

FEATURES

- Member of the Texas Instruments Widebus+™
 Family
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.1 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} Supports Partial-Power-Down Mode Operation

- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This 32-bit buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCH32244A is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as eight 4-bit buffers, four 8-bit buffers, two 16-bit buffers, or one 32-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
40°C to 95°C	LFBGA – GKE	Tone and real	SN74LVCH32244AGKER	CH244A	
–40°C to 85°C	LFBGA – ZKE (Pb-free)	Tape and reel	SN74LVCH32244AZKER	1 UNZ44A	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+ is a trademark of Texas Instruments.

GKE OR ZKE PACKAGE (TOP VIEW)

A B C C C C C C C C C C C C C C C C C C			1	2	3	4	5	6
C	Α	/	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
D	В		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
E 000000 F 000000 G 000000 J 000000 K 000000 M 000000 P 000000	С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
F 000000 G 000000 H 000000 K 000000 K 000000 N 000000 P 000000	D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
G 000000 H 000000 J 000000 K 000000 M 000000 N 000000 P 000000	Е		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
H 000000 J 000000 K 000000 M 000000 N 000000 P 000000	F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
J 000000 K 000000 L 000000 M 000000 P 000000 R 000000	G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
K 000000 L 000000 M 000000 P 000000 R 000000	н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
L 000000 M 000000 N 000000 P 000000	J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
M 000000 N 000000 P 000000 R 000000	K		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 000000 P 000000 R 000000	L		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
P 000000 R 000000	М		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
R 000000	N		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Р		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
T 000000	R		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(Т		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

TERMINAL ASSIGNMENTS

	1	2	3	4	5	6
Α	1Y2	1Y1	1 OE	2 OE	1A1	1A2
В	1Y4	1Y3	GND	GND	1A3	1A4
С	2Y2	2Y1	V _{CC}	V_{CC}	2A1	2A2
D	2Y4	2Y3	GND	GND	2A3	2A4
Е	3Y2	3Y1	GND	GND	3A1	3A2
F	3Y4	3Y3	V _{CC}	V_{CC}	3A3	3A4
G	4Y2	4Y1	GND	GND	4A1	4A2
Н	4Y3	4Y4	4 OE	3 OE	4A4	4A3
J	5Y2	5Y1	5 OE	6 OE	5A1	5A2
K	5Y4	5Y3	GND	GND	5A3	5A4
L	6Y2	6Y1	V _{CC}	V_{CC}	6A1	6A2
M	6Y4	6Y3	GND	GND	6A3	6A4
N	7Y2	7Y1	GND	GND	7A1	7A2
Р	7Y4	7Y3	V _{CC}	V _{CC}	7A3	7A4
R	8Y2	8Y1	GND	GND	8A1	8A2
Т	8Y3	8Y4	8 OE	7 <mark>OE</mark>	8A4	8A3

FUNCTION TABLE (EACH 4-BIT BUFFER)

INP	JTS	OUTPUT
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	Χ	Z

E2 3Y1

E1 3Y2

F2 3Y3

F1__3Y4

G2 4Y1

G1 4Y2

H1 4Y3

H2 4Y4

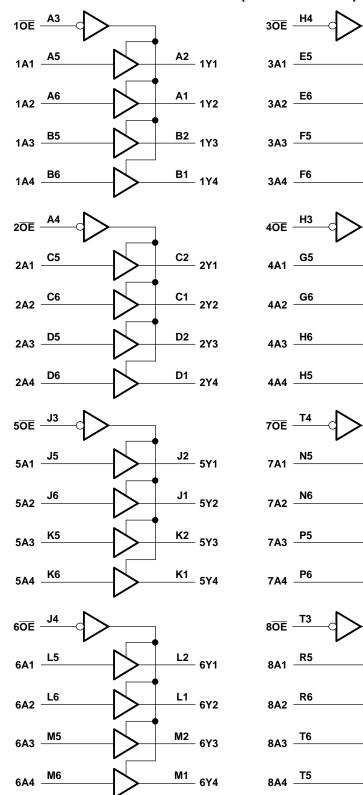
N2 7Y1

N1 7Y2

P2 7Y3

P1 7Y4

R2 8Y1


R1 8Y2

T1 8Y3

T2 8Y4

LOGIC DIAGRAM (POSITIVE LOGIC)

SN74LVCH32244A 32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS617E-OCTOBER 1998-REVISED MARCH 2005

