 (typ)           | Empty            | Sealed               |


### Tape Dimension inches (millimeters)





### **Tape and Reel Specification** (Continued)

Reel Dimension for MicroPak inches (millimeters)



| Tape Size | Α       | В      | С       | D       | N       | W1                   | W2      | W3                |
|-----------|---------|--------|---------|---------|---------|----------------------|---------|-------------------|
| 8mm       | 7.0     | 0.059  | 0.512   | 0.795   | 2.165   | 0.331 + 0.059/-0.000 | 0.567   | W1 + 0.078/-0.039 |
|           | (177.8) | (1.50) | (13.00) | (20.20) | (55.00) | (8.40 + 1.50/-0.00)  | (14.40) | (W1 + 2.00/-1.00) |

### **Physical Dimensions**

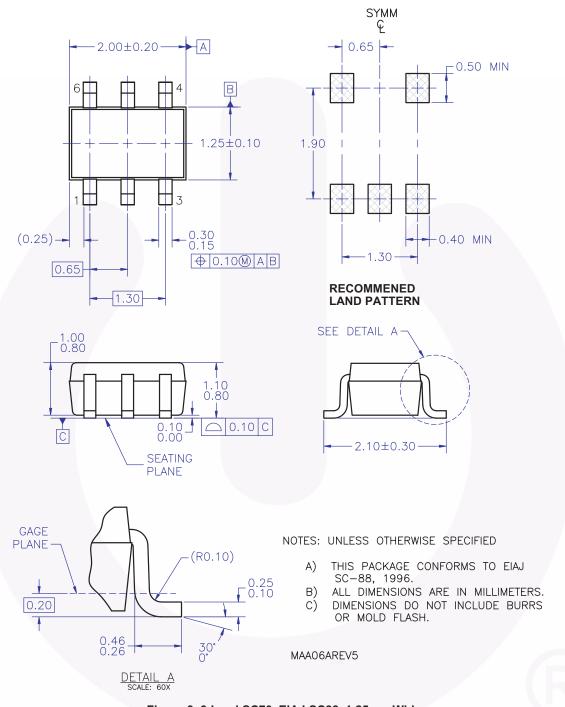
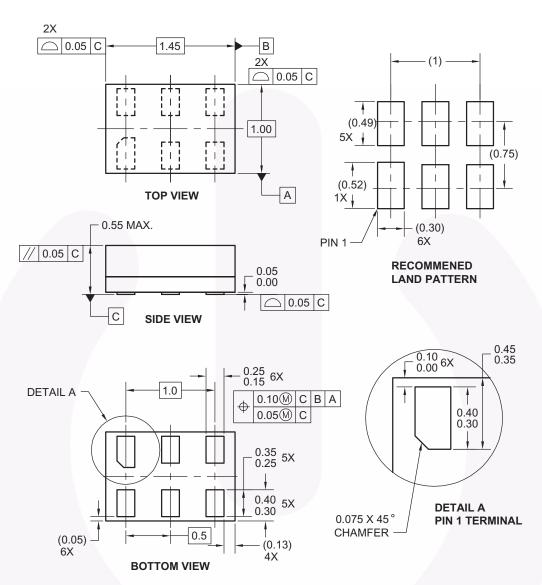




Figure 3. 6-Lead SC70, EIAJ SC88, 1.25mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <a href="http://www.fairchildsemi.com/packaging/">http://www.fairchildsemi.com/packaging/</a>

### Physical Dimensions (Continued)



#### Notes:

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06AREVC

Figure 4. 6-Lead MicroPak, 1.0mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <a href="http://www.fairchildsemi.com/packaging/">http://www.fairchildsemi.com/packaging/</a>





#### **TRADEMARKS**

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™

CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK<sup>®</sup>

EfficentMax™ EZSWITCH™ \*

Fairchild<sup>®</sup>

Fairchild Semiconductor® FACT Quiet Series™

**FACT**  $\mathsf{FAST}^{\scriptscriptstyle{\circledR}}$ FastvCore™ FlashWriter® FPS™ F-PFS™ FRFET®

Global Power Resource<sup>SM</sup>

Green FPS™

Green FPS™ e-Series™

GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench®

Programmable Active Droop™

QFET<sup>®</sup> QS™

Quiet Series™ RapidConfigure™

Saving our world, 1mW at a time™

SmartMax™ SMART START™

SPM®

STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™

SYSTEM ® GENERAL

The Power Franchise®

) wer franchise TinyBoost™ TinyBuck™ TinyLogic<sup>®</sup> TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

UHC Ultra FRFET™ UniFET™ **VCX**<sup>TM</sup> VisualMax™

\* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS

#### Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                               |  |  |  |
|--------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Advance Information      | Formative / In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |  |  |  |
| Preliminary              | First Production      | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |  |  |
| No Identification Needed | Full Production       | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |  |  |  |
| Obsolete                 | Not In Production     | This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |  |  |  |

Rev. 134

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdt/Patent-Marking.pdf">www.onsemi.com/site/pdt/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NC7WV14P6X NC7WV14L6X