400MHz to 2.5 GHz , Low-Noise, SiGe Downconverter Mixers

Features

- 400 MHz to 2.5 GHz Operation
- +2.7 V to +5.5 V Single-Supply Operation
- Low Noise Figure: 6.3dB at 900MHz (MAX2680)
- High Input Third-Order Intercept Point (IIP3 at 2450 MHz)
- -6.9dBm at 5.0 mA (MAX2680)
- +1.0 dBm at 8.7 mA (MAX2681)
- +3.2 dBm at 15.0 mA (MAX2682)
- $<0.1 \mu \mathrm{~A}$ Low-Power Shutdown Mode
- Ultra-Small Surface-Mount Packaging

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	SOT TOP MARK
MAX2680EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23	AAAR
MAX2681EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23	AAAS
MAX2682EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23	AAAT

Selector Guide

PART	$\begin{aligned} & \mathrm{ICc} \\ & (\mathrm{~mA}) \end{aligned}$	FREQUENCY								
		900 MHz			1950MHz			2450MHz		
		$\begin{gathered} \text { IIP3 } \\ \text { (dBm) } \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ \text { (dB) } \end{gathered}$	GAIN (dB)	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ \text { (dB) } \end{gathered}$	GAIN (dB)	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ \text { (dB) } \end{gathered}$	GAIN (dB)
MAX2680	5.0	-12.9	6.3	11.6	-8.2	8.3	7.6	-6.9	11.7	7.0
MAX2681	8.7	-6.1	7.0	14.2	+0.5	11.1	8.4	+1.0	12.7	7.7
MAX2682	15.0	-1.8	6.5	14.7	+4.4	10.2	10.4	+3.2	13.4	7.9

Typical Operating Circuit appears at end of data sheet.

Absolute Maximum Ratings

$V_{\text {CC }}$ to GND	+6.0V
RFIN Input Power (50Ω source)	10 dBm
LO Input Power (50, source)	+10dBm
SHDN, IFOUT, RFIN to GND	-0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
LO to GND..	c-1V) to ($\mathrm{VCC}^{+}+0.3 \mathrm{~V}$)

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..	mW
Operating Temperature Range........................ $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range	
ad Temperature (sol	$+300^{\circ} \mathrm{C}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).................... 696 mW Operating Temperature Range........................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature
\qquad $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \overline{\mathrm{SHDN}}=+2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Minimum and maximum values are guaranteed over temperature by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Operating Supply Current	Icc	MAX2680	5.0	7.7	mA
		MAX2681	8.7	12.7	
		MAX2682	15.0	21.8	
Shutdown Supply Current	I_{CC}	$\overline{\text { SHDN }}=0.5 \mathrm{~V}$	0.05		$\mu \mathrm{A}$
Shutdown Input Voltage High	V_{IH}		2.0		V
Shutdown Input Voltage Low	$\mathrm{V}_{\text {IL }}$			0.5	V
Shutdown Input Bias Current	ISHDN	$0<\overline{\text { SHDN }}<\mathrm{V}_{\text {CC }}$	0.2		$\mu \mathrm{A}$

AC Electrical Characteristics

(MAX2680/1/2 EV Kit, $\mathrm{V}_{\mathrm{CC}}=\overline{\mathrm{SHDN}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. RFIN and IFOUT matched to $50 \Omega . \mathrm{P}_{\mathrm{LO}}=-5 \mathrm{dBm}$, $P_{\text {RFIN }}=-25 \mathrm{dBm}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
MAX2680					
RF Frequency Range	(Notes 1, 2)	400		2500	MHz
LO Frequency Range	(Notes 1, 2)	400		2500	MHz
IF Frequency Range	(Notes 1, 2)	10		500	MHz
Conversion Power Gain	$\mathrm{f}_{\mathrm{RF}}=400 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=445 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=45 \mathrm{MHz}$		7.3		dB
	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=970 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		11.6		
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$ (Note 1)	5.7	7.6	8.6	
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		7.0		
Gain Variation Over Temperature	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}}(\text { Note } 1) \end{aligned}$		1.9	2.4	dB
Input Third-Order Intercept Point (Note 3)	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, 901 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=970 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		-12.9		dBm
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, 1951 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		-8.2		
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, 2451 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		-6.9		
Noise Figure (Single Sideband)	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=970 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		6.3		dB
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2020 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		8.3		
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		11.7		
LO Input VSWR	50Ω source impedance		1.5:1		
LO Leakage at IFOUT Port	$\mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}$		-22		dBm

