System
Generator for
DSP

Getting Started Guide

UG639 (v 13.1) March 1, 2011

& XILINX.

& XILINX.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-I1S” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2006 - 2011. Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

System Generator for DSP Getting Started Guide www.xilinx.com UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Table of Contents

Preface: About This Guide

Guide Contents 7
System Generator PDF Doc Set........ 7
Additional Resources 8
ConvVentions 8
Typographical....... ... 8
Online Document e 9

Chapter 1: Introduction

The Xilinx DSP Block Set 12
FIR Filter Generation. i 13
Support for MATLAB 14
System Resource Estimation. 15
Hardware Co-Simulation......... 16
System Integration Platform......... il 17

Chapter 2: Installation

Downloading 19
Hardware Co-Simulation Support i i i 19
UNC Paths Not Supported 19

Using the ISE Design Suite Installer... 20

Post Installation Tasks 20
Post-Installation Taskson Linux o o o il 20
Troubleshooting a Linux Installation 20
Hardware Co-Simulation Installation................ 21
Compiling Xilinx HDL Libraries o oo i oL, 22
Configuring the System Generator Cache 22
Displaying and Changing Versions of System Generator 23

Chapter 3: Release Information

Chapter 4: Getting Started

Introduction 27
Lesson 1 - Design Creation Basics 28
The System Generator Design Flowo, 28
The Xilinx DSP Blockset i 29
Defining the FPGA Boundary o o il 30
Adding the System Generator Token oL 31
Creatingthe DSPDesign................ ... i i i i 32
Generatingthe HDLCode i 33
Model-Based Design using System Generator 34
Creating Input Vectors using MATLAB. 35

System Generator for DSP Getting Started Guide www.xilinx.com
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Lesson 1 SUMMATY oovut ittt 36
Lab Exercise: Using Simulink. o oo 36
Lab Exercise: Getting Started with System Generator 36
Lesson 2 - Fixed Point and Bit Operations. 37
Fixed-Point Numeric Precision o i, 37
System Generator Fixed-Point Quantization..................., 38
Overflowand Round Modes i i 39
Bit-Level Operations i i i 40
The Reinterpret Block o i i 41
The Convert Block 42
TheConcatBlock 43
Slice Blocko 44
The BitBasher Block 45
Lesson 2 SUMMAryt e 46
Lab Exercise: Signal Routing 46
Lesson 3 - System Control 47
Controllinga DSP System................o i i 47
The MCode Block. 48
The Xilinx “x]_state” Data Type i 49
State Machine Example 50
The Expression Block. o 51
Reset and Enable Ports i 52
Bursty Data 53
Lesson 3 SUMmMAryo vt 54
Lab Exercise: System Control 54
Lesson 4 - Multi-Rate Systems. 55
Creating Multi-Rate Systems o ool 55
Up and Down Sampling Blocks................. o oo ool 56
Rate Changing Functional Blocks o .t 57
Viewing Rate Changesin Simulink. o oL 58
Debugging Tools 59
Sample Period “Rules” 60
Lab Exercise: Multi-Rate Systems i 61
Lesson 5-Using Memories................ 62
Block vs. Distributed RAM 62
Initializing RAMs and ROMSs i 63
System Generator RAM Blocks o i 64
System Generator ROM Blocks i 65
TheDelay Block 66
The FIFOBlock o e 67
Shared Memory Block 68
Lab Exercise: Using Memoriest 69
Lesson 6 - Designing Filters 70
Introduction 70
The Virtex DSP48 Math Slice i i 71
FIR Compiler Block 72
Creating Coefficients with FDATool............ 73
Using FDA Tool Coefficientso o i i 74
Lab Exercise: Designing Filters o oo 75
Additional Examples and Tutorials.......... 76
AXI4 Conversion Examples i i 76
Black Box Examples............... . 76

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

ChipScope Examples 77
DSP Examples. 77
M-Code Examples 78
Processor Examples 79
Shared Memory Examples o i il 79
Timing Analysis Examples............ il 80
Miscellaneous Examples o i 80
System Generator Demos i 81

83

System Generator for DSP Getting Started Guide www.xilinx.com
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Preface

About This Guide

This Getting Started Guide introduces you to System Generator for DSP, then provides
installation and configuration instructions, release information, and six mini-training
modules that highlight the main features of the product. Each module starts with a lesson
of 8-10 slides that explain important concepts, followed by a lab exercise that take about 30
minutes to complete. Because this introductory training is part of the tool, you can
progress through the material at your own pace and on your own time schedule

Guide Contents

This Getting Started Guide contains the following topics:

e Introduction

e Installation

e Release Information
e Getting Started

a. Design Creation Basics

b. Fixed Point and Bit Operations
c. System Control

d. Multi-Rate Systems

e. Using Memories

f. Designing Filters

Additional Examples and Tutorials

System Generator PDF Doc Set

This Getting Started Guide can be found in the System Generator Help system and is also
part of the System Generator Doc Set that is provided in PDF format. The content of the
doc set is as follows:

e System Generator for DSP Getting Started Guide
e System Generator for DSP User Guide
e System Generator for DSP Reference Guide

Note: Hyperlinks across these PDF documents work only when the PDF files reside in the same
folder. After clicking a Hyperlink in the Adobe Reader, you can return to the previous page by pressing
the Alt key and the left arrow key («) at the same time.

System Generator for DSP Getting Started Guide www.xilinx.com 7
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Preface: About This Guide & XILINX.

Additional Resources

To find additional documentation, see the Xilinx website at:

http:/ /www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http:/ /www.xilinx.com/support/ mysupport.htm.

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font Messages, prompts, and speed grade: - 100
program files that the system
displays

Courier bold Literal commands that you ngdbuild design_name
enter in a syntactical statement

Helvetica bold Commands that you select from |File & Open
a menu
Keyboard shortcuts Ctrl+C

Italic font Variables in a syntax statement \ngdbuild design_name
for which you must supply
values

References to other manuals See the Development System
Reference Guide for more
information.

Emphasis in text If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets [] |Anoptional entry or parameter. ngdbuild [option name]
However, in bus specifications, |design name
such as bus [7:01, they are

required.
Braces { } A list of items from which you |lowpwr ={on|off}
must choose one or more
Vertical bar | Separates items in a list of lowpwr ={on|off}
choices
8 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/mysupport.htm

& XILINX.

Conventions

Convention

Meaning or Use

Example

Vertical ellipsis

Repetitive material that has
been omitted

IOB #1: Name QOouT’
IOB #2: Name = CLKIN’

Horizontal ellipsis ...

Repetitive material that has
been omitted

allow block block_namelocl
loc2 ... locn;

Online Document

The following conventions are used in this document:

Convention Meaning or Use Example
Blue text Cross-reference link to a See the topic “Additional
location in the current Resources” for details.
document Refer to “Title Formats” in
Chapter 1 for details.
Red text Cross-reference link to a See Figure 2-5 in the Virtex-II
location in another document |Platform FPGA User Guide.
Blue, underlined text |Hyperlink to a website (URL) |Go to http://www.xilinx.com
for the latest speed files.

System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

www.xilinx.com

http://www.xilinx.com

Preface: About This Guide & XILINX.

10 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.
Chapter 1

Introduction

System Generator is a DSP design tool from Xilinx that enables the use of the MathWorks
model-based Simulink® design environment for FPGA design. Previous experience with
Xilinx FPGAs or RTL design methodologies are not required when using System
Generator. Designs are captured in the DSP friendly Simulink modeling environment
using a Xilinx specific blockset. All of the downstream FPGA implementation steps
including synthesis and place and route are automatically performed to generate an FPGA
programming file.

(=1 2ymprndy A MFw (ks Rerdunr *
Fim E e Swuddion Foomed

DFES ol e g D sfoe BeuBes hE@E

System Generator for DSP Getting Started Guide www.xilinx.com 11
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Introduction & XILINX.

The Xilinx DSP Block Set

Over 90 DSP building blocks are provided in the Xilinx DSP blockset for Simulink. These
blocks include the common DSP building blocks such as adders, multipliers and registers.
Also included are a set of complex DSP building blocks such as forward error correction
blocks, FFTs, filters and memories. These blocks leverage the Xilinx IP core generators to
deliver optimized results for the selected device.

-‘-\"‘-\.‘_-
Hazl
3 1°
A [a:k] > -
ba+b> st Hdo
Slice AcCumulator
AddSub .)j-"/_’{
Mux
712 N
| A2 __ Hd
2 laoif 1z p ;‘Ib
z P@
Delay b | addr
Mult Relational

Addreszsble Shift Regisier

R fm — } iv
- Nezp
Hdataz"1 [E =.¢ ol Sateway In
Hwe . rF .
. e
ingle Pert RAM

- P System
Sabiay Lt Ganasratar
12 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. FIR Filter Generation

FIR Filter Generation

System Generator includes a FIR Compiler block that targets the dedicated DSP48
hardware resources in the Virtex®-4 and Virtex-5 devices to create highly optimized
implementations that can run in excess of 500 Mhz. Configuration options allow
generation of direct, polyphase decimation, polyphase interpolation and oversampled
implementations. Standard MATLAB functions such as fir2 or the MathWorks FDAtool
can be used to create coefficients for the Xilinx FIR Compiler.

FIR Compiler

19 Tag

i din Sinle e ot =
Chirp Signal Gateway In Istency = 23 Gateway Dut E—

Fhpfog FIR Compiler vi_0 iv

F

Systam
Gensrator
FDAToo
System Generator for DSP Getting Started Guide www.xilinx.com 13

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Chapter 1: Introduction

Support for MATLAB
Included in System Generator is an MCode block that allows the use of non-algorithmic
MATLAB for the modeling and implementation of simple control operations.

MATLAB®

e it

=113
B Poppagh TP W

M e Smee Fooet b g
Or@@ fb® (S e
e x|

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

14

http://www.xilinx.com

& XILINX. System Resource Estimation

System Resource Estimation

System Generator provides a Resource Estimator block that quickly estimates the area of a
design prior to place and route. This can be a valuable aid in the hardware / software
partitioning process by helping system designers take full advantage of the FPGA
resources which include up to 640 multiply/accumulate (or DSP) blocks in the Virtex®-5
devices.

allesuurce Estimator {Xilinx Resourc - IDIEI

Slices | 3a0)

FFz 652

BRAMs |0

LUTs |610

IBs | 100

Emb. Mults |0

TEUFs |0

[Use area above

Estimate optionlestimate *I Estirmate |

(04 Cancel | Help | appl. I
7

System Generator for DSP Getting Started Guide www.xilinx.com 15
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Introduction & XILINX.

