

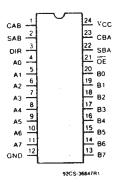
Octal-Bus Transceiver/Registers, 3-State

CD54/74AC/ACT646 - Non-Inverting CD54/74AC/ACT648 - Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 5.3 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

The RCA CD54/74AC646 and CD54/74AC648 and the CD54/74ACT646 and CD54/74ACT648 3-state, octal-bus transceiver/registers use the RCA ADVANCED CMOS technology. The CD54/74AC648 and CD54/74ACT648 have inverting outputs. The CD54/74AC646 and CD54/74ACT646 have non-inverting outputs. These devices are bus transceivers with D-type flip-flops which act as internal storage registers on the LOW-to-HIGH transition of either CAB or CBA clock inputs. Output Enable (OE) and Direction (DIR) inputs control the transceiver functions. Data present at the high-impedance output can be stored in either register or both but only one of the two buses can be enabled as outputs at any one time. The Select controls (SAB and SBA) can multiplex stored and transparent (real time) data. The Direction control determines which data bus will receive data when the Output Enable (OE) is LOW. In the highimpedance mode (Output Enable HIGH), A data can be stored in one register and B data can be stored in the other register. The clocks are not gated with the Direction (DIR) and Output Enable (OE) terminals; data at the A or B terminals can be clocked into the storage flip-flops at any time.


The CD74AC/ACT646 and CD74AC/ACT648 are supplied in 24-lead dual-in-line narrow-body plastic packages (EN suffix) and in 24-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 o +125°C).

The CD54AC/ACT646 and CD54AC/ACT648, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types leature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TERMINAL ASSIGNMENT

FUNCTION TABLE

		IN	PUTS			DATA	1/0#	OPERATION OR FUNCTION				
ŌĒ	DIR	IR CAB CBA SAB SBA		SBA	A0 THRU A7	BO THRU B7	646	648				
X	X	X	· x	X	X	Input Not specified	Not specified Input	Store A, B unspecified Store B, A unspecified	Store A, B unspecified Store B, A unspecified			
ΗH	X	∴/¯ H or L	_/ H or L	Х . Х	-> X X	Input	Input	Store A and B Data Isolation, hold storage	Store A and B Data Isolation, hold storage			
L	L	X	X H or L	X	Н	Output	Input	Real-Time B Data to A Bus Stored B Data to A Bus	Real-Time B Data to A Bus Stored B Data to A Bus			
L L	H H	X H or L	X	L H	X X	Input	Output	Real-Time A Data to B Bus Stored A Data to B Bus	Real-Time A Data to B Bus Stored A Data to B Bus			

#The data output functions may be enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (V_{∞})0.5 to 6 V
DC INPUT DIODE CURRENT, I _{if} (for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$)
DC OUTPUT DIODE CURRENT, I_{OK} (for $V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V)
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I _o (for $V_0 > -0.5 \text{ V}$ or $V_0 < V_{CC} + 0.5 \text{ V}$) $\pm 50 \text{ mA}$
DC Vcc or GROUND CURRENT (Icc or Ignp)
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55 to +100°C (PACKAGE TYPE E)
For T _A = +100 to +125°C (PACKAGE TYPE E)
For T _A = -55 to +70°C (PACKAGE TYPE M)
For T _A = +70 to +125°C (PACKAGE TYPE M)
OPERATING-TEMPERATURE RANGE (T _A)
STORAGE TEMPERATURE (Tstg)65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only+300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.

RECOMMENDED OPERATING CONDITIONS: For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERICTICS	LIN	AITS	LIMITE	
CHARACTERISTICS	MIN.	MAX.	UNITS	
Supply-Voltage Range, Vcc*:				
(For T _A = Full Package-Temperature Range)				
AC Types	1.5	5.5	V	
ACT Types	4.5	5.5	V	
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	V	
Operating Temperature, T _A	-55	+125	°C	
Input Rise and Fall Slew Rate, dt/dv				
at 1.5 V to 3 V (AC Types)	0	50	ns/V	
at 3.6 V to 5.5 V (AC Types)	0	20	ns/V	
at 4.5 V to 5.5 V (ACT Types)	0	10	ns/V	

^{*}Unless otherwise specified, all voltages are referenced to ground.