AC Electrical Characteristics (continued)

(MAX2680/1/2 EV Kit, $\mathrm{V}_{\mathrm{CC}}=\overline{\mathrm{SHDN}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. RFIN and IFOUT matched to 50Ω. $\mathrm{P}_{\mathrm{LO}}=-5 \mathrm{dBm}$, $P_{\text {RFIN }}=-25 \mathrm{dBm}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LO Leakage at RFIN Port	$\mathrm{f}_{\text {LO }}=1880 \mathrm{MHz}$		-26		dBm
IF/2 Spurious Response	$\mathrm{f}_{\mathrm{RF}}=1915 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$ (Note 4)		-51		dBm
MAX2681					
RF Frequency Range	(Notes 1, 2)	400		2500	MHz
LO Frequency Range	(Notes 1, 2)	400		2500	MHz
IF Frequency Range	(Notes 1, 2)	10		500	MHz
Conversion Power Gain	$\mathrm{f}_{\mathrm{RF}}=400 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=445 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=45 \mathrm{MHz}$		11.0		dB
	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=970 \mathrm{MHz}, \mathrm{f}_{\text {IF }}=70 \mathrm{MHz}$		14.2		
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$ (Note 1)	6.7	8.4	9.4	
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		7.7		
Gain Variation Over Temperature	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}}(\text { Note } 1) \end{aligned}$		1.7	2.3	dB
Input Third-Order Intercept Point (Note 3)	$\mathrm{f}_{\text {RF }}=900 \mathrm{MHz}, 901 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=970 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		-6.1		dBm
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, 1951 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		+0.5		
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, 2451 \mathrm{MHz}, \mathrm{fLO}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		+1.0		
Noise Figure (Single Sideband)	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=970 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		7.0		dB
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2020 \mathrm{MHz}, \mathrm{f}_{\text {IF }}=70 \mathrm{MHz}$		11.1		
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		12.7		
LO Input VSWR	50Ω source impedance		1.5:1		
LO Leakage at IFOUT Port	$\mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}$		-23		dBm
LO Leakage at RFIN Port	$\mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}$		-27		dBm
IF/2 Spurious Response	$\mathrm{f}_{\mathrm{RF}}=1915 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}($ Note 4)		-65		dBm
MAX2682					
RF Frequency Range	(Notes 1, 2)	400		2500	MHz
LO Frequency Range	(Notes 1, 2)	400		2500	MHz
IF Frequency Range	(Notes 1, 2)	10		500	MHz
Conversion Power Gain	$\mathrm{f}_{\mathrm{RF}}=400 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=445 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=45 \mathrm{MHz}$		13.4		dB
	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=970 \mathrm{MHz}, \mathrm{f}_{\text {IF }}=70 \mathrm{MHz}$		14.7		
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$ (Note 1)	8.7	10.4	11.7	
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		7.9		
Gain Variation Over Temperature	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}}(\text { Note } 1) \end{aligned}$		2.1	3.2	dB
Input Third-Order Intercept Point (Note 3)	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, 901 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=970 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		-1.8		dBm
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, 1951 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		+4.4		
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, 2451 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		+3.2		
Noise Figure (Single Sideband)	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=970 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		6.5		dB
	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2020 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$		10.2		
	$\mathrm{f}_{\mathrm{RF}}=2450 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=2210 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$		13.4		

AC Electrical Characteristics (continued)

(MAX2680/1/2 EV Kit, $\mathrm{V}_{\mathrm{CC}}=\overline{\mathrm{SHDN}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. RFIN and IFOUT matched to 50Ω. $\mathrm{P}_{\mathrm{LO}}=-5 \mathrm{dBm}$, $P_{\text {RFIN }}=-25 \mathrm{dBm}$.)

