LP3944 RGB/White/Blue 8-LED Fun Light Driver

FEATURES

- Internal Power-on Reset

- Active Low Reset
- Internal Precision Oscillator
- Variable Dim Rates (from 6.25 ms to $1.6 \mathrm{~s} ; 160$ $\mathrm{Hz}-\mathbf{0 . 6 2 5 ~ H z)}$

APPLICATIONS

- Customized Flashing LED Lights for Cellular Phones
- Portable Applications
- Digital Cameras
- Indicator Lamps
- General Purpose I/O Expander
- Toys

KEY SPECIFICATIONS

- 8 LED Driver (Multiple Programmable States-On, Off, Input, and Dimming at a Specified Rate)
- 8 Open Drain Outputs Capable of Driving up to 25 mA per LED

DESCRIPTION

LP3944 is an integrated device capable of independently driving 8 LEDs. This device also contains an internal precision oscillator that provides all the necessary timing required for driving each LED. Two prescaler registers along with two PWM registers provide a versatile duty cycle control. The LP3944 contains the ability to dim LEDs in SMBUS $/{ }^{2} \mathrm{C}$ applications where it is required to cut down on bus traffic.
Traditionally, to dim LEDs using a serial shift register such as 74LS594/5 would require a large amount of traffic to be on the serial bus. LP3944 instead requires only the setup of the frequency and duty cycle for each output pin. From then on, only a single command from the host is required to turn each individual open drain output ON, OFF, or to cycle a programmed frequency and duty cycle. Maximum output sink current is 25 mA per pin and 200 mA per package. Any ports not used for controlling the LEDs can be used for general purpose input/output expansion.

Typical Application Circuit

[^0]
LP3944 Pin Out

Figure 1. (Top View) Package Number RTW0024A

LP3944 PIN DESCRIPTION

Pin \#	Name	
1	LED0	Output of LED0 Driver
2	LED1	Output of LED1 Driver
3	LED2	Output of LED2 Driver
4	LED3	Output of LED3 Driver
5	LED4	Output of LED4 Driver
6	LED5	Output of LED5 Driver
7	LED6	Output of LED6 Driver
8	LED7	Output of LED7 Driver
9	GND	Ground
10	NC	No Connect
11	NC	No Connect
12	NC	No Connect
13	NC	No Connect
14	NC	No Connect
15	NC	No Connect
16	NC	No Connect
17	NC	No Connect
18	RST	Active Low Reset Input
19	SCL	Clock Line for IC Interface
20	SDA	Serial Data Line for I²C Interface
21	VDD	Power Supply
22	A0	Address Input 0
23	A1	Address Input 1
24	A2	Address Input 2

Architectural Block Diagram

For explanation of LP3944 operation, please refer to Theory of Operation in Application Notes.
Figure 2. Block Diagram

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings ${ }^{(1)(2)(3)}$

V_{DD}		-0.5 V to 6 V
A0, A1, A2, SCL, SDA, $\overline{R S T}$ (Collectively called digital pins)		6 V
Voltage on LED pins		$\mathrm{V}_{S S}-0.5 \mathrm{~V}$ to 6 V
Junction Temperature		$150^{\circ} \mathrm{C}$
Storage Temperature		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation ${ }^{(4)}$		1.76 W
	Human Body Model	2 kV
$E S D^{(5)}$	Machine Model	150 V
	Charge Device Model	1 kV

(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits and associated test conditions, see the Electrical Characteristics tables.
(2) All voltages are with respect to the potential at the GND pin.
(3) If Military/Aerospace specified devices are required, please contact Texas Instruments for availability and specifications.
(4) The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formulaP = $\left(T_{J}-T_{A}\right) / \theta_{J A}$, where T_{J} is the junction temperature, T_{A} is the ambient temperature, and $\theta_{J A}$ is the junction-to-ambient thermal resistance. The 1.76 W rating appearing under Absolute Maximum Ratings results from substituting the Absolute Maximum junction temperature, $150^{\circ} \mathrm{C}$, for $\mathrm{T}_{\mathrm{J}}, 85^{\circ} \mathrm{C}$ for T_{A}, and $37^{\circ} \mathrm{C} / \mathrm{W}$ for θ_{JA}. More power can be dissipated safely at ambient temperature below $85^{\circ} \mathrm{C}$. Less power can be dissipated safely at ambient temperatures above $85^{\circ} \mathrm{C}$. The Absolute Maximum power dissipation can be increased by 27 mW for each degree below $85^{\circ} \mathrm{C}$, and it must be de-rated by 27 mW for each degree above $85^{\circ} \mathrm{C}$. For Operating Ratings maximum power dissipation, $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(5) The human-body model is 100 pF discharged through $1.5 \mathrm{k} \Omega$. The machine model is 0Ω in series with 220 pF .