To prevent excess currents in the High-Z modes, all I/O terminals should be terminated with 10 k Ω resistors.

Technical Data

CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

STATIC ELECTRICAL CHARACTERISTICS: AC Series

	-			AMBIENT TEMPERATURE (TA) - °C						_	
CHARACTERIST	ics	TEST CON	IDITIONS	V _{cc}	+2	25	-40 to	+85	-55 to	+125	UNITS
		V, (V)	I _o (mA)	(V)	MIN.	MAX.	MIN.	MAX:	MIN.	MAX.	
High-Level Input Voltage	V _{iH}		,	1.5 3 5.5	1.2 2.1 3.85	_	1.2 2.1 3.85	 	1.2 2.1 3.85		· v
Low-Level Input Voltage	Vil			1.5 3 5.5		0.3 0.9 1.65	-	0.3 0.9 1.65		0.3 0.9 1.65	V
High-Level Output			-0.05	1.5	1.4		1.4	-	1.4		
Voltage	VoH	ViH	-0.05	3	2.9		2.9	_	2.9	_	j
		or or	-0.05	4.5	4.4	_	4.4		4.4		
		VIL	-4	3	2.58	_	2.48		2.4) v
			-24	4.5	3.94	_	3.8		3.7	_]
] (-75	5.5			3.85				
		#. * {	-50	5.5	_	_	_	_	3.85	<u> </u>	
Low-Level Output			0.05	1.5	_	0.1	_	0.1		0.1]
Voltage	VoL	V _{IH}	0.05	3	_	0.1	_	0.1		0.1]
		or	0.05	4.5	-	0.1	_	0.1		0.1] ·
		V _{IL}	12	3	_	0.36		0.44	- <u> </u>	0.5] v
			24	4.5		0.36		0.44		0.5	
		(75	5.5	_			1.65		 .]
		#, * {	50	5.5		_		<u> </u>		1.65	
Input Leakage Current	ŧ ₁	V _{cc} or GND		5.5		±0.1	_	±1		±1	μΑ
3-State Leakage Current	loz	V _{IH} or V _{IL} V _O = V _{CC} or GND		5.5		±0.5		±5		±10	μΑ
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5	_	8	_	80	-	160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissination.

power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

, , , , , , , , , , , , , , , , , , ,						AMBIEN	Т ТЕМРЕ	RATURE	(T _A) - °(С	
CHARACTERIST	ICS	TEST CO	NDITIONS	V _{cc}	+:	25	-40 t	o + 8 5	-55 to +125		UNITS
·		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	ViH			4.5 to 5.5	2		2	_	2		v
Low-Level Input Voltage	VıL	·		4.5 to 5.5		0.8	_	0.8		0.8	V
High-Level Output		V _{IH}	-0.05	4.5	4.4		4.4	_	4.4	_	
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94		3.8	<u> </u>	3.7	_]
		#, * {	-75	5.5	_	I –	3.85	_		_]
		". €	-50	5.5					3.85		
Low-Level Output		ViH	0.05	4.5	–	0.1	<u> </u>	0.1	_	.0.1	
Voltage	V _{OL}	or V _{IL}	24	4.5	_	0.36		0.44	_	0.5	v
		#, * {	· 75	5.5	_	_		1.65	, —	_	1
		")	50	5.5	_	_		_	_	1.65	1
Input Leakage Current	li	V _{cc} or GND		5.5		±0.1	_	±1	_	±1	μΑ
3-State Leakage Current	łoz	VIH Or VIL Vo= Vcc Or GND		5.5	_	±0.5		±5	-	±10	μΑ
Quiescent Supply Current, MSI	lcc	V _c or GND	0	5.5	_	8		80		160	μΑ
Additional Quiescent Current per Input P TTL Inputs High 1 Unit Load		V _{cc} -2.1		4.5 to 5.5	_	2.4	_	2.8	_	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize nower dissination.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*
CAB, CBA	1.25
SAB, SBA	1.2
DIR	0.67
ŌĒ	1.17
An, Bn	0.4

