Single D-type flip-flop with set and reset; positive edge triggerRev. 13 — 5 December 2016Product data sheet

1. General description

The 74LVC1G74 is a single positive edge triggered D-type flip-flop with individual data (D) inputs, clock (CP) inputs, set (\overline{SD}) and reset (\overline{RD}) inputs, and complementary Q and \overline{Q} outputs.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing damaging backflow current through the device when it is powered down.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

Schmitt trigger action at all inputs makes the circuit highly tolerant of slower input rise and fall times.

2. Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant inputs for interfacing with 5 V logic
- High noise immunity
- Complies with JEDEC standard:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8-B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- ± 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

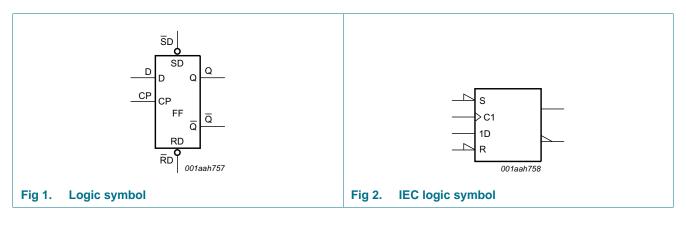
nexperia

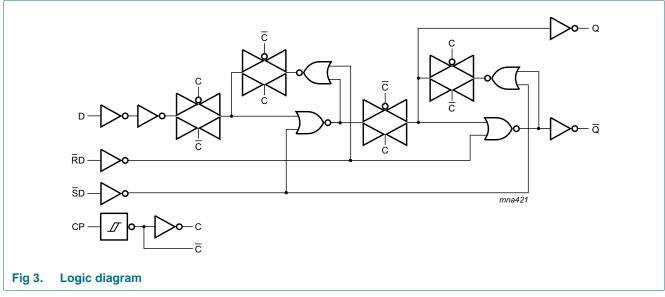
3. Ordering information

Type number	Package	Package								
	Temperature range	Name	Description	Version						
74LVC1G74DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2						
74LVC1G74DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1						
74LVC1G74GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1						
74LVC1G74GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1 \times 0.5$ mm	SOT1089						
74LVC1G74GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $3 \times 2 \times 0.5$ mm	SOT996-2						
74LVC1G74GM	–40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body $1.6 \times 1.6 \times 0.5$ mm	SOT902-2						
74LVC1G74GN	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.2 \times 1.0 \times 0.35$ mm	SOT1116						
74LVC1G74GS	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1.0 \times 0.35$ mm	SOT1203						

Table 1. Ordering information

4. Marking

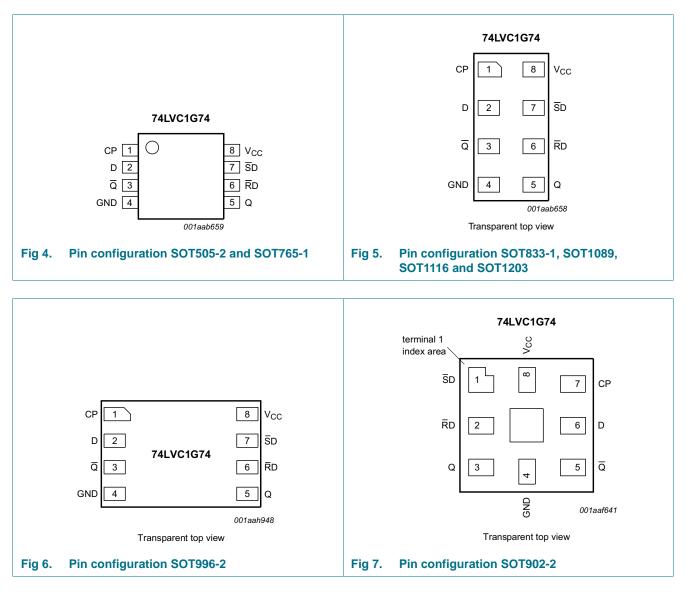

Table 2.Marking codes


Type number	Marking code ^[1]
74LVC1G74DP	V74
74LVC1G74DC	V74
74LVC1G74GT	V74
74LVC1G74GF	Y4
74LVC1G74GD	V74
74LVC1G74GM	V74
74LVC1G74GN	Y4
74LVC1G74GS	Y4

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

Single D-type flip-flop with set and reset; positive edge trigger

5. Functional diagram



Single D-type flip-flop with set and reset; positive edge trigger

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.Pin description

Symbol	Pin		Description
	SOT505-2, SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203	SOT902-2	
СР	1	7	clock input (LOW-to-HIGH, edge-triggered)
D	2	6	data input
Q	3	5	complement output
GND	4	4	ground (0 V)
Q	5	3	true output
RD	6	2	asynchronous reset-direct input (active LOW)
SD	7	1	asynchronous set-direct input (active LOW)
V _{CC}	8	8	supply voltage

7. Functional description

Table 4. Function table for asynchronous operation^[1]

Input				Output		
SD	RD	СР	D	Q	Q	
L	Н	Х	Х	Н	L	
Н	L	Х	Х	L	Н	
L	L	Х	Х	Н	Н	

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care.