Hardware Co-Simulation

System Generator provides accelerated simulation through hardware co-simulation.
System Generator will automatically create a hardware simulation token for a design
captured in the Xilinx DSP blockset that will run on one of over 20 supported hardware
platforms. This hardware will co-simulate with the rest of the Simulink system to provide
up to a 1000x simulation performance increase.

L™} syegerapad-ibe 8, s igdair *

Hem t:: Trnn

16

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. System Integration Platform

System Integration Platform

System Generator provides a system integration platform for the design of DSP FPGAs
that allows the RTL, Simulink, MATLAB and C/C++ components of a DSP system to come
together in a single simulation and implementation environment. System Generator
supports a black box block that allows RTL to be imported into Simulink and co-simulated
with either ModelSim or Xilinx® ISE® Simulator. System Generator also supports the
inclusion of a MicroBlaze® embedded processor running C/C++ programs.

C/CH Models

System Generatar Models

YHDL /Varilog

System Generator

System Generator for DSP Getting Started Guide www.xilinx.com 17
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Introduction

& XILINX.

18

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Chapter 2

Installation

Downloading

System Generator is part of the ISE® Design Suite and may be download from the Xilinx
web page. You may purchase, register, and download the System Generator software from
the site at:

http:/ /www.xilinx.com /tools /sysgen.htm

Note: In special circumstances, System Generator can be delivered on a CD. Please contact your
Xilinx distributor if your circumstances prohibit you from downloading the software via the web.

Hardware Co-Simulation Support

If you have an FPGA development board, you may be able to take advantage of System
Generator’s ability to use FPGA hardware co-simulation with Simulink simulations. The
System Generator software includes support for the XtremeDSP Development Kit, the
MicroBlaze™ Multimedia Demonstration boards, the MVI hardware platform, the ML402
Virtex®-4 Board, the ML506 Virtex-5 Board, the ML605 Virtex-6 Board, the Spartan-3A DSP
1800 Starter Board, the Spartan-3A DSP 3400 Development Board, and the Spartan-6
SP601/SP605 Board. Additional System Generator board support packages provide
support for additional hardware co-simulation boards. System Generator board support
packages can be downloaded from the following URL:

http:/ /www.xilinx.com /products/boards_kits/index.htm

UNC Paths Not Supported

System Generator does not support UNC (Universal Naming Convention) paths. For
example System Generator cannot operate on a design that is located on a shared network
drive without mapping to the drive first.

System Generator for DSP Getting Started Guide www.xilinx.com 19
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/ise/optional_prod/system_generator.htm

http://www.xilinx.com/products/boards_kits/index.htm

http://www.xilinx.com/products/software/sysgen/sg_intro.htm

Chapter 2: Installation & XILINX.

Using the ISE Design Suite Installer

System Generator for DSP is part of the Xilinx ISE® Design Suite and you must use the ISE
Design Suite installer to install Sysgem Generator.

Before invoking the ISE Design Suite installer, it is a good idea to make sure that all
instances of MATLAB are closed. When all instances of MATLAB are closed, launch the
installer and follow the directions on the screen.

Choosing the MATLAB Version for a Windows OS Installation

As the last step of the System Generator Windows installation, click the check box of the
MATLAB installation you wish to associate with this verison of System Generator, then
click Apply.

If you don’t see a valid version of MATLAB listed, for example a version installed on a
network device, click the Add Version button, browse to the MATLAB root directory of the
unlisted version, then click Add. If you wish to associate this version of MATLAB with
System Generator, click the check box of the newly listed MATLAB installation, then click
Apply.

If you have no version of MATLAB available, click Choose Later to continue with the
installation. At a later time, after you have installed MATLAB, you can associate that
version of MATLAB with System Generator by executing the Windows menu item Start >
All Programs > Xilinx ISE Design Suite 13.1 > System Generator> Select MATLAB
version for Xilinx System Generator.

Post Installation Tasks

Post-Installation Tasks on Linux

After following the directions of the main ISE Design Suite Installation Wizard, you are
ready to launch System Generator by typing: sysgen

Note: This will invoke MATLAB and dynamically add System Generator to that MATLAB session. At
the top of the MATLAB Command Window, you should see the “Installed System Generator
dynamically” messages. You are now ready to run System Generator.

The following is an expected message under certain conditions. If System Generator is
already installed when this script runs, you will see the following message:

System Generator currently found installed into matlab
default path.

Troubleshooting a Linux Installation

The following four functions are used to troubleshoot and verify the Linux Installation.
x1_get_matlab_support_xmlfile

This MATLAB function will retrieve the expected location of the common XML file
used for determining MATLAB support within System Generator.

xl_verify_matlab_support_xmlfile

This matlab function will verify that the XML file exists and is readable. If no XML file
exists, the following error message is thrown to the MATLAB console”

20

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Post Installation Tasks

Could not find ml_supported.xml to determine supported versions
of MATLAB with System Generator.

If the XML file is unreadable, the error message that is thrown to the MATLAB console
is:

Could not read ml_supported.xml to determine supported versions
of MATLAB with System Generator

x1_read_matlab_support_xmlfile

This MATLAB function reads and parses the XML file looking for the supported
MATLAB version information and provides error/warning messages used by the
sysgen_startup.m script.

x1_test_matlab_support_xmlfile

This MATLAB function tests the current instantiated MATLAB session and compares
its version to those which are supported. Errors or warnings will be displayed based
on results of this comparison. If the XML file is devoid of information, the error thrown
to the MATLAB console is as folows:

Matlab support table used by System Generator is empty!

If the XML file information does not conform to the expected format, the following
error is thrown to the MATLAB console:

Input matlab support table is not well formed. It should have
only 2 columns!

If you are using a version of MATLAB that is too old (unsupported), then you will see
the following error messages:

System Generator will not properly function under this version
of MATLAB!

Error occurred while attempting to install System Generator into
MATLAB path.

If you are using a version of MATLAB that is too new, then you will see the following
warning messages:

System Generator may not properly function under this version of
MATLAB'!

Hardware Co-Simulation Installation

This topic provides links to hardware and software installation procedures for hardware
co-simulation. If you do not plan to use hardware co-simulation, you may skip this topic.

Ethernet-Based Hardware Co-Simulation
Installing an ML402 Board for Ethernet Hardware Co-Simulation
Installing an ML560 Board for Ethernet Hardware Co-Simulation
Installing an ML650 Board for Ethernet Hardware Co-Simulation
Installing a Spartan-3A DSP 1800A Starter Board for Ethernet Hardware Co-Simulation

Installing a Spartan-3A DSP 3400A Development Board for Ethernet Hardware Co-
Simulation

System Generator for DSP Getting Started Guide www.xilinx.com 21
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 2: Installation

& XILINX.

Installing an SP601/SP605 Board for Ethernet Hardware Co-Simulation

Note: Ifinstallation instructions for your particular platform are not provided here, please refer to the
installation instuctions that come with your Platform Kit. For instructions on how to install a Xilinx USB
Cable and cable driver software on a Windows or Linux Operating System, refer to the Xilinx
document titled: USB Cable Installation Guide

JTAG-Based Hardware Co-Simulation

Installing an ML402 Board for JTAG Hardware Co-Simulation
Installing an ML605 Board for JTAG Hardware Co-Simulation
Installing an SP601/SP605 Board for JTAG Hardware Co-Simulation

Third-Party Hardware Co-Simulation

As part of the Xilinx XtremeDSP™ Initiative, Xilinx works with distributors and many
OEMs to provide a variety of DSP prototyping and development platforms. Please refer to
the following Xilinx web site page for more information on available platforms:

http:/ /www.xilinx.com/products/boards_kits/index.htm

Compiling Xilinx HDL Libraries

If you intend to simulate System Generator designs using ModelSim, you must compile
your IP (cores) libraries. This topic describes the procedure.

ModelSim SE

The Xilinx tool that compiles libraries for use in ModelSim SE is named compxlib. The
following command can, for example, be used to compile all the VHDL and Verilog
libraries with ModelSim SE:

compxlib -s mti se -f all -1 all

Complete instructions for running compxlib can be found in the ISE Software Manual
titled “Command Line Tool User Guide”.

Configuring the System Generator Cache

Both the System Generator simulator and the design generator incorporate a disk cache to
speed up the iterative design process. The cache does this by tagging and storing files
related to simulation and generation, then recalling those files during subsequent
simulation and generation rather than rerunning the time consuming tools used to create
those files.

Setting the Size

By default, the cache will use up to 500 MB of disk space to store files. To specify the
amount of disk space the cache should use, set the SYSGEN_CACHE_SIZE environment
variable to the size of the cache in megabytes. Set this number to a higher value when
working on several large designs.

Setting the Number of Entries

The cache entry database stores a fixed number of entries. The default is 20,000 entries. To
set size of the cache entry database, set the SYSGEN_CACHE_ENTRIES environment

22

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug344.pdf
http://www.xilinx.com/products/boards_kits/index.htm

& XILINX.

Post Installation Tasks

variable to the desired number of entries. Setting this number too small will adversely
affect cache performance. Set this number to a higher value when working on several large
designs.

You can use the xlCache function to manage and inspect the properties of difference caches
used by System Generator. A detailed description of this function can be found under the
topic System Generator Utilities.

Displaying and Changing Versions of System Generator

It is possible to have several versions of System Generator installed. The MATLAB
command x1Version displays which versions are installed, and makes it possible to
switch from one to another. x1Version is useful when upgrading a model to run in the
latest version of System Generator.

Entering "x1Version"in the MATLAB console displays the version of System Generator
that is installed.

Available System Generator installations:
Version 13.1.4000 in C:/Xilinx/13.1/ISE DS/ISE/sysgen
Current version of System Generator is 13.1.4000

System Generator for DSP Getting Started Guide www.xilinx.com 23
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 2: Installation

& XILINX.