PARAMETER	CONDITIONS	MIN	TYP
LO Input VSWR	50Ω source impedance	$1.5: 1$	UNITS
LO Leakage at IFOUT Port	$\mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}$	-23	dBm
LO Leakage at RFIN Port	$\mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}$	-27	dBm
IF/2 Spurious Response	$\mathrm{f}_{\mathrm{RF}}=1915 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$ (Note 4$)$	-61	dBm

Note 1: Guaranteed by design and characterization.
Note 2: Operation outside of this specification is possible, but performance is not characterized and is not guaranteed.
Note 3: Two input tones at -25 dBm per tone.
Note 4: This spurious response is caused by a higher-order mixing product (2×2). Specified RF frequency is applied and IF output power is observed at the desired IF frequency $(70 \mathrm{MHz})$.

Typical Operating Characteristics
 (Typical Operating Circuit, $\mathrm{V}_{\mathrm{CC}}=\overline{\mathrm{SHDN}}=+3.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RFIN}}=-25 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=-5 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX2680
CONVERSION POWER GAIN vs. LO POWER

MAX2680
CONVERSION POWER GAIN vs. TEMPERATURE

MAX2681
CONVERSION POWER GAIN vs. LO POWER

MAX2681
CONVERSION POWER GAIN vs. TEMPERATURE

MAX2682
SHUTDOWN SUPPLY CURRENT vs. SUPPLY VOLTAGE

MAX2682 CONVERSION POWER GAIN vs. LO POWER

MAX2682
CONVERSION POWER GAIN vs. TEMPERATURE

Typical Operating Characteristics (continued)
(Typical Operating Circuit, $\mathrm{V}_{\mathrm{CC}}=\overline{\mathrm{SHDN}}=+3.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RFIN}}=-25 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=-5 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	LO	Local-Oscillator Input. Apply a local-oscillator signal with an amplitude of -10dBm to 0 (50Ω source). AC-couple this pin to the oscillator with a DC-blocking capacitor. Nominal DC voltage is $\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$.
2	GND	Mixer Ground. Connect to the ground plane with a low-inductance connection.
3	RFIN	Radio Frequency Input. AC-couple to this pin with a DC-blocking capacitor. Nominal DC voltage is 1.5V. See the Applications Information section for details on impedance matching.
4	IFOUT	Intermediate Frequency Output. Open-collector output requires an inductor to V_{CC}. AC-couple to this pin with a DC-blocking capacitor. See the Applications Information section for details on impedance matching.
5	$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage Input, +2.7 V to +5.5 V . Bypass with a capacitor to the ground plane. Capacitor value depends upon desired operating frequency.
6	$\overline{\text { SHDN }}$	Active-Low Shutdown. Drive low to disable all device functions and reduce the supply current to less than $5 \mu \mathrm{~A}$. For normal operation, drive high or connect to V_{CC}.

Detailed Description

The MAX2680/MAX2681/MAX2682 are 400 MHz to 2.5 GHz , silicon-germanium, double-balanced downconverter mixers. They are designed to provide optimum linearity performance for a specified supply current. They consist of a double-balanced Gilbert-cell mixer with single-ended RF, LO, and IF port connections. An on-chip bias cell provides a low-power shutdown feature. Consult the Selector Guide for device features and comparison.

Applications Information

Local-Oscillator (LO) Input

The LO input is a single-ended broadband port with a typical input VSWR of better than 2.0:1 from 400 MHz to 2.5 GHz . The LO signal is mixed with the RF input signal, and the resulting downconverted output appears at IFOUT. AC-couple LO with a capacitor. Drive the LO port with a signal ranging from -10 dBm to 0 (50Ω source).