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impedance	or power-off state (2)	-0.5	6.5	V
Vo	Voltage range applied to any output in the high or low state	-0.5	V _{CC} + 0.5	V	
I_{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GND			±100	mA
θ_{JA}	Package thermal impedance (4)	GKE/ZKE package		40	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
W	Complementage	Operating	1.65	3.6	V	
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
V _I	Input voltage		0	5.5	V	
W	Output walta ma	High or low state	0	V _{CC}	V	
Vo	Output voltage	3-state		5.5	V	
		V _{CC} = 1.65 V		-4		
	High level output output	V _{CC} = 2.3 V		-8	A	
I _{OH}	High-level output current	V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
	Lour loval output ourrent	V _{CC} = 2.3 V		8	A	
l _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SN74LVCH32244A

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP(1) MAX	UNIT		
	$I_{OH} = -100 \mu A$	1.65 V to 3.6 V	V _{CC} - 0.2			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
V	$I_{OH} = -8 \text{ mA}$	2.3 V	1.7	V		
V_{OH}	1. 12 m/s	2.7 V	2.2	V		
	$I_{OH} = -12 \text{ mA}$	3 V	2.4			
	$I_{OH} = -24 \text{ mA}$	3 V	2.2			
	I _{OL} = 100 μA	1.65 V to 3.6 V	0.2			
	I _{OL} = 4 mA	1.65 V	0.45	0.45		
V_{OL}	I _{OL} = 8 mA	2.3 V	0.7	V		
	I _{OL} = 12 mA	2.7 V	0.4			
	I _{OL} = 24 mA	3 V	0.55			
l _l	V _I = 0 to 5.5 V	3.6 V	±5	μΑ		
	V _I = 0.58 V	1.65.\/	25			
	V _I = 1.07 V	1.65 V	-25	μΑ		
	V _I = 0.7 V	2.2.1/	45			
I _{I(hold)}	V _I = 1.7 V	2.3 V	-45			
	V _I = 0.8 V	0.1/	75			
	V _I = 2 V	3 V	-75			
	$V_1 = 0 \text{ to } 3.6 \text{ V}^{(2)}$	3.6 V	±500			
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0	±10	μΑ		
I _{OZ}	V _O = 0 to 5.5 V	3.6 V	±10	μΑ		
1	$V_I = V_{CC}$ or GND	3.6 V	40			
Icc	$3.6 \text{ V} \le V_1 \le 5.5 \text{ V}^{(3)}$ $I_0 = 0$	3.6 V	40	μΑ		
ΔI_{CC}	One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND	2.7 V to 3.6 V	500	μΑ		
C _i	$V_{I} = V_{CC}$ or GND	3.3 V	5.5	pF		
Co	$V_O = V_{CC}$ or GND	3.3 V	6	pF		

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER FROM TO (OUTP	_	_	V _{CC} = ± 0.1	1.8 V 5 V	V _{CC} = ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t _{pd}	Α	Y	(1)	(1)	(1)	(1)		4.7	1.1	4.1	ns
t _{en}	ŌĒ	Y	(1)	(1)	(1)	(1)		5.8	1	4.6	ns
t _{dis}	ŌĒ	Y	(1)	(1)	(1)	(1)		6.2	1.8	5.8	ns
t _{sk(o)}										1.5	ns

⁽¹⁾ This information was not available at the time of publication.

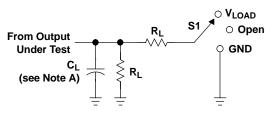
All typical values are at V_{CC} = 3.3 V, T_A = 25°C. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

This applies in the disabled state only.

SN74LVCH32244A 32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

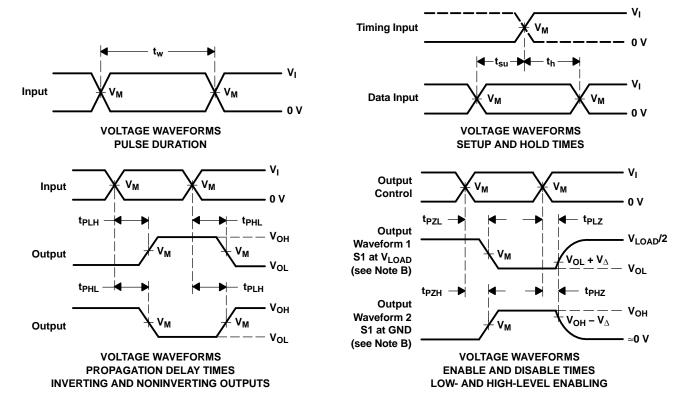
SCAS617E-OCTOBER 1998-REVISED MARCH 2005

Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
C Pausa diaginatian agracitana		Outputs enabled	f = 10 MHz	(1)	(1)	34	pF	
C _{pd}	Power dissipation capacitance	Outputs disabled	I = IU IVIMZ	(1)	(1)	4	рг	

(1) This information was not available at the time of publication.