24

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.
Chapter 3

Release Information

System Generator for DSP release information can now be found in the following Web-
based document:

ISE Design Suite 13: Release Notes Guide

System Generator for DSP Getting Started Guide www.xilinx.com 25
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_ise13-1_releasenotes_knownissues.htm

Chapter 3: Release Information

& XILINX.

26

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Chapter 4

Getting Started

Introduction

This Getting Started training consists of six short lessons that introduce you to major
features of System Generator for DSP. Each lesson takes less than 10 minutes to read and is
followed by one or more hands-on lab exercises. The lab exercise folders are located in the
System Generator software tree and contain data files and step-by-step instructions.

If you have System Generator installed on your computer, you can complete each lab
exercise at your own pace and on your own time schedule. If you do not have System
Generator installed, you can access this free training in a recorded e-learning format
through the Xilinx web site at the following location:

http:/ /www.xilinx.com /support/training /rel /system-generator.htm

The lessons contained in this Getting Started are as follows:

Lesson 1 - Design Creation Basics: Introduces the basics of creating and
implementing a DSP design using System Generator.

Lesson 2 - Fixed Point and Bit Operations: Covers the use of the System Generator
routing blocks for extracting and manipulating the individual bits of a fixed-point
signal.

Lesson 3 - System Control: Covers the preferred methods for using System Generator
to create finite state machines, logical control conditions, and the handling of bursty
data typical of FFT and filtering operations.

Lesson 4 - Multi-Rate Systems: Shows the proper way to create multi-rate systems
using upsampling and downsampling of data.

Lesson 5 - Using Memories: Covers proper usage of the Xilinx block RAM resources
and the DSP blocks available for building DSP designs targeting Xilinx RAMs.

Lesson 6 - Designing Filters: Discusses methods for creating efficient FIR filters in the
Xilinx devices, use of the FIR Compiler block for filter implementation, and use of the
FDATool for filter design.

System Generator for DSP Getting Started Guide www.xilinx.com 27

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com/support/training/rel/system-generator.htm
http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Lesson 1 - Design Creation Basics

The System Generator Design Flow

System Generator works within the Simulink model-based design methodology. Often an executable spec s created
using the standard Simulink block sets. This spec can be designed using floating-point numerical precision and
without hardware detail. Once the functionality and basic dataflow issues have been defined, System Generator can
be used to specify the hardware implementation details for the Xilinx devices. System Generator uses the Xilinx
DSP blockset for Simulink and will automatically invoke Xilinx Core Generator™ to generate highly-optimized
netlists for the DSP building blocks. System Generator can execute all the downstream implementation tools to
product a bitstream for programming the FPGA. An optional testbench can be created using test vectors extracted
from the Simulink environment for use with ModelSim or the Xilinx ISE® Simulator.

SysGen Design Flows
Algoiithm or CORE RTL
Sgpec in Generstor . ; »
Sirulink IP Logic Design
¢ ISE Foundation
.) Implementation &
HOL Co-simulation
wih ISE / ModzISim | o Verification
simulators System Generator for DSF and AccelDSP
XtremeDSP Development Tocls ‘P
Fardware .
|_Co-simulation Embedded Embeddad
Developers Kit P Catalog
SDK Platform Studio
Embedded Software Embedded Hardwars
28 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 1 - Design Creation Basics

The Xilinx DSP Blockset

The Xilinx DSP blockset is accessed via the Simulink Library browser which can be launched from the standard
MATLAB toolbar. The blocks are separated into sub-categories for easier searching. One sub-category, “Index”
includes all the block and is often the quickest way to access a block you are already familiar with. Over 90 DSP
building blocks are available for constructing you DSP system.

The Xilinx DSP Blockset

Fle Edit Debug Desktop Windows Iielp

REEIL L R YT

. Over 90 DSP building
blocks available

=) Simulink Library Browser =13
Fils Edt View Heb
. Blocks are accessed [0 |Frmae— s
through the Simulink Library g | poimemel well
Browser T kv e[e
— T Statefow g Addsue -
- B =0 an & Broces Addressaile Shift Register
- This can be launched from - M -
the MATLAB toolbar e e
= Communication
L control Loci: [occompierze
Lo B o
F-Data Types [conrocas
5 L] criescore
Math Clock Enasle Prose
ol ||
5::::'-' emary H :i?p:::;l‘.mllr 31
—Tools
— T Miinx Reference Blockset D Complax Muhigliar 4.0
- B 2o MaremeDSP Ka = ﬂ Camplex Multislier 5.0 =
Showing: Xiinx Blocksetindes A
System Generator for DSP Getting Started Guide www.xilinx.com 29

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

30

Chapter 4: Getting Started & XILINX.

Defining the FPGA Boundary

System Generator works with standard Simulink models. Two blocks called “Gateway In” and “Gateway Out”
define the boundary of the FPGA from the Simulink simulation model. The Gateway In block converts the floating

point input to a fixed-point number. You double-click on the block to bring up the properties editor which is where
the fixed-point number can be fully specified.

Defining the FPGA Boundary

The FPGA boundary iS deﬂned Use a Xilinx “Gateway Use a Xilinx “Gateway

- « ” In"to define the FPGA QOuf” to definethe FPGA
by the Xl“ﬂX Gateway ln and boundary input boundary Output
“Gateway Out” blocks

The “Gateway In” block
. . . dln
converts the floating-point input @ T e
to ﬂxed-pO”Tt | FIR Compiler 4.0 Scope
- Saturation and rounding l $
modes are defined = ==
The “Gateway Out’ blOCK [s vt
converts the FPGA outputs | ...~
back to double precision o [O
:}:!T!:m (%) Round furbissed: /- Irf)
oK_J[cawe J[Hw |[o |

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 1 - Design Creation Basics

Adding the System Generator Token

Every System Generator diagram requires that at least one System Generator token be placed on the diagram. This
token is not connected to anything but serves to drive the FPGA implementation process. The property editor for
this token allows you to specify the target netlist, device, performance targets and system period. System Generator
will issue an error if this token is absent.

Adding The System Generator Token

Every design must include a
System Generator Tokin Y S gy W B
Sets the global netlisting i i
options required for FPGA
implementation $

- Targetdevice / Ees

- VHDL/ Verilog RTL meme=mrr=ms
~ Clock performance ?*J glm ﬁ[

Each System Generator

rdesign mustinclude the

“System Generator” Tokin
requirements pee e J——

' |
- Downstream toolflow e s JTheSimulinkSystemPen’od
B

ok Erabes must be set correctly for
simulation to work

[Provise clock aasbis ciaer pin

/ﬁ,—-—-—""—j
Simaslink system pariod (sec)

System Generator for DSP Getting Started Guide www.xilinx.com 31
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Creating the DSP Design

Once the FPGA boundaries have been established using the Gateway blocks, the DSP design can be constructed
using blocks from the Xilinx DSP blockset. Standard Simulink blocks are not supported for use within the Gateway
In / Gateway out blocks. You will find a rich set of filters, FFTs, FEC cores, memories, arithmetic, logical and bitwise
blocks available for use in constructing DSP designs. Each of these blocks are cycle and bit accurate.

Creating the DSP Design

All the blocks in the Xilinx DSP blockset are available for creating DSP
designs targeting FPGAs

- Over 90 blocks are available

- Basic building blocks such as arithmetic and logical operators

- System Generator IP blocks such as FIR compiler, FFT, CIC compiler and efc...

These blocks leverage Xilinx IP generators to produce optimal results for
Xilinx devices

2

Thigs .I
® AgdSub Accurmsice

M [@ F [-l

Random Gateway In it = L Gateway Out B-FFT
Number Agdremstie Snift Bagivier Spectrum
Scope
s fm —} v
e,
32 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 1 - Design Creation Basics

Generating the HDL Code

Once the design is completed, the hardware implementation files can be generated using the Generate button
available on the System Generator token properties editor. One option is to select HDL Netlist which allows the
FPGA implementation steps of RTL synthesis and place and route to be performed interactively using tool specific
user interfaces. Alternatively, you can select Bitstream as the Compilation target and System Generator will
automatically perform all implementation steps.

Generating the HDL Code

T it)

e oo s ma Once complete, double-click
A QAM System with Packet Framing and FEC for Telemadry Channels
the System Generator token

J System Generator: bandpass_filter

COEm

Compilation :
E““D; Hietist T — |

Part:
[=]fvites xcavexzrst-ammise

Select HDL Netlist as the

Synthesis tool : L]

compilation mode ber = v, B
I Creats testbench = it s configurate sutsyste
Select the target part Terge arectoy

. Set HDL language E— —

Set the FPGA Clock Period
Check Create Testbench ousea | [x| [T eww | [[camon |- s |
. Generate the HDL

Ger-arml O | Apgply | Cmcel] Heilp |

If the Create Testbench option is selected, then System Generator will save and write test vector files that are
extracted from the Simulink simulation and generate an HDL testbench and script files for ModelSim. This is an
optional step that simply verifies that the generated hardware is functionally equivalent to the Simulink simulation.
The script files must be used with ModelSim interactively.

System Generator for DSP Getting Started Guide www.xilinx.com 33
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Model-Based Design using System Generator

Model-based design refers the design practice of creating a high-level executable specification using the standard
Simulink blocksets or MATLARB first to define the desired functional behavior with minimal hardware detail. This
executable spec is then used as a reference model while the hardware representation is specified using the Xilinx
DSP blockset.

Model-Based Design using System Generator

. System Generator extends the
model based design environment
of Simulink for FPGA Design

- Firstdevelop a high-level

satellite.gif R Input Image Edges | ‘\;';:l::r

Image From File Sobel Edge Detection Executable Specification/Edges

executable spec using standard ENaE i i
Simulink blocks e e s L

- Create an FPGA specific
iImplementation using System
Generator

- Use Simulink to compare for | zommemn,
functional and fixed-point ‘
differences

p
34 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Lesson 1 - Design Creation Basics

Creating Input Vectors using MATLAB

Simulink is built on top of MATLAB allowing the use of the full MATLAB language for input signal generation and
output analysis. You can use the “From Workspace” and “To Workspace” blocks from the Simulink Source and Sink
libraries. Input values must be specified as an n rows x 2 column matrix where the first column is the simulation
time and the second column includes the input values. This is a very popular way to generate input vectors for

System Generator designs.