Operating Ratings ${ }^{(1)(2)}$

| $V_{\text {DD }}$ | 2.3 V to 5.5 V |
| :--- | ---: | ---: |
| Junction Temperature | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Operating Ambient Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ | $37^{\circ} \mathrm{C} / \mathrm{W}$ |
| Power Dissipation | 1.08 W |

(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits and associated test conditions, see the Electrical Characteristics tables.
(2) All voltages are with respect to the potential at the GND pin.
(3) The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formulaP = $\left(T_{J}-T_{A}\right) / \theta_{J A}$, where T_{J} is the junction temperature, T_{A} is the ambient temperature, and $\theta_{J A}$ is the junction-to-ambient thermal resistance. The 1.76 W rating appearing under Absolute Maximum Ratings results from substituting the Absolute Maximum junction temperature, $150^{\circ} \mathrm{C}$, for $\mathrm{T}_{\mathrm{J}}, 85^{\circ} \mathrm{C}$ for T_{A}, and $37^{\circ} \mathrm{C} / \mathrm{W}$ for θ_{JA}. More power can be dissipated safely at ambient temperature below $85^{\circ} \mathrm{C}$. Less power can be dissipated safely at ambient temperatures above $85^{\circ} \mathrm{C}$. The Absolute Maximum power dissipation can be increased by 27 mW for each degree below $85^{\circ} \mathrm{C}$, and it must be de-rated by 27 mW for each degree above $85^{\circ} \mathrm{C}$. For Operating Ratings maximum power dissipation, $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$. Typical values and limits appearing in normal type apply for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Limits appearing in boldface type apply over the entire junction temperature range for operation, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} .{ }^{(1)}$

Symbol	Parameter	Conditions	Typical	Limit		Units
				Min	Max	
POWER SUPPLY						
V_{DD}	Supply Voltage		5	2.3	5.5	V
I_{Q}	Supply Current	No Load	350		550	$\mu \mathrm{A}$
		Standby	2.0		5	
$\Delta \mathrm{l}_{\mathrm{Q}}$	Additional Standby Current	$V_{D D}=5.5 \mathrm{~V}$, every LED pin at 4.3 V			2	mA
$\mathrm{V}_{\text {POR }}$	Power-On Reset Voltage		1.8		1.96	V
t_{w}	Reset Pulse Width		10			ns
LED						
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage			-0.5	0.8	V
V_{IH}	HIGH Level Input Voltage			2.0	5.5	V
loL	Low Level Output Current ${ }^{(2)}$	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}$		9		mA
		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		12		
		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		15		
		$\mathrm{V}_{\mathrm{OL}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}$		15		
		$\mathrm{V}_{\mathrm{OL}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		20		
		$\mathrm{V}_{\mathrm{OL}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		25		
$\mathrm{l}_{\text {LEAK }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{DD}}=3.6, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}		-1	1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {I/ }}$	Input/Output Capacitance	$\mathrm{See}^{(3)}$	2.6		5	pF
ALL DIGITAL PINS (EXCEPT SCL AND SDA PINS)						
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage			-0.5	0.8	V
V_{IH}	HIGH Level Input Voltage			2.0	5.5	V
$\mathrm{I}_{\text {LEAK }}$	Input Leakage Current			-1	1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}^{(3)}$	2.3		5	pF
$\mathrm{I}^{2} \mathrm{C}$ INTERFACE (SCL AND SDA PINS)						
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage			-0.5	$0.3 \mathrm{~V}_{\text {DD }}$	V
V_{IH}	HIGH Level Input Voltage			$0.7 \mathrm{~V}_{\mathrm{DD}}$	5.5	V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage			0	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
loL	LOW Level Output Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	6.5	3		mA
$\mathrm{F}_{\text {CLK }}$	Clock Frequency	$\mathrm{See}^{(3)}$			400	kHz
$\mathrm{thold}^{\text {d }}$	Hold Time Repeated START Condition	See ${ }^{(3)}$		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {CLK-LP }}$	CLK Low Period	See ${ }^{(3)}$		1.3		$\mu \mathrm{s}$
tCLK-HP	CLK High Period	See ${ }^{(3)}$		0.6		$\mu \mathrm{s}$
tsu	Set-Up Time Repeated START Condition	See ${ }^{(3)}$		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {DATA-HOLD }}$	Data Hold Time	See ${ }^{(3)}$		300		ns
$t_{\text {DATA-SU }}$	Data Set-Up Time	See ${ }^{(3)}$		100		ns
$\mathrm{t}_{\text {SU }}$	Set-Up Time for STOP Condition	See ${ }^{(3)}$		0.6		$\mu \mathrm{s}$
$t_{\text {trans }}$	Maximum Pulse Width of Spikes that Must Be Suppressed by the Input Filter of Both DATA \& CLK Signals	See ${ }^{(3)}$	50			ns