Table 5. Function table for synchronous operation^[1]

Input				Output		
SD	RD	СР	D	Q _{n+1}	Q _{n+1}	
Н	Н	\uparrow	L	L	Н	
Н	Н	\uparrow	Н	Н	L	

[1] H = HIGH voltage level;

L = LOW voltage level;

 \uparrow = LOW-to-HIGH CP transition;

 Q_{n+1} = state after the next LOW-to-HIGH CP transition.

8. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage		<u>[1]</u>	-0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V		-	±50	mA
Vo	output voltage	Active mode	<u>[1]</u>	-0.5	V _{CC} + 0.5	V
		Power-down mode	<u>[1][2]</u>	-0.5	+6.5	V
lo	output current	$V_{O} = 0 V$ to V_{CC}		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	<u>[3]</u>	-	300	mW
T _{stg}	storage temperature			-65	+150	°C

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] When V_{CC} = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.

[3] For TSSOP8 packages: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K.
 For VSSOP8 packages: above 110 °C the value of P_{tot} derates linearly with 8.0 mW/K.
 For XSON8 and XQFN8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Table 7.Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	-	20	ns/V
		$V_{CC} = 2.7 \text{ V} \text{ to } 5.5 \text{ V}$	-	10	ns/V

10. Static characteristics

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Мах	Unit
T _{amb} = –	40 °C to +85 °C	1		1		-
V _{IH}	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
Гать = -4 /IH /IL /он /оц		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	$\begin{array}{c} - \\ - \\ 0.35 \times V_{CC} \\ 0.7 \\ 0.8 \\ 0.3 \times V_{CC} \\ 0.7 \\ 0.8 \\ 0.3 \times V_{CC} \\ - \\ - \\ 0.10 \\ 0.45 \\ 0.30 \\ 0.40 \\ 0.45 \\ 0.30 \\ 0.40 \\ 0.55 \\ 0.55 \\ \pm 1 \\ \pm 2 \\ 4 \\ 500 \\ \end{array}$	V
		V _{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$	-	-	V
VIL	LOW-level input voltage	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
VIH H VIL I VOH H VOH I II I IOFF F		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V	-	-	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = -100 μ A; V_{CC} = 1.65 V to 5.5 V	$V_{CC}-0.1$	$ \vee$ $ \vee$ $ 0.35 \times V_{CC}$ \vee $ 0.35 \times V_{CC}$ \vee $ 0.3 \times V_{CC}$ \vee 2.15 $ \vee$ 2.62 $ \vee$ 2.62 $ \vee$ 0.10 \vee \vee 0.07 0.45 \vee 0.12 0.30 \vee 0.33 0.55 \vee ± 0.1 ± 1 μ ± 0.1 ± 2 μ	V	
		$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	1.54	- - - - - - - 0.35 × V_{CC} - 0.7 - 0.8 - 0.3 × V_{CC} - - - 0.3 × V_{CC} - 0.3 × V_{CC} - - 54 - 15 - 50 - 62 - 11 - - 0.10 .07 0.45 .12 0.30 .17 0.40 .33 0.55 .39 0.55 .0.1 ±1 .0.1 ±2 .1 4 5 500	V
		$I_0 = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	2.15		V
		$I_0 = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	2.50	-	V
		$I_0 = -24$ mA; $V_{CC} = 3.0$ V	2.3	2.62	-	V
		$I_0 = -32$ mA; $V_{CC} = 4.5$ V	3.8	4.11	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 µA; V_{CC} = 1.65 V to 5.5 V	-	-	0.10	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	0.07	0.45	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	0.12	$\begin{array}{c} -\\ -\\ 0.35 \times V_{CC} \\ 0.7 \\ 0.8 \\ 0.3 \times V_{CC} \\ 0.7 \\ 0.8 \\ 0.3 \times V_{CC} \\ -\\ 0.1 \\ 0.3 \times V_{CC} \\ 0.1 \\ 0.4 \\ 0.5 \\ 0.1 \\ 0.4 \\ 0.5 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	0.17		V
		I _O = 24 mA; V _{CC} = 3.0 V	-	0.33	0.55	V
		$I_0 = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.39	0.55	V
lı	input leakage current	•	-	±0.1	±1	μA
OFF	power-off leakage current	$V_1 \text{ or } V_0 = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	±0.1	±2	μΑ
cc	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 \text{ A}$	-	0.1	4	μA
∆l _{CC}	additional supply current	per pin; V _I = V _{CC} – 0.6 V; I _O = 0 A; V _{CC} = 2.3 V to 5.5 V	-	5	500	μA
Cı	input capacitance		-	4.0	-	pF