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

PREREQUISITE FOR SWITCHING: AC Series

			AMBII	ENT TEMPE	RATURE (T	A) - °C		
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to	UNITS		
OHAHAGI EMGTOG		(v)	MIN.	MAX.	MIN.	MAX.	1	
Max. Frequency	fmax	1.5 3.3* 5†	11 101 143		10 89 125		MHz	
Setup Time Data to Clock	tsu	1.5 3.3 5	27 3.1 2.2		31 3.5 2.5		ns	
Hold Time Data to Clock	tн	1.5 3.3 5	2 2 2		2 2 2		ns	
Clock Pulse Width	tw	1.5 3.3 5	44 4.9 3.5	=	50 5.6 4		ns	

*3.3 V: min. is @ 3 V †5 V: min is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t, t, = 3 ns, CL = 50 pF

<u> </u>			AMBII	ENT TEMPE	RATURE (1	(A) - °C	
CHARACTERISTICS	SYMBOL	V _{cc}	-40 t	o +85	-55 to	+125	UNITS
CHARACTERISTICS	SIMBOL	(V)	MIN.	MAX.	MIN.	MAX.	
Propagation Delays: Store A Data to B Bus Store B Data to A Bus 646	t _{PLH}	1.5 3.3* 5†	- 4.8 3.5	154 17.1 12.3	- 4.7 3.4	169 18.9 13.5	ns
Store A Data to B Bus Store B Data to A Bus 648	tplн tpнl	1.5 3.3 5	4.8 3.5	154 17.1 12.3	- 4.7 3.4	169 18.9 13.5	ns
A Data to B Bus B Data to A Bus 646	t _{PLH} t _{PHL}	1.5 3.3 5	- 4 2.8	125 14 10	3.9 2.8	138 15.4 11	ns
Ā Data to B Bus B Data to A Bus 648	t _{PLH} t _{PHL}	1.5 3.3 5	4 2.8	125 14 10	3.9 2.8	138 15.4 11	ns
Select to Data 646	t _{PLH} t _{PHL}	1.5 3.3 5	4.3 3.1	136 15.3 10.9	4.2 3	150 16.8 12	ns
Select to Data 648	t _{PLH}	1.5 3.3 5	4.3 3.1	136 15.3 10.9	4.2 3	150 16.8 12	ns
3-State Enabling/ Disabling Time Bus to Output or Register to Output	tezi. tezh telz tenz	1.5 3.3 5	5.2 3.5	154 18.4 12.3	5.1 3.4	169 20.2 13.5	ns
Power Dissipation Capacitance	C _{PD} §		150	Тур.	150	Тур.	pF
Min. (Valley) During Switching of Other Outputs (Output Under Test Not Switching)	V _{OH} V _{OHV} See Fig. 1	5		4 Тур.	V		
Max. (Peak) Ouring Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} V _{OLP} See Fig. 1	5		1 Typ. @ 25°C			V
Input Capacitance	Cı		_	10		10	pF
3-State Output Capacitance	Co		-	15		15	pF

*3.3 V: min. is @ 3.6 V max. is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V §C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = V_{CC}^2 C_{PD} f_i + \Sigma (V_{CC}^2 C_L f_o)$ where $f_i =$ input frequency

fo = output frequency

C_L = output load capacitance

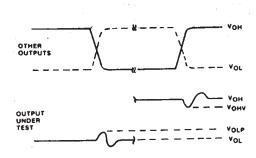
V_{cc} = supply voltage.

PREREQUISITE FOR SWITCHING: ACT Series

. **			AMBI					
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to	UNITS		
		(*)	MIN.	MAX.	MIN.	MAX.]	
Max. Frequency	f _{max}	5*	125	– ,	110		MHz	
Setup Time Data to Clock	tsu	. 5	2.2	_	2.5		ns	
Hold Time Data to Clock	tн	5	2	_	. 2	_	ns	
Clock Pulse Width	tw	5	3.9	_	4.5	_	ns	

^{*5} V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; t, t = 3 ns, CL = 50 pF