(1) Limits are ensured. All electrical characteristics having room-temperature limits are tested during production with $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. All hot and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
(2) Each LED pin should not exceed 25 mA and the package should not exceed a total of 200 mA .
(3) Ensured by design.

Typical Performance Characteristics

Figure 3.

APPLICATION INFORMATION

Theory of Operation

The LP3944 takes incoming data and feed them into several registers that control the frequency and the duty cycle of the LEDs. Two prescaler registers and two PWM registers provide two individual rates to dim or blink the LEDs (for more information on these registers, refer to Table 1). The baseband controller/microprocessor can program each LED to be in one of four states-on, off, DIM0 rate or DIM1 rate. One read-only registers provide status on all 8 LEDs. The LP3944 can be used to drive RGB LEDs and/or single-color LEDs to create a colorful, entertaining, and informative setting. This is particularly suitable for accessory functions in cellular phones and toys. Any LED pins not used to drive LED can be used for General Purpose Parallel Input/Output (GPIO) expansion.
The LP3944 is equipped with Power-On Reset that holds the chip in a reset state until $V_{D D}$ reaches $V_{\text {POR }}$ during power up. Once $V_{P O R}$ is achieved, the LP3944 comes out of reset and initializes itself to the default state.
To bring the LP3944 into reset, hold the RST pin LOW for a period of TW. This will put the chip to its default state. The LP3944 can only be programmed after RST signal is HIGH again.

$I^{2} \mathrm{C}$ Data Validity

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when CLK is LOW.

Figure 4. $I^{2} \mathrm{C}$ Data Validity

$I^{2} \mathrm{C}$ Start and Stop Conditions

START and STOP bits classify the beginning and the end of the ${ }^{2} \mathrm{C}$ session. START condition is defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The $I^{2} \mathrm{C}$ master always generates START and STOP bits. The $I^{2} \mathrm{C}$ bus is considered to be busy after START condition and free after STOP condition. During data transmission, $I^{2} \mathrm{C}$ master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise.

Figure 5. $I^{2} \mathrm{C}$ START and STOP Conditions

Transferring Data

Every byte put on the SDA line must be eight bits long with the most significant bit (MSB) being transferred first. The number of bytes that can be transmitted per transfer is unrestricted. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been received.

After the START condition, a chip address is sent by the $I^{2} \mathrm{C}$ master. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). The LP3944 hardwires bits 7 to 4 and leaves bits 3 to 1 selectable, as shown in Figure 6. For the eighth bit, a " 0 " indicates a WRITE and a " 1 " indicates a READ. The LP3944 supports only a WRITE during chip addressing. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

Figure 6. Chip Address Byte


```
w = write (SDA = "0")
r= read (SDA = "1")
ack = acknowledge (SDA pulled down by either master or slave)
rs = repeated start
xx = 60 to 67
```

Figure 7. LP3944 Register Write
However, if a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in Figure 8.