Single D-type flip-flop with set and reset; positive edge trigger

Table 8. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
T _{amb} = –	40 °C to +125 °C					
VIH	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-		V
		V _{CC} = 4.5 V to 5.5 V	$0.7\times V_{CC}$	-	-	V
VIL	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
Г _{атb} = -4 /ін /іL /он /оц		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V	-	-	$0.3\times V_{CC}$	V
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = -100 μ A; V_{CC} = 1.65 V to 5.5 V	$V_{CC} - 0.1$	-	-	V
		$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	$\begin{array}{c} - \\ - \\ 0.35 \times V_{CC} \\ 0.7 \\ 0.8 \\ 0.3 \times V_{CC} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 0.10 \\ 0.70 \\ 0.45 \\ 0.60 \\ 0.80 \\ 0.80 \\ \pm 1 \\ \pm 2 \\ 4 \end{array}$	V
		$I_0 = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-		V
		$I_0 = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_0 = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V
		$I_0 = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.4	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = 100 \ \mu\text{A}; \ V_{CC} = 1.65 \ \text{V} \text{ to } 5.5 \ \text{V}$	-	-	$\begin{array}{c c} & - & \\ & - & \\ & - & \\ & 0.35 \times V_{CC} \\ & 0.7 \\ & 0.8 \\ & 0.3 \times V_{CC} \\ & \\ & - & & - & \\ & - & \\ & - & & - & \\ & - & \\ & - & & - & \\ & - & & - & $	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-		V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.60	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.80	V
		I _O = 32 mA; V _{CC} = 4.5 V	-	-	0.80	V
I	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	±1	μA
OFF	power-off leakage current	$V_1 \text{ or } V_0 = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	±2	μΑ
СС	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 A$	-	-	4	μA
∆l _{CC}	additional supply current	per pin; V _I = V _{CC} – 0.6 V; I _O = 0 A; V _{CC} = 2.3 V to 5.5 V	-	-	500	μA

[1] All typical values are measured at T_{amb} = 25 °C.

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Мах	
t _{pd}	propagation delay	CP to Q, \overline{Q} ; see Figure 8 [2]						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	1.5	6.0	13.4	1.5	13.4	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.0	3.5	7.1	1.0	7.1	ns
		V _{CC} = 2.7 V	1.0	3.5	7.1	1.0	7.1	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.0	3.5	5.9	1.0	5.9	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	1.0	2.5	4.1	1.0	4.1	ns
		\overline{SD} to Q, \overline{Q} ; see Figure 9 [2]						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	1.5	6.0	12.9	1.5	12.9	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.0	3.5	7.0	1.0	7.0	ns
		V _{CC} = 2.7 V	1.0	3.5	7.0	1.0	7.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.0	3.0	5.9	1.0	5.9	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	1.0	2.5	4.1	1.0	4.1	ns
		$\overline{R}D$ to Q, \overline{Q} ; see Figure 9 [2]						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	1.5	5.0	12.9	1.5	12.9	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.0	3.5	7.0	1.0	7.0	ns
		V _{CC} = 2.7 V	1.0	3.5	7.0	1.0	7.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.0	3.0	5.9	1.0	5.9	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	1.0	2.5	4.1	1.0	4.1	ns
t _W	pulse width	CP HIGH or LOW; see Figure 8						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	6.2	-	-	6.2	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.7	-	-	2.7	-	ns
		V _{CC} = 2.7 V	2.7	-	-	2.7	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.7	1.3	-	2.7	-	ns
		V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	ns
		SD and RD LOW; see <u>Figure 9</u>						
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	6.2	-	-	6.2	-	ns
		V_{CC} = 2.3 V to 2.7 V	2.7	-	-	2.7	-	ns
		V _{CC} = 2.7 V	2.7	-	-	2.7	-	ns
		V _{CC} = 3.0 V to 3.6 V	2.7	1.6	-	2.7	-	ns
		V _{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	ns