RF Input

The RF input frequency range is 400 MHz to 2.5 GHz . The RF input requires an impedance-matching network as well as a DC-blocking capacitor that can be part of the matching network. Consult Tables 1 and 2 , as well as the RF Port Impedance vs. RF Frequency graph in the Typical Operating Characteristics section for information on matching.

Table 1. RFIN Port Impedance

PART	FREQUENCY			
	$\mathbf{4 0 0 M H z}$	$\mathbf{9 0 0 M H z}$	1950MHz	$\mathbf{2 4 5 0 M H z}$
MAX2680	$179-\mathrm{j} 356$	$54-\mathrm{j} 179$	$32-\mathrm{j} 94$	$33-\mathrm{j} 73$
MAX2681	$209-\mathrm{j} 332$	$75-\mathrm{j} 188$	$34-\mathrm{j} 108$	$33-\mathrm{j} 86$
MAX2682	$206-\mathrm{j} 306$	$78-\mathrm{j} 182$	$34-\mathrm{j} 106$	$29-\mathrm{j} 86$

IF Output

The IF output frequency range extends from 10 MHz to 500 MHz . IFOUT is a high-impedance, open-collector output that requires an external inductor to V_{CC} for proper biasing. For optimum performance, the IF port requires an imped-ance-matching network. The configuration and values for the matching network is dependent upon the frequency and desired output impedance. For assistance in choosing components for optimal performance, see Table 3 and Table 4 as well as the IF Port Impedance vs. IF Frequency graph in the Typical Operating Characteristics section.

Power-Supply and SHDN Bypassing

Proper attention to voltage supply bypassing is essential for high-frequency RF circuit stability. Bypass V_{CC} with a $10 \mu \mathrm{~F}$ capacitor in parallel with a 1000 pF capacitor. Use separate vias to the ground plane for each of the bypass capacitors and minimize trace length to reduce inductance. Use separate vias to the ground plane for each ground pin. Use low-inductance ground connections.
Decouple SHDN with a 1000pF capacitor to ground to minimize noise on the internal bias cell. Use a series resistor (typically 100Ω) to reduce coupling of high-frequency signals into the SHDN pin.

Layout Issues

A well-designed PC board is an essential part of an RF circuit. For best performance, pay attention to powersupply issues as well as to the layout of the RFIN and IFOUT impedance-matching network.

Table 2. RF Input Impedance-Matching Component Values

MATCHING COMPONENTS	FREQUENCY											
	MAX2680				MAX2681				MAX2682			
	$\begin{aligned} & 400 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 900 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1950 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2450 \\ & \mathrm{MHz} \end{aligned}$	$\begin{gathered} 400 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 900 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1950 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2450 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 400 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 900 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1950 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2450 \\ & \mathrm{MHz} \end{aligned}$
Z1	86nH	270pF	1.5pF	Short	68nH	270pF	1.5pF	Short	68nH	1.5pF	Short	Short
Z2	270pF	22nH	270pF	270pF	270pF	18nH	270pF	270pF	270pF	270pF	270pF	270pF
Z3	Open	Open	1.8nH	1.8nH	0.5pF	Open	1.8nH	2.2nH	0.5pF	10nH	2.2nH	1.2nH

Note: Z1, Z2, and Z3 are found in the Typical Operating Circuit.

Table 3. IFOUT Port Impedance

PART	FREQUENCY		
	45MHz	70MHz	$\mathbf{2 4 0 M H z}$
MAX2680	$960-\mathrm{j} 372$	$803-\mathrm{j} 785$	$186-\mathrm{j} 397$
MAX2681	$934-\mathrm{j} 373$	$746-\mathrm{j} 526$	$161-\mathrm{j} 375$
MAX2682	$670-\mathrm{j} 216$	$578-\mathrm{j} 299$	$175-\mathrm{j} 296$

