4N22, 4N23, 4N24 [A] (TX, TXV)
 4N47, 4N48, 4N49 [A] (TX, TXV)

Features:

- TO-78 hermetically sealed package
- High current transfer ratio
- 1 kV electrical isolation
- Base contact provided for conventional transistor biasing
- TX and TXV devices processed to MIL-PRF-19500

Description:

Each isolator in this series consists of an infrared emitting diode and a NPN silicon phototransistor, which are mounted in a hermetically sealed TO-78 package. Devices are designed for military and/or harsh environments. The suffix letter "A" denotes the collector is electrically isolated from the case.

The 4N22, 4N22A, 4N23, 4N23A,4N24, and 4N24A (TX, TXV) devices are processed to MIL-PRF-19500/486.
The 4N47, 4N47A, 4N48, 4N48A, 4N49, and 4N49A (TX, TXV) devices are processed to MIL-PRF-19500/548.

Please contact your local representative or OPTEK for more information.

Applications:

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

Ordering Information					
Part Number	Isolation Voltage (kV)	CTR \% Min / Max	$I_{F}(m A)$ Typ / Max	V_{CE} (Volts) Max	Processing MIL-PRF195000
4N22 or 4N22A	1	25 / NA	10 / 40	35	486
4N22TX or 4N22ATX					
4N22TXV or 4N22ATXV					
4N23 or 4N23A		20 / NA			
4N23TX or 4N23ATX					
4N23TXV or 4N23ATXV					
4 N 24 or 4N24A		40 / NA			
4N24TX or 4N24ATX					
4N24TXV or 4N24ATXV					
$4 N 47$ or 4N47A		50 / NA	$1 / 40$	40	548548
4N47TX or 4N47ATX					
4N47TXV or 4N47ATXV					
4N48 or 4N48A		100 / 500			
4N48TX or 4N48ATX					
4N48TXV or 4N48ATXV					
4N49 or 4N49A		$\begin{aligned} & 200 / \\ & 1,000 \end{aligned}$			
4N49TX or 4N49ATX					
4N49TXV or 4N49ATXV					

Hi-Reliability Optically Coupled Isolator

T Electronics

4N22, 4N23, 4N24 [A] (TX, TXV)
 4N47, 4N48, 4N49 [A] (TX, TXV)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
Storage Temperature Range 4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A (TX, TXV) 4N47, 4N47A, 4N48, 4N48A, 4N49, 4N49A (TX, TXV)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range 4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A (TX, TXV) 4N47, 4N47A, 4N48, 4N48A, 4N49, 4N49A (TX, TXV)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input-to-Output Isolation Voltage	$\pm 1.00 \mathrm{kVDC}^{(1)}$
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	$260^{\circ} \mathrm{C}^{(2)}$
Input Diode	
Forward DC Current ($65^{\circ} \mathrm{C}$ or below)	40 mA
Reverse Voltage	2 V
Peak Forward Current ($1 \mu \mathrm{~s}$ pulse width, 300 pps) 4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A (TX, TXV)	1 A
Power Dissipation	$60 \mathrm{~mW}{ }^{(3)}$
Output Phototransistor (4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A)	
Continuous Collector Current	50 mA
Collector-Emitter Voltage	35 V
Collector-Base Voltage	35 V
Emitter-Base Voltage	4 V
Power Dissipation	$300 \mathrm{~mW}^{(4)}$
Output Phototransistor (4N47, 4N47A, 4N48, 4N48A, 4N49, 4N49A)	
Continuous Collector Current	50 mA
Collector-Emitter Voltage	40 V
Collector-Base Voltage	45 V
Emitter-Base Voltage	7.0 V
Power Dissipation	$300 \mathrm{~mW}^{(4)}$

Notes:

1. Measured with input leads shorted together and output leads shorted together.
2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
3. Derate linearly $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $65^{\circ} \mathrm{C}$.
4. Derate linearly $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

TT Electronics

4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)

Performance

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)						
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_{F}	Forward Voltage 4N22, 4N23, 4N24 [A] (TX, TXV) 4N22, 4N23, 4N24 [A] (TX, TXV) 4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)	$\begin{aligned} & 0.80 \\ & 1.00 \\ & 0.70 \\ & 0.80 \\ & 1.00 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 1.30 \\ & 1.50 \\ & 1.20 \\ & 1.50 \\ & 1.70 \\ & 1.30 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-100^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{~V}$
Output Phototransistor						
$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage 4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)	$\begin{aligned} & 35 \\ & 40 \end{aligned}$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$
$\mathrm{V}_{(\mathrm{BR}) \text { Cbo }}$	Collector-Base Breakdown Voltage 4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)	$\begin{aligned} & 35 \\ & 45 \end{aligned}$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$
$V_{\text {(BR) } \text { Ebo }}$	Emitter-Base Breakdown Voltage 4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)	$\begin{aligned} & 4 \\ & 7 \end{aligned}$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$
$I_{\text {ceo }}$	$\begin{aligned} & \text { Collector-Emitter Dark Current } \\ & \text { 4N22, 4N23, 4N24 [A] (TX, TXV) } \\ & \text { 4N47, 4N48, 4N49 [A] (TX, TXV) } \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C E}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(2)} \end{aligned}$
$I_{\text {C(OFF) }}$	```Collector-Emitter Dark Current 4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)```			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
$\mathrm{I}_{\text {CB(OFF) }}$	```Collector-Base Dark Current 4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)```			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{F}}=0$

Notes:

1. Guaranteed but not tested.
2. Sample tested, LTPD $=10$.

Pin \#	Function	Pin \#	Function
1	Emitter	5	Anode
2	Base	6	Open
3	Collector	7	Cathode