$w=$ write $(S D A=" 0 ")$
$r=\operatorname{read}(S D A=" 1 ")$
ack $=$ acknowledge (SDA pulled down by either master or slave)
rs = repeated start
$x x=60$ to 67
Figure 8. LP3944 Register Read

Auto Increment

Auto increment is a special feature supported by the LP3944 to eliminate repeated chip and register addressing when data are to be written to or read from registers in sequential order. The auto increment bit is inside the register address byte, as shown in Figure 9. Auto increment is enabled when this bit is programmed to " 1 " and disabled when it is programmed to " 0 ".

Figure 9. Register Address Byte
In the READ mode, when auto increment is enabled, $\mathrm{I}^{2} \mathrm{C}$ master could receive any number of bytes from LP3944 without selecting chip address and register address again. Every time the $I^{2} \mathrm{C}$ master reads a register, the LP3944 will increment the register address and the next data register will be read. When $I^{2} \mathrm{C}$ master reaches the last register (09 H register), the register address will roll over to 00 H .
In the WRITE mode, when auto increment is enabled, the LP3944 will increment the register address every time $1^{2} \mathrm{C}$ master writes to register. When the last register (09 H register) is reached, the register address will roll over to 02 H , because the first two registers in LP3944 are read-only registers. It is possible to write to these two registers, and the LP3944 will acknowledge, but the data will be ignored.
In the LP3944, registers $0 \times 01,0 \times 08$ and 0×09 are not functional. However, it is still necessary to read from 0×01 and to write to 0×08 and 0×09 in Auto Increment mode. They cannot be skipped.
If auto increment is disabled, and the $\mathrm{I}^{2} \mathrm{C}$ master does not change register address, it will continue to write data into the same register.

Figure 10. Programming with Auto Increment Disabled (in WRITE Mode)

Figure 11. Programming with Auto Increment Enabled (in WRITE Mode)

Table 1. LP3944 Register Table ${ }^{(1)}$

Address (Hex)	Register Name	Read/Write	
0×00	Input 1	Read Only	Register Function
0×01	Register 1	Read Only	None-7 Input Register
0×02	PSC0	R/W	Frequency Prescaler 0
0×03	PWM0	R/W	PWM Register 0
0×04	PSC1	R/W	Frequency Prescaler 1
0×05	PWM1	R/W	PWM Register 1
0×06	LS0	R/W	LED0-3 Selector
0×07	LS1	R/W	LED4-7 Selector
0×08	Register 8	R/W	None
0×09	Register 9	None	

(1) Note: Registers 1, 8 and 9 are empty and non-functional registers. Register 1 is read-only, with all bits hard-wired to zero. Registers 8 and 9 can be written and read, but the content does ot have any effect on the operation of the LP3944.

Binary Fomat for Input Registers (Read Only)—Address 0x00 and 0x01

Table 2. Address $0 \times 00^{(1)}$

Bit \#	7	6	5	4	3	2	1	0
Default value	X							
	LED7	LED6	LED5	LED4	LED3	LED2	LED1	LED0

(1) $X=$ don't care

Binary Format for Frequency Prescaler and PWM Registers - Address 0x02 to 0x05

Table 3. Address 0×02 (PSCO) ${ }^{(1)}$

Bit \#	7	6	5	4	3	2	1	0
Default value	0	0	0	0	0	0	0	0

(1) PSC0 register is used to program the period of DIMO.

DIM0 = $($ PSC0+1 $) / 160$
The maximum period is 1.6 s when $\mathrm{PSCO}=255$.
Table 4. Address 0×03 (PWMO) ${ }^{(1)}$

Bit \#	7	6	5	4	3	2	1	0
Default value	1	0	0	0	0	0	0	0

(1) PWMO register determines the duty cycle of DIMO. The LED outputs are LOW (LED on) when the count is less than the value in PWMO and HIGH (LED off) when it is greater. If PWM0 is programmed with 0×00, LED output is always HIGH (LED off).