Single D-type flip-flop with set and reset; positive edge trigger

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	o +125 ℃	Unit
trac			Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{rec}	recovery time	SD or RD; see Figure 9						
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	1.9	-	-	1.9	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.4	-	-	1.4	-	ns
		V _{CC} = 2.7 V	1.3	-	-	1.3	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	+1.2	-3.0	-	+1.2	-	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	1.0	-	-	1.0	-	ns
t _{su}	set-up time	Min Typ!! Max Min Max SD or RD; see Figure 9 - - 1.9 - $V_{CC} = 1.65 V$ to 1.95 V 1.9 - - 1.9 - $V_{CC} = 2.3 V$ to 2.7 V 1.4 - - 1.4 - $V_{CC} = 2.3 V$ to 2.7 V 1.3 - - 1.3 - $V_{CC} = 3.0 V$ to 3.6 V +1.2 -3.0 - +1.2 - $V_{CC} = 3.0 V$ to 3.6 V +1.2 -3.0 - +1.2 - $V_{CC} = 3.0 V$ to 3.6 V +1.2 -3.0 - +1.2 - $V_{CC} = 3.0 V$ to 3.6 V 1.0 - - 1.0 - $V_{CC} = 1.65 V$ to 1.95 V 2.9 - - 1.7 - $V_{CC} = 2.3 V$ to 2.7 V 1.7 - - 1.7 - $V_{CC} = 2.3 V$ to 3.6 V 1.3 0.5 - 1.3 - $V_{CC} = 4.5 V$ to 5.5 V 1.1 - - 1.1 - <td></td>						
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	2.9	-	-	2.9	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	-	-	1.7	-	ns
		$V_{CC} = 2.7 V$	1.7	-	-	1.7	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.3	0.5	-	1.3	-	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	1.1	-	-	1.1	-	ns
t _h	hold time	D to CP; see Figure 8						
		V_{CC} = 1.65 V to 1.95 V	1.5	-	-	1.5	-	ns
		V_{CC} = 2.3 V to 2.7 V	1.0	-	-	1.0	-	ns
		V _{CC} = 2.7 V	1.0	-	-	1.0	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.0	0.6	-	1.0	-	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	1.0	-	-	1.0	-	ns
f _{max}	maximum	Min TypI1 Max Min Max SD or RD; see Figure 9 - - 1.9 - 1.9 V _{CC} = 1.65 V to 1.95 V 1.9 - - 1.4 - V _{CC} = 2.3 V to 2.7 V 1.4 - - 1.3 - V _{CC} = 2.7 V 1.3 - - 1.3 - V _{CC} = 3.0 V to 3.6 V +1.2 -3.0 - +1.2 - V _{CC} = 4.5 V to 5.5 V 1.0 - - 1.0 - V _{CC} = 1.65 V to 1.95 V 2.9 - - 2.9 - V _{CC} = 2.3 V to 2.7 V 1.7 - 1.7 - - V _{CC} = 1.65 V to 1.95 V 2.9 - 1.7 - - V _{CC} = 2.3 V to 2.7 V 1.7 - 1.7 - - V _{CC} = 4.5 V to 5.5 V 1.1 - - 1.1 - V _{CC} = 1.65 V to 1.95 V 1.5 - 1.0 - - <						
	frequency	V_{CC} = 1.65 V to 1.95 V	80	-	-	80	-	MHz
		V_{CC} = 2.3 V to 2.7 V	175	-	-	175	-	MHz
		V _{CC} = 2.7 V	175	-	-	175	-	MHz
		V _{CC} = 3.0 V to 3.6 V	175	280	-	175	-	MHz
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	200	-	-	200	-	MHz
C _{PD}	power dissipation capacitance	1 00,	-	15	-	-	-	pF

Table 9. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10.

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

- [2] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).
 - $\mathsf{P}_\mathsf{D} = \mathsf{C}_\mathsf{PD} \times \mathsf{V}_\mathsf{CC}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma(\mathsf{C}_\mathsf{L} \times \mathsf{V}_\mathsf{CC}^2 \times \mathsf{f}_o) \text{ where:}$
 - $f_i = input frequency in MHz;$
 - $f_o = output frequency in MHz;$
 - C_L = output load capacitance in pF;
 - V_{CC} = supply voltage in V;
 - N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o) = sum \text{ of outputs.}$

Single D-type flip-flop with set and reset; positive edge trigger

12. Waveforms

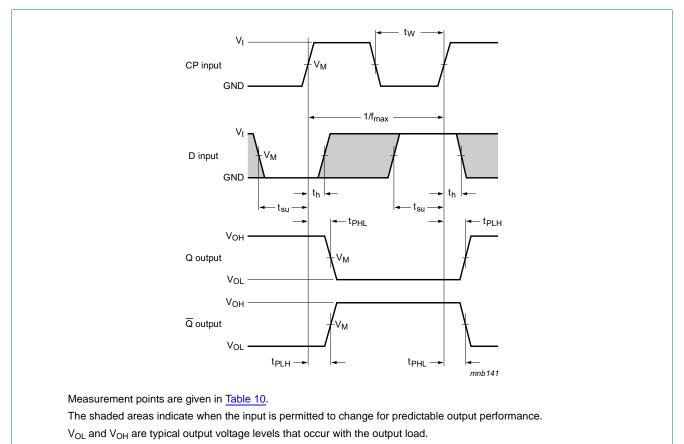
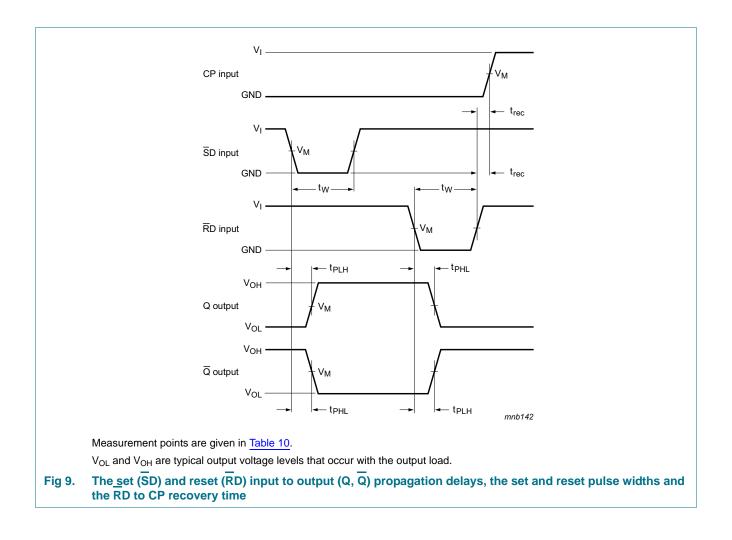
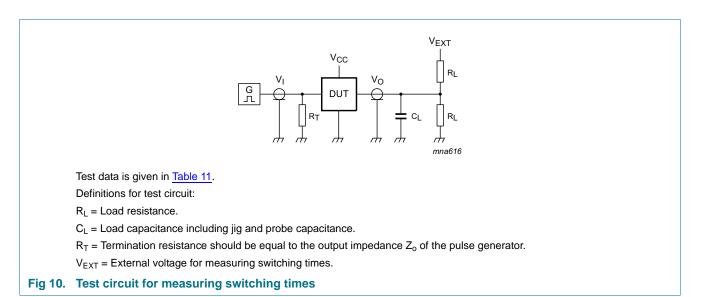