Table 4. IF Output Impedance-Matching Components

MATCHING COMPONENT	FREQUENCY		
	45MHz	70MHz	$\mathbf{2 4 0 M H z}$
L1	390 nH	330 nH	82 nH
C 2	39 pF	15 pF	3 pF
R1	250Ω	Open	Open

Power-Supply Layout

To minimize coupling between different sections of the IC, the ideal power-supply layout is a star configuration with a large decoupling capacitor at a central V_{CC} node. The $V_{C C}$ traces branch out from this central node, each going to a separate V_{CC} node on the PC board. At the end of each trace is a bypass capacitor that has low ESR at the RF frequency of operation. This arrangement provides local decoupling at the V_{CC} pin. At high frequencies, any signal leaking out of one supply pin sees a relatively high impedance (formed by the V_{CC} trace inductance) to the central V_{CC} node, and an even higher impedance to any other supply pin, as well as a low impedance to ground through the bypass capacitor.

Impedance-Matching Network Layout

The RFIN and IFOUT impedance-matching networks are very sensitive to layout-related parasitics. To minimize parasitic inductance, keep all traces short and place components as close as possible to the chip. To minimize parasitic capacitance, use cutouts in the ground plane (and any other plane) below the matching network components. However, avoid cutouts that are larger than necessary since they act as aperture antennas.

Typical Operating Circuit

THE VALUES OF MATCHING COMPONENTS C2, L1, R1, Z1, Z2, AND Z3 DEPEND ON THE IF AND RF FREQUENCY AND DOWNCONVERTER. SEE TABLES 2 AND 4.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or " - " in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

NDTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

FIUT LENGTH MEASURED AT INTERCEPT PDINT BETWEEN DATUM A \& LEAD SURFACE
3. PACKAGE पUTLINE EXCLUSIVE OF MLLD FLASH \& METAL BURR, MLLD FLASH, PRDTRUSIIN GR METAL BURR SHLULD NDT EXCEED 0.25 mm .
4. PACKAGE ZUTLINE INCLUSIVE OF SGLDER PLATING
5. PIN 1 IS LUWER LEFT PIN WHEN READING TUP MARK FRDM LEFT TU RIGHT. (SEE EXAMPLE TIP MARK)
6. PIN 1 I.D. DUT IS $0.3 \mathrm{~mm} \varnothing$ MIN. LICATED ABCVE PIN 1 .
7. MEETS JEDEC ML178, VARIATIDN AB.
8. SILDER THICKNESS MEASURED AT FLAT SECTIIN GF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEADTIP

SYMBDL	MIN	NDMINAL	MAX	
A	0.90	1.25	1.45	
A1	0.00	0.05	0.15	
A己	0.90	1.10	1.30	
b	0.35	0.40	0.50	
C	0.08	0.15	0.20	
D	2.80	2.90	3.00	
E	2.60	2.80	3.00	
E1	1.50	1.625	1.75	
L	0.35	0.45	0.60	
L1	0.60 REF.			
e1	1.90 BSC.			
e	0.95 BSC.			
a	0°	2.5°	10°	
PK				

PKG CIDES:
U6-1, U6-2, U6-4, U6CN-2, U6SN-1, U6F-6, U6FH-6; U6FH-7
9. LEAD TI BE CDPLANAR WITHIN 0.1 mm .
10. NUMBER GF LEADS SHZWN ARE FGR REFERENCE GNLY.
11. MARKING IS FGR PACKAGE GRIENTATIUN REFERENCE \quad INLY.
12. ALL DIMENSIUNS APPLY TV BロTH LEADED (-) AND PbFREE (+) PKG. CDDES.
** U6FH-7 TD BE USED FDR NP42 PARTS DNLY.

PACKAGE LUTLINE, SIT 6L BGDY

-DRAWING NOT TO SCALE-

APPROVAL	DOCUMENT CONTROL NO. $1-0058$	REV.	$2 / 2$

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
MAX2680EUT-T MAX2681EUT-T MAX2680AUT+T MAX2680EUT+T MAX2681EUT+T