The Simulink “From Workspace™
block provides a convenient way to
generate input stimulus for Simulink
designs
- Data must be in the form of a 2xn
matrix
Column 1 = time values

Simulink “From
Workspace” block

AY
\ iA

Column 2 = data values) . <.
- Often this is a more descriptive) o
approach and does not require d .
sourcing a MATLAB file prior to [1:10%:sin(2°pi"(0:.01:11]
simulation
Column of Column of
time values data values

o)

Gatewsy Qut

Soope

-) Scope

orpp hBEE &

System Generator for DSP Getting Started Guide www.xilinx.com

UG639 (v 13.1) March 1, 2011

35

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Lesson 1 Summary

* You partition the FPGA design from the Simulink “system” using Gateway In /
Gateway Out blocks.

* You always include a System Generator token on each sheet
¢ You should only use blocks from the Xilinx DSP blockset between the gateway blocks

¢ You should consider using the From / To workspace blocks to use MATLAB for input
generation and output analysis

Lab Exercise: Using Simulink

In this lab, you will learn the basics of Simulink. You will use a Simulink blockset to
generate a simple design and take it through simulation. You will then change the
sampling settings to see its effect on the output. You will then learn how to create a
subsystem.

The lab instructions are located in the System Generator software tree at the following
pathname:

<ISE Design Suite trees/sysgen/examples/getting started training/labl/lab
1.pdf

Lab Exercise: Getting Started with System Generator

This lab introduces you to the basic concepts of creating a design using System Generator
within the model-based design flow provided through Simulink. The design is a simple
multiply-add circuit.

The lab instructions and lab design are located in the System Generator software tree at the
following pathname:

<ISE Design Suite trees/sysgen/examples/getting started training/lab2/

36

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Lesson 2 - Fixed Point and Bit Operations

Lesson 2 - Fixed Point and Bit Operations

Fixed-Point Numeric Precision

System Generator supports three data types, Unsigned for positive only DSP operations, Signed which is two’s
complement used for DSP operations that involve negative numbers and Boolean for 1-bit control signals. Each
block will typically have quantization parameters. The initial quantization is defined by the Gateway In blocks.

The Xilinx “Gateway In" block
will convert the Simulink
“double” datatype to fixed-
point numeric precision

off numerical precision for
hardware efficiency

System Generator supports
unsigned (ufixed) and two's
complement (fixed)

- Use *fixed” for negative
numbers

Reduced dynamic range

- Fixed-point arithmetic trades Do |

ﬂ dowbie Fox 18 14
Sine ,:::./:“_: Gateway In
UNSIGNED TWO'S
COMPLEMENT
Bit Pattern Decimal | Bit Pattern

15 1111 0111
14 1110 6 0110
13 1101 5 0101
12 1100 4 0100
11 1011 i o011
10 1010 2 0010
9 1001 1 0001
8 1000 0 0000
7 0111 -1 1111
& 0110 2 1110
] 0101 L 1101
4 0100 -4 1100
3 0011 . 1011
2 L] =6 1010
1 0001 -7 1001
0 0000 -5 1000

Fixed-Point Numeric Precision

System Generator for DSP Getting Started Guide www.xilinx.com
UG639 (v 13.1) March 1, 2011

37

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

System Generator Fixed-Point Quantization

Xilinx fixed-point data types are defined by specifying the total number of bits then specifying the location of the
binary point. The difference, which represents the number of bits to the left of the binary point, are the integer bits
for ufixed numbers and the integer bits plus sign bit for signed numbers. Xilinx FPGAs do not require that fixed-
point numbers fall in pre-defined 8 bit boundaries as is the case with DSP processors. The logic can grow bit-by-bit

to accommodate the required fixed-point precision.

A

System Generator supp orts the following
fixed-point data types

- Sigred (&'s Complement]
Required for negative numbers
- Unsigned

Prowides a greater range with same
hardware when numbers are all postive

To optimize the dynamic range of a number

2 2 [El 2 3 -4 5 - & E & a0 11 17 13
-2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
KN 2 5D E N N N N RN EN BN EN N EN K R
\ﬁf "
Integar Fraction
L
Ward Length

ports

Crradfiow

Output type
0 Bolean
Hismber of bty
By powt
Cusntization

0 Trarcate

O Wrp (8

Smmple pesiod 1

System Generator Fixed-Point Quantization

@ Gateway In (Xilinx Gateway In} E@El

Gaterway i blocks Cornrars inputs of fype Semulirk irbeger_ doubls and
Hmesd port. 1o Wik frend poirt bype

Harttwien riobes: In handwan Sess bicks Bbcoma of ke input

Basc Implamant stan

@ Sened (s comp) (0 Unsigred
6
(=) Found frkissed: -)

Satarate 1) Fag s emor

I |

- Use aminimal # of integer bits to Fractional Bits Fractional Values Available
accommodate the range of possible values 1 005
- Use aminimal # of fraction bits to 2 0, 0.25, 0.5, 0.75
accommodate acceptable precizion 3 0125, 0.25, 0.375. 05, 0.625. 0.75,
0.875
38 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Lesson 2 - Fixed Point and Bit Operations

Overflow and Round Modes

System Generator supports the overflow modes Wrap, Saturate and Flag as error. Wrap is the default because it has

the least cost in hardware. Saturate requires System Generator to insert logic to perform that operation and

therefore should only be used when necessary for the application

System Generator supports Truncate and Round of the LSB during the quantization process. Similar to the Wrap

mode for overflow mode, Truncate has minimal hardware cost and is the default. Specifying the Round mode
requires System Generator to insert extra logic and should be used when only necessary for the application.

Overflow

M5B of a number

nurmber
- Wrap — the MZH's are dropped

L5B ofa number

lost

walue (round)

- Defines how system Generator handles the

When a number i2 too large to be
represented by the integer bite ofa

simple to implementin hardvware

- Saturate — The result iz set to the maximum e
) Tuncate (%) Round funbiased: +/- Inf)
value
. .. . Onwrefiomw
Requires additional logic e S
Round Mode

When a floating-point number is converted
to fixed-point, "unnecessary’ precision Is

- Users must decide to "cut the precision off’
{truncate] or to round to the nearest precision

Overflow and Round Modes

........

Quantization:

- Defines how System Generator handles the

Cveflow mode

affects the MSE the LSB

2 R T TR S S S R

-2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 12

Clefelefe ol fefe el e ool o]]
b

L — -

L Frzza

Round mode affects

System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

www.xilinx.com

39

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Bit-Level Operations

In a real DSP hardware system, not all operations can be expressed mathematically. Often a signal must be accessed
by its individual bits. System Generator supports a set of bit-level operations that allow the reinterpret, combining,
conversion and extraction of the individual bits of a signal. This can be used to pad, unpad and slice off the bits of
a signal with a high degree of control. These blocks do not use any hardware resources

Bit-level Operations

Implementing a DSP design in hardware will typically
require some operations to be performed at the bit level

System Generator support blocks to perform the following
bit-level operations:

- Reinterpret unsigned data as signed or the converse

- Combine two data buses together to form a new bus

- Convert a fixed-point data type to a new fixed-point data type
- Extract certain bits of data, especially when there is bit growth

40 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 2 - Fixed Point and Bit Operations

The Reinterpret Block

The Reinterpret block forces the bits of a signal to a new type without regard for the numerical value or location of

the decimal point. This block does not change the number of bits of a signal but simply reinterprets the data type.
For example if the number 4 is represented as an unsigned [4 1] it is 1000. If this number is reinterpreted to be
unsigned [4 0], the 1000 is now 8.

Reinterpret Block

Forces the output to a new type without regard for the numerical
value represented by the input

The total number of bits in = total number of bits out

Allows unsigned data to be reinterpreted as signed data and the
converse

Allows scaling of the data through repositioning of the hinary point

- "1000" quantized to unsigned [4 1] =4
- 1000 reinterpreted to unsigned [4 0] =8

P Scopm
&8 |~

I S

1
a
1
8
[

ah 0 -] E] 4 =0 oEm W W XN i
T bt &

System Generator for DSP Getting Started Guide www.xilinx.com
UG639 (v 13.1) March 1, 2011

1

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

The Convert Block

The Convert block changes the quantization of a number but not the value. This block can alter the number of bits
used to represent a number. It can be used to convert a signed type to an unsigned type and visa versa. Often the
Convert block is used to truncate the output fractional bits after a multiplication operation.

Convert Block

converts each input sample into a number of a desired

arithmetic type

- Converts a number to a signed (twos complement), unsigned
value, or Boolean

- The total number of bits and the binary point are user specified
- Overflow and quantization options apply to the output value

@ W XN W & W 0 ™ W W
Trncfipst O

42 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 2 - Fixed Point and Bit Operations

The Concat Block

The Concat block concatenates two inputs into a single output at the bit level. This block has two input ports that
are labeled hi and lo. The hi port occupies the MSB’s and the 1o input occupies the LSB’s of the output signal.
This block is useful for zero padding the MSBs or LSBs of a signal.

Concat Block

concatenates two inputs up to 16 bits
Allinputs must be unsigned integers
- Thatis, unsigned numbers with binary points at position zero

The Reinterpret block provides signed-to-unsigned conversion
capabilties that can extend the functionality of the concat block

4 |Seope - Bl=
&8 FPPR ARE AW -
1;|m"i.—.————.——.——

110

System Generator for DSP Getting Started Guide www.xilinx.com 43
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Slice Block

The Slice block is used to access individual bits of a quantized number. This block provides several mechanisms by
which the sequence of bits can be specified. If the input type is known at the time of parameterization, the various
mechanisms do not offer any gain in functionality. If, however, a Slice block is used in a design where the input data
width or binary point position are subject to change, the variety of mechanisms becomes useful. For example, the

block can be configured to always extract only the top bit of the input, or only the integer bits, or only the first three
fractional bits.

Slice Block

. Slices off a sequence of bits from the input data to create a new data value
The output data type is unsigned, with its binary point at zero
- One bit slices can be set to type “boolean”

A B
&E ppL AEECET .

A5

IE? |}=.1I
g Wy

44 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 2 - Fixed Point and Bit Operations

The BitBasher Block

The BitBasher block provides a textual method, based on Verilog syntax, for working with the signals at the bit
level. This block supports concatenation and slicing if the input signal to create an output. It also allows for
augmentation with constants. The BitBasher block supports up to 4 outputs that are inferred by the expressions

BitBasher Block Q.