Fig 8. The clock input (CP) to output (Q, Q) propagation delays, the clock pulse width, the D to CP set-up, the CP to D hold times and the maximum frequency


Table 10. Measurement points

Supply voltage	Input	Output	
V _{CC}	V _M	V _M	
1.65 V to 1.95 V	$0.5 \times V_{CC}$	$0.5 imes V_{CC}$	
2.3 V to 2.7 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	
2.7 V	1.5 V	1.5 V	
3.0 V to 3.6 V	1.5 V	1.5 V	
4.5 V to 5.5 V	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$	


Nexperia

74LVC1G74

Single D-type flip-flop with set and reset; positive edge trigger

Single D-type flip-flop with set and reset; positive edge trigger

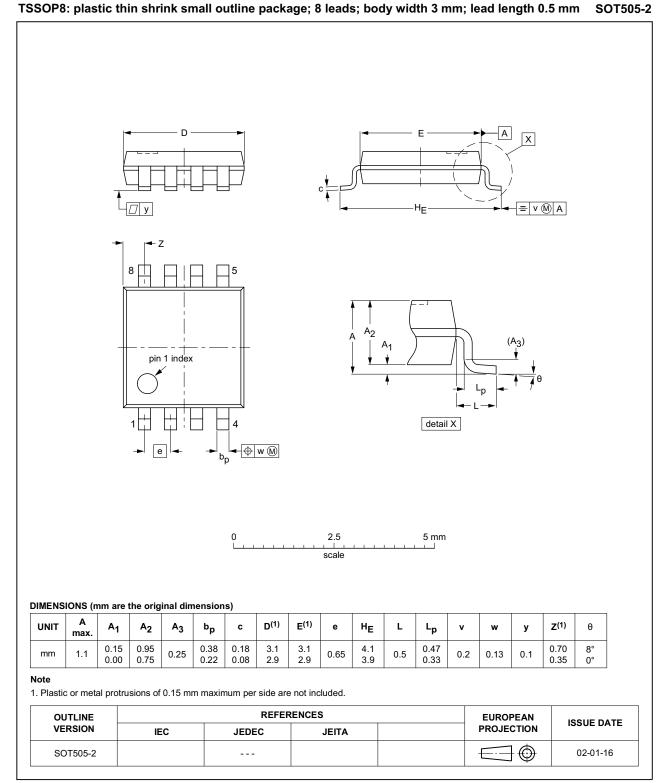
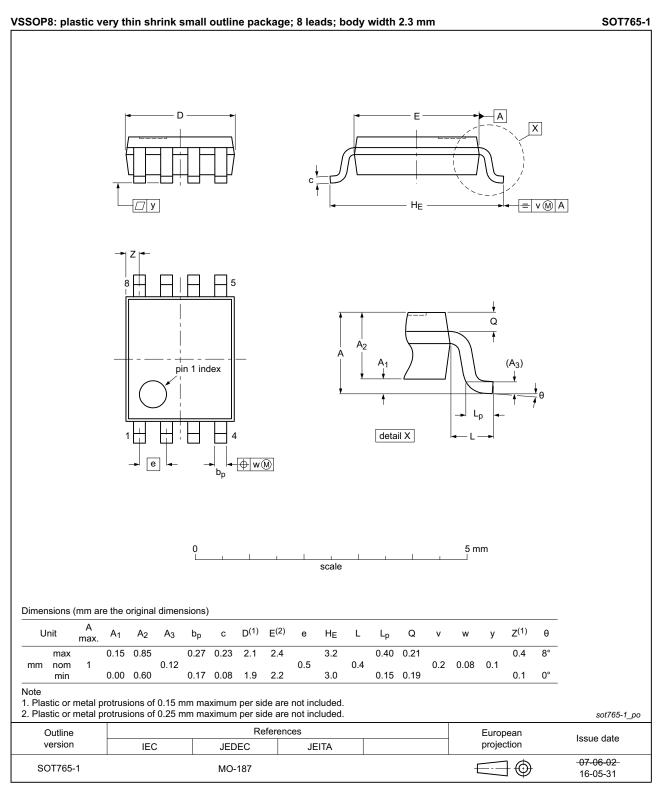