			AMB	ENT TEMP	RATURE (1	Γ _A) - °C]	
CHARACTERISTICS	SYMBOL	V _{cc}	-40	to +85	-55 to	+125	UNITS	
		(V)	MIN.	MAX.	MIN.	MAX.		
Propagation Delays: Store A Data to B Bus Store B Data to A Bus 646	tегн tенг	. 5*	4	14.1	3.9	15.5	ns	
Store A Data to B Bus Store B Data to A Bus 648	t _{PLH} t _{PHL}	5	4	14.1	3.9	15.5	ns	
A Data to B Bus B Data to A Bus 646	t _{PLH} t _{PHL}	5	3.2	11.4	3.1	12.5	ns	
Ā Data to B Bus B Data to A Bus 648	t _{PLH} t _{PHL}	5	3.2	11.4	3.1	→ 12.5	ns	
Select to Data 646	t _{PLH} t _{PHL}	5	3.7	13.2	3.6	14.5	ns	
Select to Data 648	t _{PLH} t _{PHL}	5	4	14.1	3.9	15.5	ns	
3-State Enabling/ Disabling Time Bus to Output or Register to Output	t _{PZL} t _{PZH} t _{PLZ} t _{PHZ}	5	4	14.1	3.9	15.5	ns	
Power Dissipation Capacitance	C _{PD} §	_	150	Тур.	150 Typ.		pF	
Min. (Valley) During Switching of Other Outputs (Output Under Test Not Switching)	Vонv See Fig. 1	5		v				
Max. (Peak) During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5		٧				
Input Capacitance	Cı	_		10		10	pF	
3-State Output Capacitance	Co	_		15		15	ρF	

¹⁵ V: min. is @ 5.5 V max. is @ 4.5 V

§C_{PD} is used to determine the dynamic power consumption, per package. $P_D = C_{PD}V_{CC}^2 f_i + \sum (C_L V_{CC}^2 f_o) + V_{CC} \Delta I_{CC}$ where $f_i = input frequency$

 $f_o = output$ frequency $C_L = output$ load capacitance $V_{cc} = supply$ voltage.

PARAMETER MEASUREMENT INFORMATION

- NOTES:

 1. VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.

 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: PRR C 1 MHz, t, 3 m, s, + 3 m, s KEW 1 m.

 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 JF CAPACTOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.

Fig. 1 - Simultaneous switching transient waveforms.

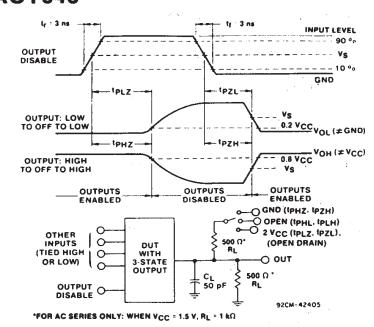


Fig. 2 - Three-state propagation delay waveforms and test circuit.

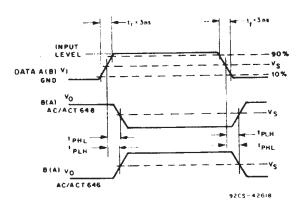


Fig. 3 - Propagation delay times.

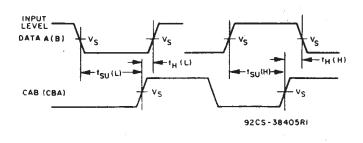
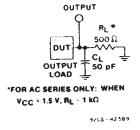



Fig. 4 - Data setup and hold times.

	CD54/74AC	CD54/74ACT		
Input Level	V _{cc}	3 V		
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V		
Output Switching Voltage, Vs	0.5 V _{CC}	0.5 V _{CC}		

Fig. 5 - Test circuit.