BitBazha

a3

Bit manipulation and augmentation through

) BitBasher [Xilinx BitBasher)

textual specification =t
Basz | Cwtput Type | Advanced
- Based on Verilog syntax Pbsrsbontaon.
- Supports Concatenation, Slicing and Repeat
operators
- Allows augmentation with constants specified | ___|
as binary, decimal, octal or hex ok _J[Cocd |[b J[oo]
- At least one of the inputs must be from input Py T ———

Mo ©arprhon, concalEnaion and mapnt ataon of bats
poit -
Basic | Output Tape | Advanced

- Supports up to four outputs

it Otz e Bnary port
_ _ 1 Unsgnes v b
Mumber of Cutput type and Binary point fields .
avallable in Output Type tab depends on .
number of output equations in Basic tab
(o J[cmos J[_ ko J[e]
System Generator for DSP Getting Started Guide www.xilinx.com 45

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Lesson 2 Summary
¢ Quantization and overflow options are available when the output of a block is user
defined

¢ Quantization occurs when the number of fractional bits is insufficient to represent the
fractional portion of a value

e Overflow occurs when a value lies outside the representable range

e Bit picking blocks allow combining of multiple buses into a single bus, force a
conversion of data type without changing the number of bits, extract bits, and convert
the number into different format

¢ The BitBasher block allows bit manipulation and augmentation through textual
specification based in Verilog

Lab Exercise: Signal Routing

In this lab you will design and verify padding and unpadding logic using the System
Generator signal routing blocks

The lab instructions are located in the System Generator software tree at the following
pathname:

<ISE Design Suite tree>/sysgen/examples/getting started training/lab3/lab
3.pdf

46

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Lesson 3 - System Control

Lesson

Controlling a DSP System

When you develop a DSP system in hardware, some level of control is usually required. This may include state

3 - System Control

dependent behavior or simply performing operations such as filter coefficient updating. System-level control may
also be needed for controlling bursty data such as non-streaming FFTs.

Controlling a DSP System

Real hardware will require some
level of operational System

control

System Generator supports the
following control mechanisms

- Finite State Machines
- Bursty data flow control

- Reset and Clock Enable pins

- Logical expressions

state

transition—__

[r
close_doo open_door

transition condifion

enfry action

System Generator for DSP Getting Started Guide
UG639 (v 13.

1) March 1, 2011

www.xilinx.com

47

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

The MCode Block

The MCode block supports the use of MATLAB for implementing state dependent and branch conditional control
operations. This block is not suitable for MATLAB that describes an algorithmic operation such as a FIR filter or
Matrix inverse. The MCode block provides a convenient and efficient method for implementing state machines and
complex muxing conditions. This is the recommended way to implement a finite state machine in System

Generator.

Restrictions

The MCode Block

System Generator includes an ‘MCode Block” that supports using
MATLAB for modeling low-level hardware control structures

- MATLAB is translated in VHDL during hardware generation

- The MCocle block does not support algorithmic MATLAB - use AccelDSP
Recommended for implementing state machines in System Generator

- A state variable is declared with the MATLAB keyword persistent and must be
initially assigned with an x/_stafe function call

- All block inputs and outputs must be Xilinx fixed-point type
- The block must have at least one input port and one output port

wmas =

MCode

function g = acoum{din, rst)
init = 0;
persistent =, S=W, ¥1Signed 4,03}
y=5s;
if r=t
s=init;
el=se
B=g+din;
end

48

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 3 - System Control

The Xilinx “xI_state” Data Type

When implementing a state machine using the MCode block, a Xilinx-provided MATLAB function called “x]_state”
must be used to initialize a persistent variable. This function has two arguments, the first is the initial condition, the
second is the quantization of the assigned variable. For example, if your state machine has 6 states, you need a
quantization of 4-bits unsigned.

The Xilinx “x|_state” Datatype

"¥|_state” is a Xilinx provided MATLAB datatype that can be
used with the MCode Block to specify FSM state variables

- Vectors specified with “x|_state” will be efficiently implemented
hardware
- v = xl state(init, precision)
Init = initial value of state register after reset

Precision = a Xilinx fixed-point datatype defined for the MCode
block:

- x1Unsigned(<word length>,<binary point>)
- x18igned(<word length>,<binazxy point>)

System Generator for DSP Getting Started Guide www.xilinx.com 49
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

State Machine Example

The figure below shows a simple 2-state FSM. This can be easily extended to more states. Notice that a variable
called “state” is declared to be persistent and is initialized to 2 bits, unsigned using the “x1_state” function. A
switch-case statement is then used to decode the inputs, branch to the next state and assign the outputs.

State Machine Example

function [ocutl] = fsm(inl)
The following simple FSM persistent state,
state=xl state (0, {x1lUnsigned,2,01}):
example shown how the MCode e e
block can be used to implement a Sy e
finite state machine i
. This example can be easily e
extended to include more complex e
behavior =
if inl==0
If in1==1 outl=1;
state=0;
else
ifint <=0 i
end
otherwise
state=0;
If in1 == outl=0;
end
50 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 3 - System Control

The Expression Block

The Expression block performs a bitwise not, and, or & xor on two input signals. The inputs can have a word length
greater than 1. In cases where the two inputs have different word lengths, the binary points are matched up and
then an element-by-element boolean operation is performed. This block provides a useful way to implement logical
control in a DSP system

The Expression Block

. The expression block provides an
easy way to implement logical -
control using expressions &
Number of input ports is inferred
from the expression

- "a&b|c"=3inputs

Expression

[} Expression (Xilinx Bitwise Expression Ev... E|@E|

Basic | Output Type | Advanced | Implementation

Operator Symbol Exprossion a7

[¥] Mg binary poant

Precedence 1) S

NOT - [Provide ensble port
Latency |0

AND &

OR |

YOR N Ok [cace || e |[Feew

System Generator for DSP Getting Started Guide www.xilinx.com 51

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Reset and Enable Ports

Most System Generator blocks that include memory or storage provide options to expose the reset and clock enable
ports. If un-selected, these ports are automatically connected to the final hardware's global reset and clock enable or
DCM schemes. Exposing these ports on the System Generator block creates a condition where the block is reset or
enabled when either the global signals or the local signals assert TRUE. You should use these ports if greater control
over these functions is required in the DSP system.

Reset and Enable Ports

. System Generator . i

blocks that include B ap Cow e
A&n

Storage genera”y Oﬂ:er Accumulator Accumulator] Accumulaton

the optionto add a
reset and clock enable o
pln L / Optional Ports

_ The signals driving e 2 e e

thes% ports m}:lst be of — L
type “boolean

52 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 3 - System Control

Bursty Data

Several of the more complex DSP blocks offered in the Xilinx DSP blockset result in “bursty” data. For example, the
non-streaming FFT requires several clock cycles to process the input data prior to generating valid output data. In
these cases, these blocks include data flow control ports that must be used in the DSP system. These ports provide
basic push mode dataflow control. They consist of a vin port which indicates that valid data is available at the
inputs and vout which indicates that valid data is available at the outputs.

Bursty Data

Often the dataflow through the

system is not continuous but ofdin dout}s
rather comes in “bursts” (’“‘m J"@
_ Non-streaming FFT Interleaes Deimterle avar v8_D

Resource shared FIR Filter

In these cases the user will need Blocks that have valid bit modeling:
to implement dataflow controlinta ~ § s (ePtional

the System Generator diagram » Reed-Solomon Encoder/Decoder
» Viterbi Decoder
System Generator blocks that » Convolutional Encoder

])) » Interleaver/Delnterleaver
require extra data processing tme . c1c

will include two flow contral ports
called“vin” & “vout’

System Generator for DSP Getting Started Guide www.xilinx.com 53
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Lesson 3 Summary

e Use the MCode block for state machines and branch conditional logic
e Use the Expression block to implement logical control at the bit level

e Storage elements have the ability to include optional reset and clock enable pins that
can be connected in System Generator

e Blocks that operate on bursty data include data flow control pins called vin and vout

Lab Exercise: System Control

In this lab you will be creating a simple state machine using the MCode block to detect a
sequence of binary values “1011”. The FSM needs to be able to detect multiple
transmissions as well, i.e., “10111011”

The lab data and instructions are located in the System Generator software tree at the
following pathname:

<ISE Design Suite tree>/sysgen/examples/getting started training/lab4/

54 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 4 - Multi-Rate Systems

Lesson 4 - Multi-Rate Systems

Creating Multi-Rate Systems

The following illustration shows a typical base-station receiver. The tower has multiple antennas to provide
sectored coverage of the area. The diagram shows that this results in two receiver channels. In each of these
channels, there is some form of complex mixing, resulting in real and imaginary channels.

Often DSP systems such as this will down sample the input signals prior to the digital filtering steps performed
during equalization and demodulation. Doing so can simplify the filter design and hardware significantly. These
systems are referred to as “multi-rate” systems

Creating Multi-Rate Systems

Down-sampling and up-sampling data through a DSP systemis a
common approach to improving hardware efficiency

- A common example, shown below, is a wireless hase station

System Generator supports the design of multi-rate systems through rate
changing blocks

Equalization Demodulation —

Equalization| |Demodulation—

Sample Rates 40-150 MHz 5-40 MHz 500 kHz - 10 MHz

-+ Ll Ll L

System Generator for DSP Getting Started Guide www.xilinx.com 55
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Up and Down Sampling Blocks

System Generator includes Up Sample and Down Sample blocks that change the system sample rate. The Up
Sample block adds additional samples to the signal to achieve the desired rate change. The value of these new
samples is either zero or the value of the last actual sample depending on the block options. The Down Sample
block simply discards samples until it achieves the desired rate change. For example, downsample by 3 means to
discard 2 out of every 3 samples.