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Coupled

$I_{\text {cIoN }}$	On-State Collector Current 4N22, 4N22A (TX, TXV) 4N22, 4N22A (TX, TXV) 4N22, 4N22A (TX, TXV) 4N22, 4N22A (TX, TXV)	$\begin{aligned} & 0.15 \\ & 2.50 \\ & 1.00 \\ & 1.00 \end{aligned}$	-		mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
	4N23, 4N23A (TX, TXV) 4N23, 4N23A (TX, TXV) 4N23, 4N23A (TX, TXV) 4N23, 4N23A (TX, TXV)	$\begin{aligned} & 0.20 \\ & 6.00 \\ & 2.50 \\ & 2.50 \end{aligned}$	- -			$\begin{aligned} & I_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
	4N24, 4N24A (TX, TXV) 4N24, 4N24A (TX, TXV) 4N24, 4N24A (TX, TXV) 4N24, 4N24A (TX, TXV)	$\begin{aligned} & 0.40 \\ & 10.0 \\ & 4.00 \\ & 4.00 \end{aligned}$	- -			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
	4N47, 4N47A (TX, TXV) 4N47, 4N47A (TX, TXV) 4N47, 4N47A (TX, TXV)	$\begin{aligned} & 0.50 \\ & 0.70 \\ & 0.50 \end{aligned}$	-			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{Ma}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)}(1) \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{11} \end{aligned}$
	4N48, 4N48A (TX, TXV) 4N48, 4N48A (TX, TXV) 4N48, 4N48A (TX, TXV)	$\begin{aligned} & 1.00 \\ & 1.40 \\ & 1.00 \end{aligned}$	-	5		$\begin{aligned} & I_{F}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, I_{\mathrm{B}}=0 \\ & I_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, I_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, I_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
	4N49, 4N49A (TX, TXV) 4N49, 4N49A (TX, TXV) 4N49, 4N49A (TX, TXV)	$\begin{aligned} & 2.00 \\ & 2.80 \\ & 2.00 \end{aligned}$	-	10		$\begin{aligned} & I_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, I_{\mathrm{B}}=0 \\ & I_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, I_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, I_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
$\mathrm{ICBION})$	On-State Collector Base 4N47, 4N48, 4N49 [A] (TX, TXV)	30	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CB }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\mathrm{V}_{\text {CEESAT }}$	Collector-Emitter Saturation Voltage 4N22, 4N23, 4N24 [A] (TX, TXV) 4N22, 4N23, 4N24 [A] (TX, TXV) 4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N47A (TX, TXV) 4N48, 4N48A (TX, TXV) 4N49, 4N49A (TX, TXV)		- - 	$\begin{aligned} & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \end{aligned}$
$\mathrm{HfE}_{\text {f }}$	DC Current Gain 4N22, 4N22A (TX, TXV) 4N23, 4N23A (TX, TXV) 4N24, 4N24A (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)	>300	-		v	$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
R_{10}	Resistance (Input-to-Output) 4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)	$\begin{aligned} & 10^{11} \\ & 10^{11} \end{aligned}$	-		Ω	$\begin{aligned} & \mathrm{V}_{1-0}= \pm 1000 \mathrm{VDC}^{(3)} \\ & \mathrm{V}_{1-0}= \pm 1000 \mathrm{VDC}^{(3)} \end{aligned}$
C_{10}	Capacitance (Input-to-Output)	-	-	5	pF	$\mathrm{V}_{\mathrm{L}-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}^{(3)}$
otes: Guarant	but not tested.			tested ed with	$\begin{aligned} & D=10 \\ & \text { ut lead } \end{aligned}$	horted together and output leads shorted togethe

IT Electronics

4N22, 4N23, 4N24 [A] (TX, TXV) 4N47, 4N48, 4N49 [A] (TX, TXV)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
T_{R}	Output Rise Time 4N22A (TX, TXV) 4N23A (TX, TXV) 4N24A (TX, TXV) 4N47 (TX. TXV) 4N48 (TX. TXV) 4N49 (TX. TXV)			$\begin{aligned} & 15 \\ & 15 \\ & 20 \\ & 20 \\ & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
T_{F}	Output Fall Time 4N22A (TX, TXV) 4N23A (TX, TXV) 4N24A (TX, TXV) 4N47 (TX. TXV) 4N48 (TX. TXV) 4N49 (TX. TXV)			$\begin{aligned} & 15 \\ & 15 \\ & 20 \\ & 20 \\ & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$

Typical Performance Curves

Hi-Reliability Optically Coupled Isolator

Tr Electronics

 4N22, 4N23, 4N24 [A] (TX, TXV)4N47, 4N48, 4N49 [A] (TX, TXV)

Typical Performance Curves

Normalized Collector Current Vs Temperature

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

TT Electronics:

JANTX4N24A JANTX4N23 JANTX4N23A JANTX4N22 JANTXV4N23 JANTX4N22A JAN4N22 JANTX4N24
JAN4N24 JANTXV4N23A JANTXV4N24 JAN4N24A JANTXV4N24A JANTX4N47 JANTX4N48 JAN4N49A
JAN4N49 JANTX4N47A JANTXV4N48 JANTX4N49 JAN4N48 JAN4N48A JANTX4N48A JANTXV4N48A
JAN4N47 JANTX4N49A JANTXV4N47A JANTXV4N49 JAN4N47A JANTXV4N49A JANTXV4N47 JANTXV4N22A
JAN4N22A JAN4N23A JAN4N23 JANTXV4N22