15-Oct-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD74AC646M	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC646M	Samples
CD74AC646M96	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC646M	Samples
CD74AC646MG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC646M	Samples
CD74ACT646M	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT646M	Samples
CD74ACT646M96	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT646M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

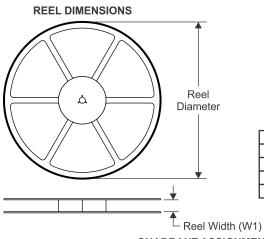
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

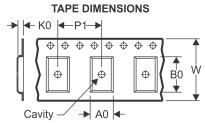
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

15-Oct-2015

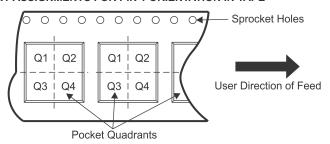
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

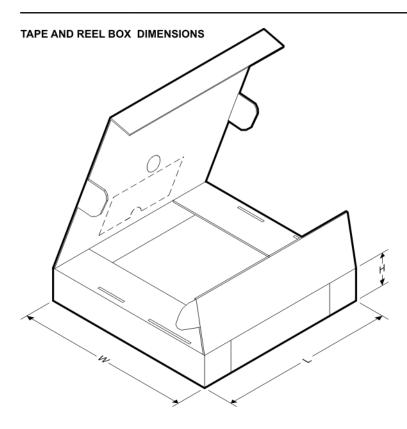
PACKAGE MATERIALS INFORMATION

www.ti.com 14-Feb-2019


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

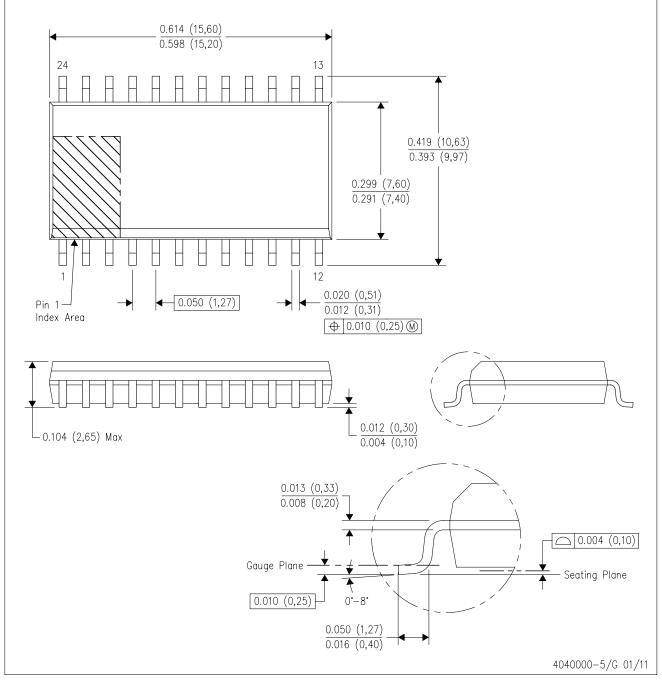


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC646M96	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
CD74ACT646M96	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Feb-2019

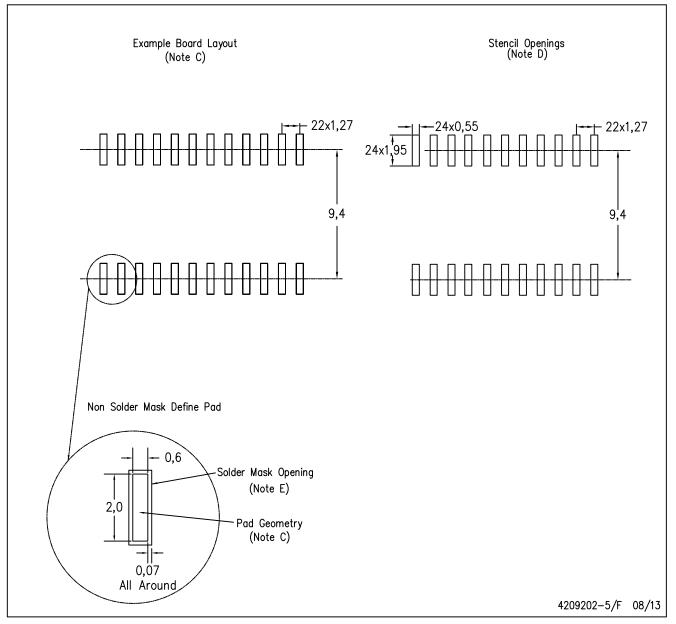


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC646M96	SOIC	DW	24	2000	350.0	350.0	43.0
CD74ACT646M96	SOIC	DW	24	2000	350.0	350.0	43.0

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated