SMT POWER INDUCTORS Flat Coils - PG0426 Series Pootprint: 7.5mm x 7.0mm Max @ Current Rating: 60Apk Inductance Range: 0.1μH to 1.5μH @ High temperature core material, no thermal aging below 150°C | Electrical Specifications @ 25°C - Operating Temperature -40°C to +130°C | | | | | | | |--|------------------------------|---------------|------|----|------|-------| | Dout | Inductance | DCR (m\Omega) | | | | | | Part
Number | @ Irated
(μΗ ±20%) | ТҮР | MAX | | | | | PG0426.101NL | 0.10 | 1.3 | 1.5 | 60 | 34.5 | 44.4 | | PG0426.151NL | 0.15 | 2.0 | 2.2 | 57 | 26.0 | 40.0 | | PG0426.201NL | 0.20 | 2.0 | 2.2 | 46 | 26.0 | 53.3 | | PG0426.221NL | 0.22 | 2.0 | 2.2 | 40 | 26.0 | 58.6 | | PG0426.331NL | 0.33 | 3.2 | 3.4 | 34 | 20.0 | 62.8 | | PG0426.471NL | 0.47 | 3.2 | 3.4 | 26 | 20.0 | 89.4 | | PG0426.681NL | 0.68 | 5.2 | 5.4 | 25 | 15.5 | 100.6 | | PG0426.821NL | 0.82 | 7.8 | 8.0 | 24 | 13.0 | 99.3 | | PG0426.102NL | 1.00 | 7.8 | 8.0 | 22 | 13.0 | 121.1 | | PG0426.152NL | 1.50 | 11.5 | 11.8 | 18 | 9.0 | 153.6 | **MECHANICAL SCHEMATIC** ## PG0426.XXXNL **TAPE & REEL LAYOUT** ## SMT POWER INDUCTORS Flat Coils - PG0426 Series # Pulse #### **Notes from Tables** - 1. The temperature of the component (ambient plus temperature rise) must be within the specified operating temperature range. - 2. The saturation current, I_{SAT}, is the current at which the component inductance drops by 30% (typical) at an ambient temperature of 25°C. This current is determined by placing the component in the specified ambient environment and applying a short duration pulse current (to eliminate self-heating effects) to the component. - 3. The heating current, I_{DC}, is the DC current required to raise the component temperature by approximately 40°C. The heating current is determined by mounting the component on a typical PCB and applying current for 30 minutes. The temperature is measured by placing the thermocouple on top of the unit under test. Take note that the component's performance varies depending on the system condition. It is suggested that the component be tested at the system level, to verify the temperature rise of the component during system operation. 4. Core loss approximation is based on published core data: Core Loss = $K1 * (f) * (K2\Delta I)$ Where: Core Loss = in Watts **f** = switching frequency in kHz K1 & K2 = core loss factors △I = delta I across the component in Ampere **K2△I** = one half of the peak to peak flux density across the component in Gauss - 5. Unless otherwise specified, all testing is made at 100kHz, 0.1VAC. - 6. Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number (i.e. PG0426.101NL becomes PG0426.101NLT). Pulse complies to industry standard tape and reel specification EIA481. 24 30 DC BIAS 36 42 48 54 12 18 Typical Component Temperature vs DC Bias Current # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ## Pulse: <u>PG0426.102NLT</u> <u>PG0426.471NLT</u> <u>PG0426.681NLT</u> <u>PG0426.331NLT</u> <u>PG0426.101NLT</u> <u>PG0426.152NLT</u> PG0426.821NLT PG0426.221NLT PG0426.201NLT PG0426.151NLT