Up and Down Sampling Blocks

* Use the “Up Sample™ and “Down Sample” blocks to change the rate of a
signal in System Generator

*The up sample can either replicate the same number M-1 times or
insert M-1 zeros to achieve the higher sampling rate

’E> 0 T T T Up Sample

Up Sample by 3 0

*The down sample “throws away” M-1 samples to achieve the
lower sampling rate

)

Al GT??T?TT onsamele § | T

Down Sample

56 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Lesson 4 - Multi-Rate Systems

Rate Changing Functional Blocks

In addition to the straightforward “Up Sample” and “Down Sample” blocks, System Generator also provides rate
changing functional blocks; that is blocks that also perform a specific function. The Parallel to Serial block will up
sample, the Serial to Parallel block will down sample, the FIR Compiler, if using a resource-shared multiplier will

down sample and the TDM block will up sample.

Rate Changing Functional Blocks

The following functional blocks will also change the rate of a DSP system

Parallel to Serial: The output rate will be M-times faster,
where M is the width of the input parallel data

Ap

s

Farallel t> Senal

Serial to Parallel: The output rate will be M-times slower,
where M is the width of the output parallel data

s

P

Serial to Parallel

FIR and FIR Compiler: Can be used as a pelyphase
interpolation or decimation FIR

i rdfz

FIR Compilar4D

da it

vk

The Time Division Multiplexer block mulliplexes values
presented at input ports into a single faster rate output. The

up sample rate is determinad by the number of input

EL-d

3

Tima b

gl o n Blaibipla-ar

System Generator for DSP Getting Started Guide www.xilinx.com
UG639 (v 13.1) March 1, 2011

57

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Viewing Rate Changes in Simulink

Simulink supports viewing different sample times as different colors which is fully supported for System Generator
blocks. To enable the Sample Time Colors feature, select the pulldown menu Format > Sample Time Colors. The
Simulink tool does not automatically recolor the model with each change you make to it, so you must select Edit >
Update Diagram to explicitly update the model coloration. To return to your original coloring, disable the sample
time coloration by, again, choosing Sample Time Colors.

Viewing Rate Changes in Simulink

Sample rates can be displayed in different colors using Simulink
- Use the pull down menu command (Format — Sample Time Colors)

. The actual sample rate of a particular wire can be displayed using
the “Sample Time” (ST) block in the Xilinx Blockset

- Use the Simulink display block to view the output of the sample block
- Does not add hardware to the design

Py e e - > fin

L g Mgy PR - " fin

Colors give an overall vt
impression of the systems rate
changes
The "Sample Time" block connected to
a Simulink display block reports the
actual sample rate on a wire
58 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 4 - Multi-Rate Systems

Debugging Tools

System Generator provides 3 debugging utilities to assist in debugging complex multi-rate systems.

The Sample Time (ST) probe can be connected to any System Generator signal then to a Simulink “display” block
from the “Sinks” library. The sample time for the connected net will appear in the display.

The c1k probe is not connected to any inputs but only to a scope output. It displays the master clock. This can be
used with the Clock Enable Probe to display the behavior of the clock enable signal at various points in the down
sampling

Debugging Tools

The “clk” probe and the “clock enable probe” can be used to view the
behavior of the multi-rate system

- These blocks add no logic
- Their outputs can be connected directly to a Simulink sink block

) Scope EIEIE
&B L. ARE BAS =

X

2
Li]
1

> 4

F

e 7
G o

In > T2 - » O I—p
Sine Wave Gutawzy in Dout
Up Sample
Clodk Enable Probe CE Out
[ow]

Clock Enable Probed CEZ Out

System Generator for DSP Getting Started Guide www.xilinx.com 59
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

Sample Period “Rules”

The illustration below is an example of a multi-rate system that demonstrates how the Simulink System Period can
be calculated and entered into the System Generator token GUL

If you get it wrong, there is a sampling period analyzer that automatically determines the appropriate sample
period and prompts you to update the GUIL

Sample Period “Rules”

The system period is the global sample period from which all other

sample periods can be derived
- The System Period is set in the System Generator token

Every sample period in a design must be a multiple of the system

period

256 tap - 3
FIR J'

OutReg

LowP a53F IR

Block OQutput X Up Sample Down Sample
Sarmple Period 1 15 15
Sarmple Period (GCD) 202 142 32

60

www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 4 - Multi-Rate Systems

Lab Exercise: Multi-Rate Systems

In this lab you will be exploring the effects of the rate changing blocks available in System
Generator. These blocks include Upsample, Downsample, Serial to Parallel and Parallel to
Serial.

The lab instructions and lab design are located in the System Generator software tree at the
following pathname:

<ISE Design Suite trees/sysgen/examples/getting started training/lab5/

System Generator for DSP Getting Started Guide www.xilinx.com 61
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Lesson 5 - Using Memories

Block vs. Distributed RAM

Xilinx FPGAs offer two distinct memory options, Block RAM and Distributed RAM. Block RAM uses dedicated, on-
chip, hardware resources and represents the most area-efficient RAM implementation. Block RAMs offer high
performance but due to their fixed location on the chip, may incur slightly larger routing delays. Distributed RAM
uses the lookup tables in the FPGA slices to implement memory and in doing so will subtract from the slices
available for logical operations. Because Distributed RAM can be located anywhere throughout the chip, routing
delays can be minimized and slightly higher performance can be achieved. Distributed RAM is an excellent option

for small FIFOs.

Block vs. Distributed RAM

Xilinx devices offer two
implementation options for
RAMSs. FIFOs and ROMs Distributed RAM/SRL16 | On-chip BRAM/FIFO

- Block RAM —uses dedicated on-
chip RAM resources
+ More area efficient

- Distributed RAM — uses the
FPGA lookup tables

Higher performance
. * Very efficient, localized memory | + Efficient, on-chip blocks
+ SUb tFEiICtS from available area * Minimal impact on logic routing | + Flexible + optional FIFQ logic
for logic + Great for small FIFOs + Ideal for mid-sized FIFOs/buffers

System Generator RAM, FIFO
and ROM blocks support either
implementation

62 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 5 - Using Memories

Initializing RAMs and ROMs

The RAM and ROM blocks can be initialized to a 1xn vector that matches the depth of the RAM. MATLAB is used

to set the initial value vector. Any MATLAB statement can be used that results in a 1xn vector including the file
reading commands such as imread, auread, wavread, and load.

Initializing RAMs and ROMs

MATLAB statements are used to
initialize the RAMs and ROMs. T ——— i
- Statement must create a 1xn vector Basic | CutpkType | ndvencsd | Imglsmentatin |

Loading a text file Depth [ico

I Inibal val e vector |bac['fibnsn:.t:l_‘:||

- lasdiltilenawz. bxf’
Mernnry Tvpe:

Using a MATLAB statement I IDbtrintedmenery ¢ BockRAM
Cplional Forts
C AT (T AR
SAm.RLT (0 HA6) I™ Arcvide recet port for oukput regitsr
. Reading other file formats el valas or outpus: reater [0
L I Provide enable port
- Ancan
. Latency |1
- avirnsd
- waxrand o | coxe = 2
- Lread

System Generator for DSP Getting Started Guide www.xilinx.com
UG639 (v 13.1) March 1, 2011

63

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

System Generator RAM Blocks

System Generator provides both a single- and dual-port RAM block. Depths up to 64K are supported. Both
Distributed RAM and Block RAM implementation options are available. System Generator calls the Xilinx memory
compiler to create an efficient memory structure in hardware for the given parameters, bit widths and depths. You
don’t need to be concerned with the hardware details of the specific Virtex® block or Distributed RAM structure.
Both the single- and dual-port RAM blocks support initialization. The signal connected to the address port of a

RAM must be unsigned with no fractional bits.

. System Generator offers
both single and dual port
RAM blocks

Options include selection
of “Black” vs. "Distributed’
implementation options

. These blocks call the Xilinx
IP memory generator to
create efficient RAM
implementations for any
depth and bit widths

System Generator RAM Blocks

Daal Fen KAM

2)cingle Pork LAM {¥ling Single Nort I Py [od [
D5 I Bilve 1 il I Tupreneulalin I
Depth |18

Ink &l waue vectar |sln-jpr'(c:15j-,un5j-

T~

Vermery Tore:
i~ Dit-buted mzmoy % Bock RAM

JTE T CUE
i Meac Ferwiks

Cptio~cl Mork=

i Poadbororewrbs O Sorscdcnwicc

™ Peoude reset pork for cutpus reglsze:

Tl el = G il reyidier Iﬂ

I Provide enatle pot

Lazey |1

[]

Canel 1=k Appy

64

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 5 - Using Memories

System Generator ROM Blocks

The ROM block supports an implementation in either Block- or Distributed RAM and is initialized through a
MATLAB command. The signal connected to the address port must be unsigned with no fractional bits

System Generator ROM Blocks
Offers both Block RAM vs.
Distributed RAM
. I t t 0 t £2IRUM (Xiline: Single Port Read-Only Memeo =10l x|
Imp emen a Ion p Ions Basic l OUtput Tvpe I Advanced I Implamertation |
Address port must be Pt i
. R . Iratinl walue wector Ilo:dl:ﬂmame.lx:']
unsigned with no fractional Meeny Type:
bits o DH:"I:Ltsdnemy " Block RAM
Ciphional Porks
- .- Prowide reset port for cutpat register
Depth and data Mdms are 1|~:: Far ofr.s":\'l":h i
user configurable I Prose snabe pst
Lalen:yll
oK | Cancel Help Rppty
System Generator for DSP Getting Started Guide www.xilinx.com 65

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

The Delay Block

The Delay block is used to synchronize dataflow through the FPGA. This block maps to a highly-efficient shift
register structure built from a slice lookup table called an SRL16 that is 85% smaller than using registers.

The Delay Block

Use the Delay block to synchronize
the dataflow of signals through the
design

The implementation will be
constructed from “SRL16E”
primitives

- Highly efficient use of the Virtex distributed

RAM for mplementing delay elements and
shift registers

SRL16E Structure

66 www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Lesson 5 - Using Memories

The FIFO Block
The FIFO block supports both Block RAM and Distributed RAM implementations. Depths up to 64K are supported.

Three output flags are supported, empty, full and $full. The $full flag is set depending on a bit width

specification. One bit will be zero until the FIFO is 50% full, then it will set to.5. Two bits will be zero until 20% full,
then .25, .5 and .75.