Table 11. Test data

Supply voltage	Input		Load		V _{EXT}		
V _{cc}	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open	GND	2V _{CC}
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open	GND	2V _{CC}
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6 V
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6 V
4.5 V to 5.5 V	V _{cc}	≤ 2.5 ns	50 pF	500 Ω	open	GND	2V _{CC}


Single D-type flip-flop with set and reset; positive edge trigger

13. Package outline

Fig 11. Package outline SOT505-2 (TSSOP8)

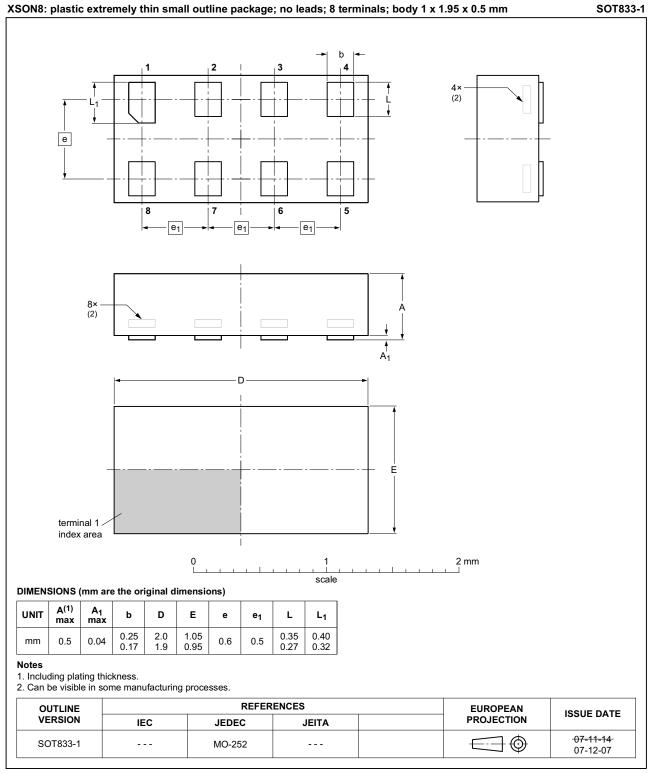

Single D-type flip-flop with set and reset; positive edge trigger

Fig 12. Package outline SOT765-1 (VSSOP8)

All information provided in this document is subject to legal disclaimers.

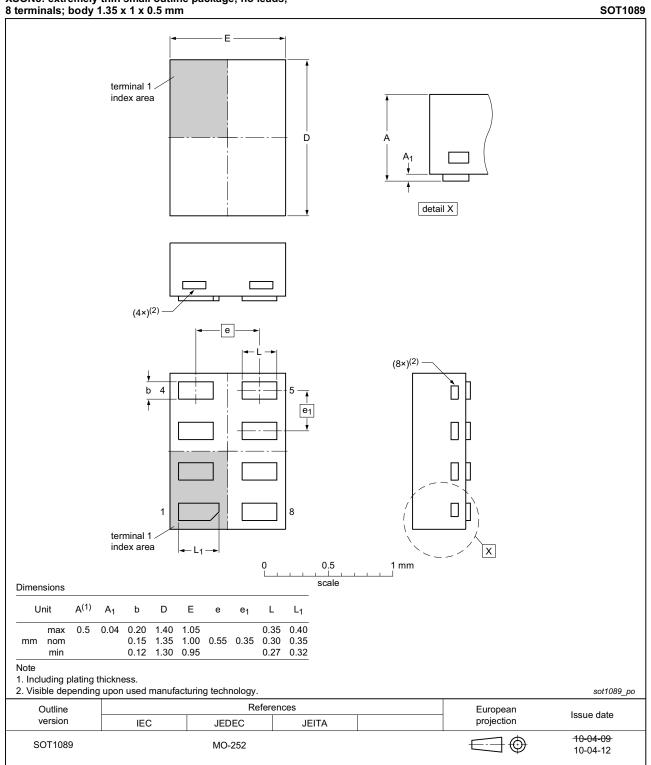
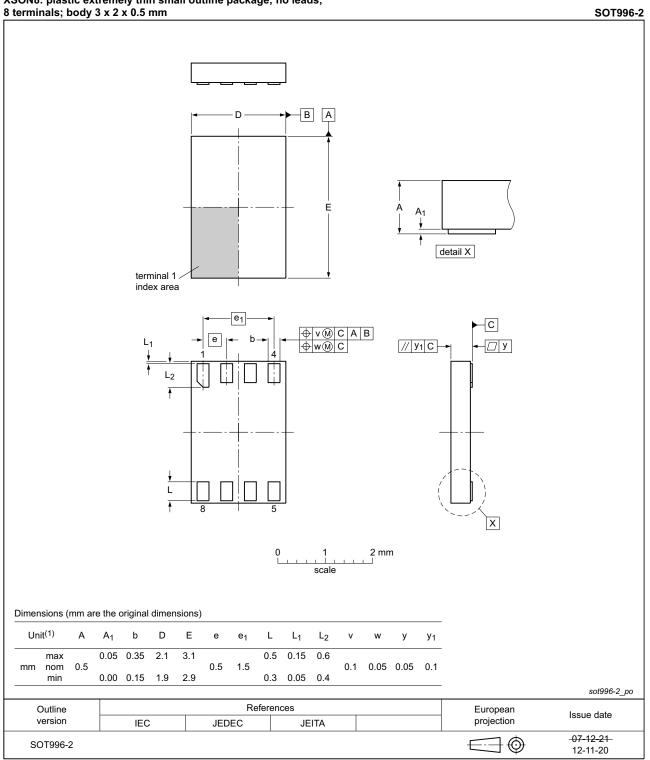