The duty cycle of DIM0 is: PWM0/256
Default value is 50% duty cycle.
Table 5. Address 0×04 (PSC1) ${ }^{(1)}$

Bit \#	7	6	5	4	3	2	1	0
Default value	0	0	0	0	0	0	0	0

(1) PSC1 register is used to program the period of DIM1.

DIM1 $=($ PSC1 +1$) / 160$
The maximum period is 1.6 s when PSC1 $=255$.

Table 6. Address 0x05 (PWM1) ${ }^{(1)}$

Bit \#	7	6	5	4	3	2	1	0
Default value	1	0	0	0	0	0	0	0

(1) PWM1 register determines the duty cycle of DIM1. The LED outputs are LOW (LED on) when the count is less than the value in PWM1 and HIGH (LED off) when it is greater. If PWM1 is programmed with 0×00, LED output is always HIGH (LED off).

The duty cycle of DIM1 is: PWM1/256
Default value is 50% duty cycle.

Binary Format for Selector Registers — Address 0×06 to 0x07Table 7

Table 7. Address 0x06 (LS0)

Bit \#	7	6	5	4	3	2	1	0
Default value	0	0	0	0	0	0	0	0
	B1	B0	B1	B0	B1	B0	B1	B0
	LED2		LED1		LED0			

Table 8. Address 0×07 (LS1)

Bit \#	7	6	5	4	3	2	1	0
Default value	0	0	0	0	0	0	0	0
	B1	B0	B1	B0	B1	B0	B1	B0
	LED6		LED5		LED4			

Table 9. LED States With Respect To Values in "B1" and "B0"

B1	B0	Function
0	0	Output Hi-Z (LED off)
0	1	Output LOW (LED on)
1	0	Output dims (DIM0 rate)
1	1	Output dims (DIM1 rate)

Programming Example:

Dim LEDs 0 to 7 at 1 Hz at 25% duty cycle

1. Set PSCO to achieve DIM0 of 1 s
2. Set PWMO duty cycle to 25%
3. Set PSC1 to achieve DIM1 of 0.2 s
4. Set LEDs 0 to 7 to point to DIMO

Step	Description	Register Name	Set to (Hex)
1	Set DIM0 $=1$ s $1=($ PSC0 +1$) / 160$ PSC0 $=159$	PSC0	$0 \times 09 \mathrm{~F}$
2	Set duty cycle to 25% Duty Cycle $=$ PWM0/256 PWM0 $=64$	PWM0	0×40
3	Set DIM1 $=0.2 \mathrm{~s}$ $0.2=($ PSC1 +1$) / 160$ PSC1 $=31$	PSC1	0x1F
4	LEDs 0 to 7 Output $=$ DIM0	LS0, LS1	

Reducing I_{Q} When LEDs are Off

In many applications, the LEDs and the LP3944 share the same V_{DD}, as shown in Typical Application Circuit. When the LEDs are off, the LED pins are at a lower potential than V_{DD}, causing extra supply current ($\Delta \mathrm{I}_{\mathrm{Q}}$). To minimize this current, consider keeping the LED pins at a voltage equal to or greater than V_{DD}.

Figure 12. Methods to Reduce I_{Q} When LEDs Are Off

Figure 13. Application Circuit

REVISION HISTORY

Changes from Original (April 2013) to Revision A
 Page

- Changed layout of National Data Sheet to TI format .. 12

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LP3944ISQ/NOPB	ACTIVE	WQFN	RTW	24	1000	Green (RoHS \& no Sb/Br)	SN	Level-3-260C-168 HR	-40 to 85	3944SQ	Samples
LP3944ISQX/NOPB	ACTIVE	WQFN	RTW	24	4500	Green (RoHS \& no Sb/Br)	SN	Level-3-260C-168 HR	-40 to 85	3944SQ	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
LP3944ISQ/NOPB	WQFN	RTW	24	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LP3944ISQX/NOPB	WQFN	RTW	24	4500	330.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP3944ISQ/NOPB	WQFN	RTW	24	1000	210.0	185.0	35.0
LP3944ISQX/NOPB	WQFN	RTW	24	4500	367.0	367.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

78\% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE

NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