FIFO Block

- - - din FET ¥
Can be implemented in either Block or Ped
Distributed RAM " s
Supports FIFO depths up to 64K L=
Supports a full” and “percentage ful’ — -
output signals aakc | e | ncenstain
B - gt E-I
- %full Specified as number of bits o e mfr v g [—]
Unsigned, fractional Optiona Ports
1 bit shows <50% or >50% full :““"“““"““
it efuabila prt
2 bits show 25% full increments R
Includes optlionel control signals g|
|
T Frovids aheos: Ful gt
;'.-:
* | e | A |

System Generator for DSP Getting Started Guide

www.xilinx.com

UG639 (v 13.1) March 1, 2011

67

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

Shared Memory Block

System Generator provides a simple abstraction for easily adding custom logic into a processor. The basic idea is to
allow memories in custom logic to be easily mapped into the processor's memory address space. System Generator
enables this through the use of Shared-Memory blocks provided in the System Generator block set.

Shared memories (RAMs, FIFQs, doth D) o
registers) allows data to be accessed I Ti
from the DSP or embedded portion of the ey Rt S S v
dESIgn . Adela_in - wll s Py
System Generator provides the {e 0w
necessary hardware interfaces and e i A N e
software drivers .t r0 “Fwirro
- Bt EERE" Aarrr
Can operate across different clock o | "
domains |
Can be campiled and co-simulated in e Fom Bogier St ey
FPGA hardware R [
Generates memory-map interfaces pr— o - q
. | ¥ Fam |
between processor and user logic Sy
MB |3 = Ll FEZ
Supports both PLB and FSL bus types ,] :m '
Prowvides APl documentation —s - - :
Frosceeor Anto Generated by Syatien
l DL Hetlist I
68 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 5 - Using Memories

Lab Exercise: Using Memories

In this lab you will learn how to use a Xilinx ROM block to implement a LUT-based
operation such as an Arcsin using Block RAM or Distributed RAM. This provides an
efficient implementation for trig and math functions with inputs that can be quantized to
10 bits or less.

The lab instructions and lab design are located in the System Generator software tree at the
following pathname:

<ISE Design Suite trees/sysgen/examples/getting started training/labé6/

System Generator for DSP Getting Started Guide www.xilinx.com 69
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

Lesson 6 - Designing Filters

Introduction

Digital filters are a common DSP operation and especially well suited to implementation in FPGAs. High-
performance applications benefit greatly from parallel filters that can return a results on every clock cycle. The
Virtex®- 5 device includes up to 550 parallel multipliers. The FIR Compiler is designed to use these multipliers in
the most efficient manner for creating commonly used FIR filters. An alternative implementation is available called
“distributed arithmetic” that creates FIR filters without using multipliers by employing a shift-add technique. This
can be used for smaller devices when the available multipliers have been allocated to other functions.

Digital filters are the most common functions found in DSP systems
The following blocks are supported by System Generator for digital

Introduction

filtering

FIR Compiler block (DSP Blockset)
DAFIR hlock (DSP Blockset)
CIC block (Reference Designs Blockset)

The digital filtering technique will depend on several factors

Sample rate

Sample width

Profile of the coefficients
Clock rate
Technological resources

70

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 6 - Designing Filters

The Virtex DSP48 Math Slice

The Virtex® family introduces a high-performance arithmetic unit along with a multiplier: the low-power DSP48

slice. The following figure is a detailed diagram of the DSP48 structure. The DSP48 slice consists of four main

sections: (1) I/O registers, (2) signed multiplier, (3) three-input adder/subtractor, and (4) OPMODE multiplexers.

The Virtex DSP48 Math Slice

The Virtex4 & 5 devices Virtex4 DSP48 Math Slice
include up to 550 DSP48 |
slices

- Performs 48 unique math
operations common to DSP
operations

. Configuration set through an
“‘opcode” input
Efficient use of DSP48 slice is
required to get high
performance and efficient
filters

System Generator for DSP Getting Started Guide www.xilinx.com
UG639 (v 13.1) March 1, 2011

71

http://www.xilinx.com

Chapter 4: Getting Started & XILINX.

FIR Compiler Block

The Xilinx Fir Compiler block implements a high speed MAC based FIR filter. It accepts a stream of input data and
computes filtered output with a fixed delay, based on the filter configuration. The FIR Compiler supports
generation of resource shared or parallel FIR structures and polyphase decimation and interpolation structures.
Also supported is oversampling. Coefficients are specified using MATLAB commands.

FIR Compiler Block
. The Xilinx FIR Compiler block o
implements a high speed MAC
based using e
DSP48/DSP48E/DSP48A e
primitives or Distributed Arithmetic :mmﬂ«fj
FIR filters pp— -
Supports polyphase decimation, e e
polyphase interpolation and over CN—
sampling implementations S
I
o
|E|l'“='-'li‘h*Hmwiﬂiiﬂbﬁ_"mmm}‘mr‘ fanzer_chanvisiel]
72 www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Lesson 6 - Designing Filters

Creating Coefficients with FDATool

The MathWorks FDATool is a graphical filter design program that can be used to generate coefficients for the FIR
Compiler block. The Xilinx FDATool block provides an interface to the FDATool software available as part of the
MATLAB Signal Processing Toolbox. In order for this block to function properly, the Signal Processing Toolbox

must be installed.

Creating Coefficients with FDATool

dout

Provides an inteface to the ETEd P SR]
FDATool software e s
Enablesthe use of The e p
Mathworks FDATool for &
creating filter coefficients =
graphically
Provides a powerful means Seen PeriOhinngs sa-snemae
for defining digital filters with -
GUl = o bl "i':"i il TR
Coefficients can be ‘exported’ || S |
to either the MATLAB = = [—
workspace or a text file B e e e [

" -

::.., Lossmrur |

System Generator for DSP Getting Started Guide www.xilinx.com 73

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

Using FDA Tool Coefficients

Once a suitable filter response has been designed, you simply export the coefficients to the workspace using the
File > Export command. The workspace variable can then be referenced in the FIR Compiler properties editor

Using FDA Tool Coefficients

Export the
coefficients from
FDA Tool to the

MATLADB WOIrKSPACe | rumseceam | nosmssscen | s meisnsressn |

FDATool

/ Bleck Parameters: FDATool

SN Eot Anchsis Tasgets Yew Wincow Heb
Plew SEEE0n
Opzn Session. .
Fave Semsim

Save Tetaon L. ,f
_EmTe— [}
oLy t el

Store Finar

i

Trapeork Fiber Fram Werksg
Trapunt Fiber from 531 10X

. P 3 S

Export to Simaink Mods

aettclarts j rd
Laireate MEFbe ~

—WENADE NANES =] e”

Frint St F i

Norctr
Prird.. 14

o o

pr, [rmerrtte variskles

[F:||r] [l"lllx-.] [Hep]

Filter Compiler

£SaF Urnpaler & (RINSE FLE D omulee am)

e

o Conifiderts ™

L B I

j \ig\-\k paz =

Use the same variable name
in the Xilinx Filter Compiler
properties editar -

T TR TR

O
Parrber of chanrels
1
Eblocive rpus sample peviad (deth_mequency | tampk_hrequeny * rumber_chonnelif)
B

74

www.xilinx.com System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Lesson 6 - Designing Filters

Lab Exercise: Designing Filters

In this lab you will be using the Filter Compiler block to generate optimized filters for the
Virtex®-5 architecture.

The lab instructions and lab design are located in the System Generator software tree at the
following pathname:

<ISE Design Suite trees/sysgen/examples/getting started training/lab7/

System Generator for DSP Getting Started Guide www.xilinx.com 75
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

Additional Examples and Tutorials

Numerous examples are used to illustrate System Generator features and functions in the
System Generator documentaton. These examples are found in the directory at pathname
<ISE Design Suite tree>/sysgen/examples and are listed in the table below. In
addition to these examples, System Generator also includes demonstration models that
can be run from the demo page. Enter the following command at the MATLAB prompt:

demo blocksets xilinx

Note: If you are using the MATLAB help browser you can open and run the examples directly from
this page. To run an example, click on the link. MATLAB will change directories to the example
directory and open the example model.

AXl14 Conversion Examples

Topic

Description

How to Migrate from
Complex Multiplier
3.1 to Complex
Multiplier 4.0

Design example showing how to migrate a non-AXI4 Complex
Multiplier 3.1 block to an AXI4 Complex Multiplier 4.0 block.

How to Migrate from
DDS Compiler 4.0 to
DDS Compiler 5.0

Design example showing how to migrate a non-AXI4 DDS
Compiler 4.0 block to an AXI4 DDS Compiler 5.0 block.

How to Migrate from
Fast Fourier
Transform 7.1 to Fast
Fourier Transform 8.0

Design example showing how to migrate a non-AXI4 Fast Fourier
Transform 7.1 block to an AXI4 Fast Fourier Transform 8.0 block.

How to Migrate from
FIR Compiler 5.0 to
FIR Compiler 6.0

Design example showing how to migrate a non-AXI4 FIR Compiler
5.0 block to an AXI4 FIR Compiler 6.0 block.

Black Box Examples

Topic

Description

Importing a VHDL
Module

A tutorial showing how to use the black box to import VHDL into a
System Generator design and how to use ModelSim to co-simulate
the VHDL module.

Simulating Several
Black Boxes
Simultaneously

Shows how black boxes can co-simulate simultaneously, using only
one ModelSim license.

Dynamic Black Boxes

A tutorial showing how to parameterize the black box.

76

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Additional Examples and Tutorials

Topic

Description

Importing a Verilog
Module

A tutorial showing how to use the black box to import Verilog into
a System Generator design and how to use ModelSim to co-simulate
the Verilog module.

Importing a Xilinx
Core Generator
Module

A tutorial showing how to import a COREGEN module as a black
box.

ChipScope Examples

Topic

Description

Using ChipScope Pro
Analyzer for Real-
Time Hardware
Debugging

This tutorial demonstrates how to connect and use the Xilinx Debug
Tool called ChipScope™ Pro within Xilinx System Generator for
DSP. The integration of ChipScope Pro in the System Generator flow
allows real-time debugging at system speed.

DSP Examples

Topic

Description

DSP48 Block

Simple example demonstrating the use of the DSP48 block with the
Constant block used to provide the DSP48 instruction.

DSP48 Macro Block

Simple example demonstrating how to use a DSP48 Macro block to
implement a Complex Multiplier.

DSP48 Block

(35-Bit Multiplier
using DSP48 and

This design demonstrates the use of the DSP48 and Constant block
in implementing 35 by 35-bit multipliers at different sample rates.
Three multipliers implementations are shown at 1, 2, and 4 clocks

Constant block) per sample.

DSP48 Macro Block This design demonstrates the use of the DSP48 Macro block in
(FIR filter using the implementing a 35 by 35 Multiplier.

DSP48 Macro block as

amultiply accumulate
function)

DSP48 Block This design demonstrates the use of the DSP48 and Constant block

FIR filter examples in FIR filter implementation. The design includes sets of parallel,

using DSP48 block semi-parallel and sequential FIR filter using Type 1 and Type 2
architectures. Each filter implements a 16-tap dsp48-based FIR
filters.

DSP48 Design This design demonstrates the use of the DSP48 block in

Techniques implementing a 35-bit signed right shift using 2 DSP48s.

(DSP48-based
dynamic shifter)

System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

www.xilinx.com 77

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

Topic Description
DSP48 Design This design demonstrates how to use System Generator to
Techniques implement a synthesizable FIR filter which maps efficiently to the
(Synthesizable FIR Virtex®-4 architecture.
filter for Virtex®-4)
DSP48 Macro Block This design demonstrates the use of the DSP48 Macro block when
(FIR filter using the implementing a sequential FIR filter.
DSP48 Macro block as

amultiply accumulate
function)

MAC FIR filter This design example implements a 43 tap FIR Filter with a MAC
engine and a Dual Port Ram used for data and coefficient storage.
Complex FIR filter This example demonstrates a complex FIR filter built out of blocks

from the System Generator and Simulink library.

M-Code Examples

Topic

Description

Simple Selector

This example shows how to implement a function that returns the
maximum value of its inputs.

Simple Arithmetic
Operations

This example shows how to implement simple arithmetic
operations.

Complex Multiplier
with Latency

This example shows how to build a complex multiplier with latency.

Shift Operations

This example shows how to implement shift operations.

Passing Parameters
into the MCode Block

This example shows how to pass parameters into a MCode block.

Optional Input Ports

This example shows how to implement optional input ports on an
MCode block.

Finite State Machines

This example shows how to implement a finite state machine.

Parameterizable This example shows how to build a parameterizable accumulator.

Accumulator

FIR Blocks and This example shows how to model FIR blocks and how to do system

Verification verification.

RPN Calculator This example shows how to model a RPN calculator — a stack
machine.

Example of disp This example shows how to use the disp function.

function

78

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Additional Examples and Tutorials

Processor Examples

Topic Description
Designing and Demonstrates how to export a design from System Generator into
Exporting MicroBlaze | Xilinx Platform Studio (EDK) by showing how to design a

Processor Peripherals

peripheral (pcore) for a MicroBlaze™ processor. An RGB to gray-
scale color space converter is created and generated into a pcore
using the Export to EDK compilation target.

Tutorial Example -
Designing and
Simulating
MicroBlaze Processor
Systems

Demonstrates how to import a MicroBlaze processor created using
Xilinx Platform Studio into System Generator. A DSP48 block is
used as a co-processor to the MicroBlaze processor.

Designing PicoBlaze
Microcontroller
Applications

Demonstrates how to implement a PicoBlaze™ program in System
Generator. The example programs the PicoBlaze to alter the output
frequency of a Direct Digital Synthesizer (DDS) during an interrupt.

Shared Memory Examples

Topic

Description

Simulation across
various models

[lustrates shared memories communicating across Simulink
models.

Host PC Shared
Memory access

Developer studio project to communicate with a shared memory.

High Speed Video
Processing using
Hardware Co-

Discussion of a high-speed co-simulation buffering interface
followed by an example in which the interface is used to support
real-time processing of a video stream using a 5x5 filter kernel.

simulation

High speed I/O [lustrates high speed Shared Memory 1/0 Buffering Interface for
Buffering Hardware Co-simulation.

Generating Multiple | An example using two asynchronous clocks.

Cycle-True Islands for

Distinct Clocks

Shared Memory, To Demonstrates use of shared memories, FIFOs and registers to pass
FIFO, To Register, To | information.

Register, From

Register

System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

www.xilinx.com 79

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

Topic

Description

Frame-Based
Acceleration using
Hardware Co-
Simulation

Explains how to use frame or vector-based transfers to further
accelerate simulations using FPGA hardware co-simulation.

Tutorial Example -
Using System
Generator and SDK
to Co-Debug an
Embedded DSP
Design

Integrating a processor with custom logic such as those from
DSP designs is a fairly involved process. In this tutorial example,
you will learn how to perform hardware and software co-
debugging using System Generator and the Xilinx Software
Development Kit (SDK) together.

Timing Analysis Examples

Topic

Description

Tutorial Example:
Using the Timing
Analyzer

Explains how to use the System Generator Timing Analysis tool to
meet timing requirements of System Generator designs. Also
touches on techniques that may be used when a design does not
meet timing.

Miscellaneous Examples

Topic

Description

Importing a System
Generator Design into

Discusses how to take the VHDL netlist from a System Generator
design and synthesize it in order to embed it into a larger design.

a Bigger System Also shows how VHDL created by System Generator can be
incorporated into simulation model of the overall system.
Configurable Iustrates the use of Configurable Subsystems for Simulation and

Subsystems and
System Generator

Generation.

Integrator

This example uses an integrator to illustrate error analysis

capability.

Block RAM-Based
State Machines

Demonstrates use of Mealy State Machine block from the reference
library.

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Additional Examples and Tutorials

System Generator Demos

System Generator for DSP provides the capability to model and implement high-
performance DSP systems in field- programmable gate arrays (FPGAs) using Simulink.
The Xilinx Blockset contains bit and cycle-true models of arithmetic and logic functions,
memories, and DSP functions for digital filtering, spectral analysis, and digital
communications. System Generator converts a Simulink model of Xilinx blocks into an
efficient hardware implementation that combines synthesizable VHDL and intellectual
property blocks that have been hand-crafted to run efficiently in FPGAs.

Included with the tool are numerous demonstration designs that highlight key features
and tool capabilities, as well as general good design practices using real-world design
applications. These designs may be accessed from the System Generator demo page. Enter
the following command at the MATLAB prompt:

demo blocksets xilinx

System Generator for DSP Getting Started Guide www.xilinx.com 81
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Getting Started

& XILINX.

82

www.xilinx.com System Generator for DSP Getting Started Guide
UG639 (v 13.1) March 1, 2011

http://www.xilinx.com

Index

C

Compiling

Xilinx HDL Libraries 22
Configuring

the Sysgen cache 22

D

Downloading
System Generator 19

H

Hardware Co-Sim
installation 21

Installation
Hardware Co-Sim 21
software prerequisites 20
ISE Design Suite Installer 20

S

System Generator
Cache 22
changing versions 23
displaying versions 23
downloading the software 19
ISE Design Suite Installer 20

X

Xilinx HDL Libraries
compiling 22

System Generator for DSP Getting Started Guide

UG639 (v 13.1) March 1, 2011

www.xilinx.com

83

http://www.xilinx.com

	Return to Menu
	System Generator for DSP Getting Started Guide
	Table of Contents
	About This Guide
	Guide Contents
	System Generator PDF Doc Set
	Additional Resources
	Conventions
	Typographical
	Online Document

	Chapter 1 Introduction
	The Xilinx DSP Block Set
	FIR Filter Generation
	Support for MATLAB
	System Resource Estimation
	Hardware Co-Simulation
	System Integration Platform

	Chapter 2 Installation
	Downloading
	Hardware Co-Simulation Support
	UNC Paths Not Supported

	Using the ISE Design Suite Installer
	Post Installation Tasks
	Post-Installation Tasks on Linux
	Troubleshooting a Linux Installation
	Hardware Co-Simulation Installation
	Compiling Xilinx HDL Libraries
	Configuring the System Generator Cache
	Displaying and Changing Versions of System Generator

	Chapter 3 Release Information
	Chapter 4 Getting Started
	Introduction
	Lesson 1 - Design Creation Basics
	The System Generator Design Flow
	The Xilinx DSP Blockset
	Defining the FPGA Boundary
	Adding the System Generator Token
	Creating the DSP Design
	Generating the HDL Code
	Model-Based Design using System Generator
	Creating Input Vectors using MATLAB
	Lesson 1 Summary
	Lab Exercise: Using Simulink
	Lab Exercise: Getting Started with System Generator

	Lesson 2 - Fixed Point and Bit Operations
	Fixed-Point Numeric Precision
	System Generator Fixed-Point Quantization
	Overflow and Round Modes
	Bit-Level Operations
	The Reinterpret Block
	The Convert Block
	The Concat Block
	Slice Block
	The BitBasher Block
	Lesson 2 Summary
	Lab Exercise: Signal Routing

	Lesson 3 - System Control
	Controlling a DSP System
	The MCode Block
	The Xilinx “xl_state” Data Type
	State Machine Example
	The Expression Block
	Reset and Enable Ports
	Bursty Data
	Lesson 3 Summary
	Lab Exercise: System Control

	Lesson 4 - Multi-Rate Systems
	Creating Multi-Rate Systems
	Up and Down Sampling Blocks
	Rate Changing Functional Blocks
	Viewing Rate Changes in Simulink
	Debugging Tools
	Sample Period “Rules”
	Lab Exercise: Multi-Rate Systems

	Lesson 5 - Using Memories
	Block vs. Distributed RAM
	Initializing RAMs and ROMs
	System Generator RAM Blocks
	System Generator ROM Blocks
	The Delay Block
	The FIFO Block
	Shared Memory Block
	Lab Exercise: Using Memories

	Lesson 6 - Designing Filters
	Introduction
	The Virtex DSP48 Math Slice
	FIR Compiler Block
	Creating Coefficients with FDATool
	Using FDA Tool Coefficients
	Lab Exercise: Designing Filters

	Additional Examples and Tutorials
	AXI4 Conversion Examples
	Black Box Examples
	ChipScope Examples
	DSP Examples
	M-Code Examples
	Processor Examples
	Shared Memory Examples
	Timing Analysis Examples
	Miscellaneous Examples
	System Generator Demos

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