Single D-type flip-flop with set and reset; positive edge trigger

Fig 13. Package outline SOT833-1 (XSON8)

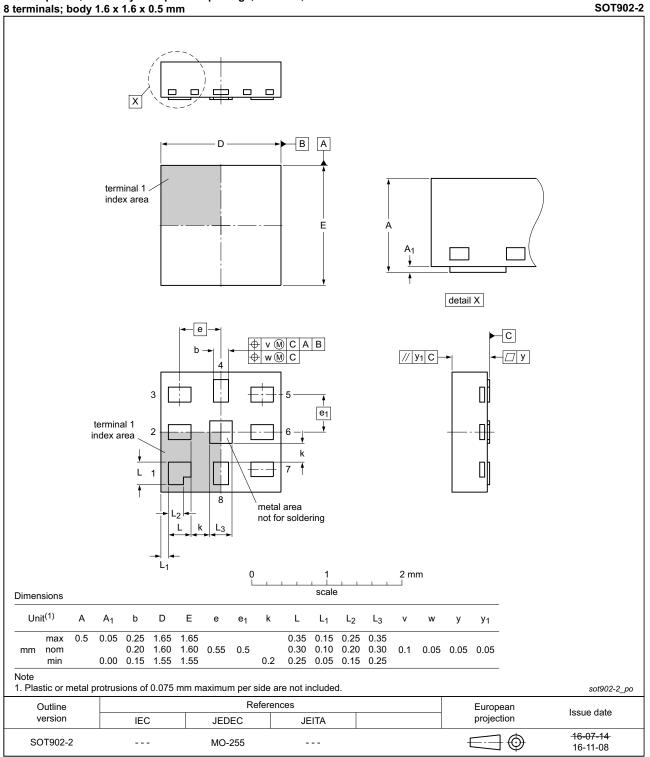
74LVC1G74
Product data sheet


Single D-type flip-flop with set and reset; positive edge trigger

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1 x 0.5 mm

Fig 14. Package outline SOT1089 (XSON8)

Single D-type flip-flop with set and reset; positive edge trigger

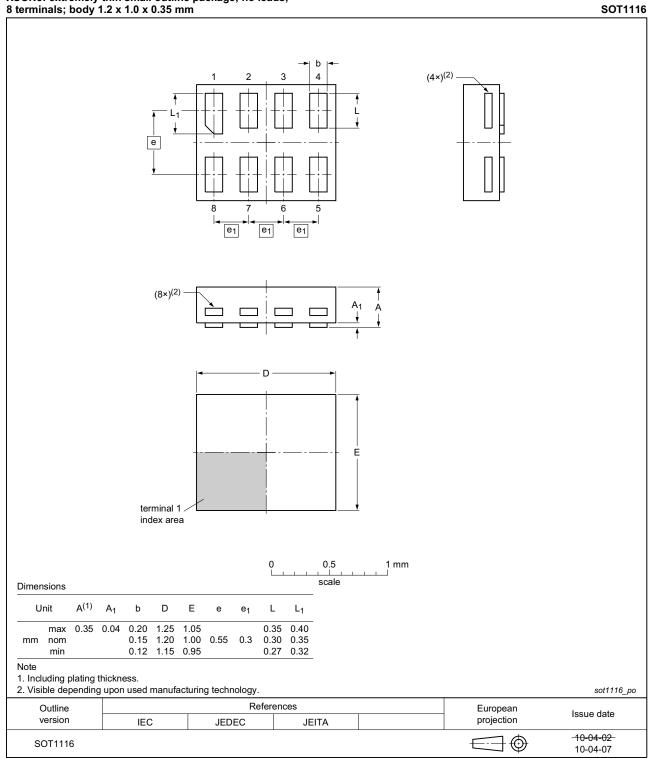


XSON8: plastic extremely thin small outline package; no leads;

Fig 15. Package outline SOT996-2 (XSON8)

All information provided in this document is subject to legal disclaimers.

Single D-type flip-flop with set and reset; positive edge trigger

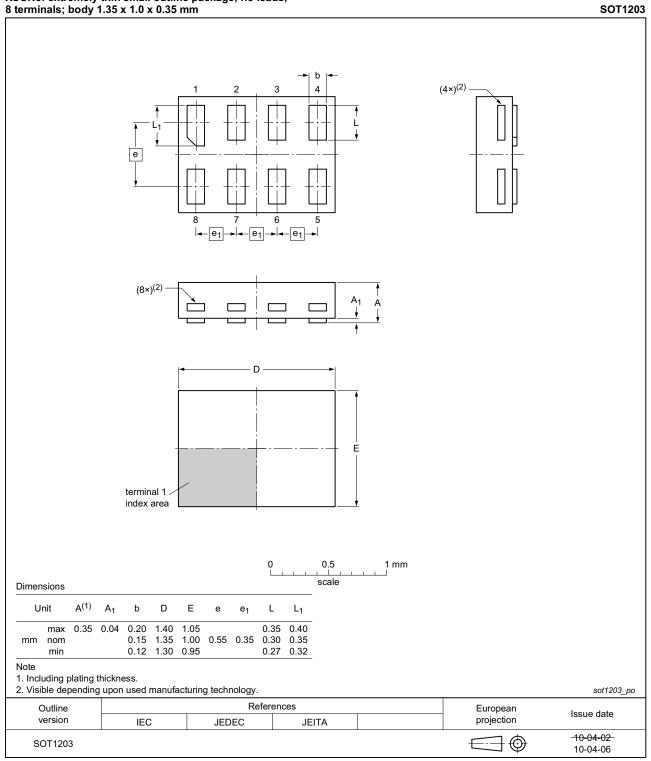


XQFN8: plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 x 1.6 x 0.5 mm

Fig 16. Package outline SOT902-2 (XQFN8)

All information provided in this document is subject to legal disclaimers

Single D-type flip-flop with set and reset; positive edge trigger



XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.2 x 1.0 x 0.35 mm

Fig 17. Package outline SOT1116 (XSON8)

74LVC1G74 **Product data sheet**

Single D-type flip-flop with set and reset; positive edge trigger

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1.0 x 0.35 mm

Fig 18. Package outline SOT1203 (XSON8)

74LVC1G74 **Product data sheet**

14. Abbreviations

Table 12. Abbreviations		
Acronym	Description	
CMOS	Complementary Metal-Oxide Semiconductor	
НВМ	Human Body Model	
ESD	ElectroStatic Discharge	
MM	Machine Model	
DUT	Device Under Test	
TTL	Transistor-Transistor Logic	

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G74 v.13	20161205	Product data sheet	-	74LVC1G74 v.12
Modifications:	• <u>Table 8</u> : The	e maximum limits for leakage	e current and supply cu	irrent have changed.
74LVC1G74 v.12	20130402	Product data sheet	-	74LVC1G74 v.11
Modifications:	 For type nu 	mber 74LVC1G74GD XSON	I8U has changed to XS	ON8.
74LVC1G74 v.11	20120604	Product data sheet	-	74LVC1G74 v.10
Modifications:	 For type nu 	mber 74LVC1G74GM the S	OT code has changed	to SOT902-2.
74LVC1G74 v.10	20111202	Product data sheet	-	74LVC1G74 v.9
Modifications:	 Legal pages 	s updated.	"	
74LVC1G74 v.9	20100805	Product data sheet	-	74LVC1G74 v.8
74LVC1G74 v.8	20091203	Product data sheet	-	74LVC1G74 v.7
74LVC1G74 v.7	20080626	Product data sheet	-	74LVC1G74 v.6
74LVC1G74 v.6	20080219	Product data sheet	-	74LVC1G74 v.5
74LVC1G74 v.5	20070809	Product data sheet	-	74LVC1G74 v.4
74LVC1G74 v.4	20061207	Product data sheet	-	74LVC1G74 v.3
74LVC1G74 v.3	20050201	Product specification	-	74LVC1G74 v.2
74LVC1G74 v.2	20040909	Product specification	-	74LVC1G74 v.1
74LVC1G74 v.1	20040202	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Nexperia

74LVC1G74

Single D-type flip-flop with set and reset; positive edge trigger

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Nexperia

74LVC1G74

Single D-type flip-flop with set and reset; positive edge trigger

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning
6.2	Pin description 5
7	Functional description 5
8	Limiting values 6
9	Recommended operating conditions 6
10	Static characteristics 7
11	Dynamic characteristics 9
12	Waveforms 11
13	Package outline 14
14	Abbreviations 22
15	Revision history 22
16	Legal information 23
16.1	Data sheet status 23
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 24
17	Contact information 24
18	Contents 25

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

 74LVC1G74GD,125
 74LVC1G74GS,115
 74LVC1G74GN,115
 74LVC1G74DC,125
 74LVC1G74DP,125

 74LVC1G74GM,125
 74LVC1G74GT,115
 74LVC1G74GF,115
 74LVC1G74GM,115

NXP:

74LVC1G74DP-G 74LVC1G74GM-G