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL} t _{PHZ} /t _{PZH}	V _{LOAD} GND

LOAD CIRCUIT

.,	INF	PUTS	V			_	.,
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	$oldsymbol{V}_\Delta$
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

27-Dec-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LVCH32244AGKER	NRND	LFBGA	GKE	96	1000	TBD	SNPB	Level-2-235C-1 YEAR	-40 to 85	CH244A	
SN74LVCH32244AZKER	NRND	LFBGA	ZKE	96	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	CH244A	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

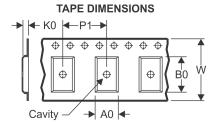
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

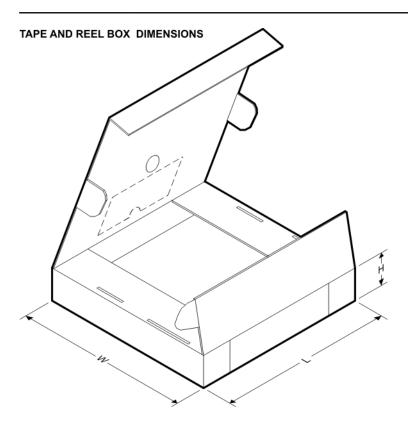

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Sep-2019

TAPE AND REEL INFORMATION

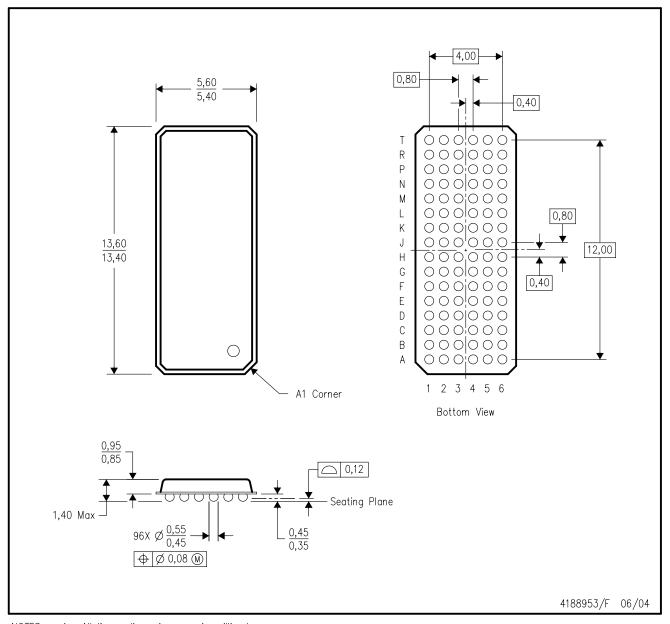
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVCH32244AGKER	LFBGA	GKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1
SN74LVCH32244AZKER	LFBGA	ZKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1

www.ti.com 29-Sep-2019

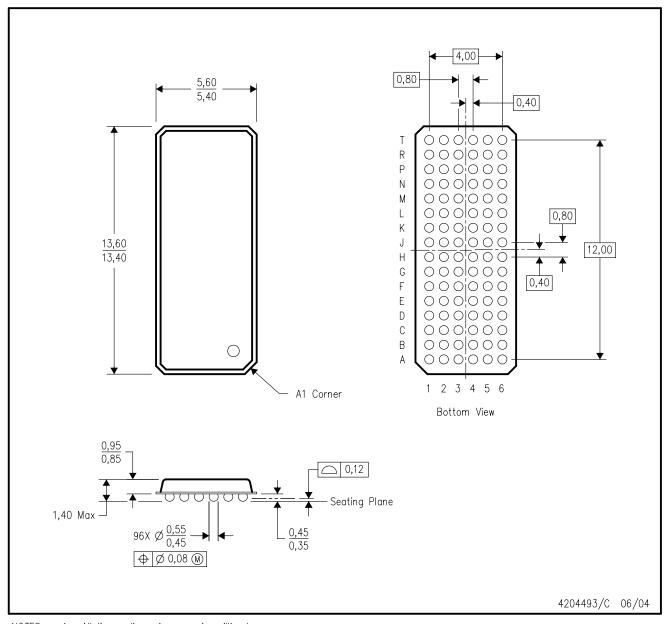


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
SN74LVCH32244AGKER	LFBGA	GKE	96	1000	336.6	336.6	41.3	
SN74LVCH32244AZKER	LFBGA	ZKE	96	1000	336.6	336.6	41.3	

GKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-205 variation CC.
- D. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-205 variation CC.
- D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated