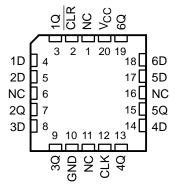
- Inputs Are TTL-Voltage Compatible
- Contain Six Flip-Flops With Single-Rail Outputs
- Applications Include:
 - Buffer/Storage Registers
 - Shift Registers
 - Pattern Generators
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description


These positive-edge-triggered D-type flip-flops have a direct clear (CLR) input.

Information at the data (D) inputs meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going edge of CLK. When CLK is at either the high or low level, the D input has no effect at the output.

SN54AHCT174 J OR W PACKAGE										
SN74AHCT174	. D, DB, DGV, N,	NS, OR PW	PACKAGE							
	(TOP VIEW	Λ								

	(10	/F VI		,
CLR [1Q [1D [2D [2Q [3D] 3Q [GND]	2 3 4 5 6 7	σ	16 15 14 13 12 11 10 9	V _{CC} 6Q 6D 5D 5Q 4D 4Q CLK

SN54AHCT174 . . . FK PACKAGE (TOP VIEW)

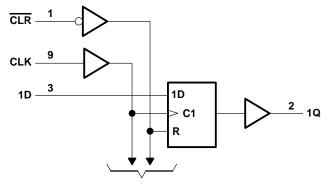
NC - No internal connection

TA	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74AHCT174N	SN74AHCT174N
	SOIC – D	Tube	SN74AHCT174D	AHCT174
	3010 - 0	Tape and reel	SN74AHCT174DR	And 174
–40°C to 85°C	SOP – NS	Tape and reel	SN74AHCT174NSR	AHCT174
	SSOP – DB	Tape and reel	SN74AHCT174DBR	HB174
	TSSOP – PW	Tape and reel	SN74AHCT174PWR	HB174
	TVSOP – DGV	Tape and reel	SN74AHCT174DGVR	HB174
	CDIP – J	Tube	SNJ54AHCT174J	SNJ54AHCT174J
–55°C to 125°C	CFP – W	Tube	SNJ54AHCT174W	SNJ54AHCT174W
	LCCC – FK	Tube	SNJ54AHCT174FK	SNJ54AHCT174FK

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated

FUNCTION TABLE (each flip-flop)										
	INPUTS	OUTPUT								
CLR	CLK	D	Q							
L	Х	Х	L							
Н	\uparrow	Н	н							
н	\uparrow	L	L							
Н	L	Х	Q ₀							

logic diagram (positive logic)

To Five Other Channels

Pin numbers shown are for the D, DB, DGV, J, N, NS, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Output voltage range, V_O (see Note 1) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$ Continuous output current, I_O ($V_O = 0$ to V_{CC}) Continuous current through V_{CC} or GND Package thermal impedance, θ_{JA} (see Note 2)	C) D package DB package DGV package N package NS package PW package	$\begin{array}{cccc} -0.5 \ \mbox{V to 7 V} \\0.5 \ \mbox{V to V}_{CC} + 0.5 \ \mbox{V} \\ -20 \ \mbox{mA} \\ \pm 20 \ \mbox{mA} \\ \pm 25 \ \mbox{mA} \\ \pm 50 \ \mbox{mA} \\ & 50 \ \mbox{mA} \\ & 73^{\circ}\mbox{C/W} \\ & 82^{\circ}\mbox{C/W} \\ & 67^{\circ}\mbox{C/W} \\ & 64^{\circ}\mbox{C/W} \\ & 108^{\circ}\mbox{C/W} \end{array}$
Storage temperature range, T _{stg}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

		SN54AH	CT174	SN74AH	CT174	UNIT
		MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2	N	2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	5.5	0	5.5	V
Vo	Output voltage	0	VCC	0	VCC	V
ЮН	High-level output current	DN	-8		-8	mA
IOL	Low-level output current	701	8		8	mA
$\Delta t/\Delta v$	Input transition rise or fall time	9	20		20	ns/V
ТĄ	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vee	Т	λ = 25°C	;	SN54AHCT174		SN74AHCT174		UNIT
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
Maria	I _{OH} = -50 μA	4.5.1	4.4	4.5		4.4		4.4		V
Voh	I _{OH} = -8 mA	4.5 V	3.94			3.8	'n.	3.8		V
N	I _{OL} = 50 μA	451			0.1		0.1		0.1	V
VOL	I _{OL} = 8 mA	4.5 V			0.36	~	0.44		0.44	v
l	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1*		±1	μA
ICC	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4	nc	40		40	μA
∆lcc‡	One input at 3.4 V, Other inputs at V_{CC} or GND	5.5 V			1.35	PhO	1.5		1.5	mA
Ci	$V_{I} = V_{CC}$ or GND	5 V		2	10				10	рF

* On products compliant to MIL-PRF-38535, this parameter is not production tested at V_{CC} = 0 V.

[†] This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted)

		T _A = 2	T _A = 25°C		SN54AHCT174		SN74AHCT174			
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT		
	Pulse duration	CLR low	5		5	4	5			
tw	Pulse duration	CLK high or low			5	N. N	5	ns		
		Data	5		5	11F	5		50	
t _{su}	Setup time before CLK [↑]	CLR inactive	3.5		3.5	·	3.5		ns	
t _h	Hold time, data after CLK^\uparrow		0		0		0		ns	

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T,	A = 25°0	;	SN54AHCT174		SN74AH	CT174	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
f			C _L = 15 pF	100**	135**		80**		80		MHz	
fmax			C _L = 50 pF	80	115		65	N	65			
^t PHL	CLR	Any Q	C _L = 15 pF		7.6**	10.4**	1**	13**	1	13	ns	
^t PLH	CLK	Any Q	Ci - 15 pF		5.8**	7.8**	1**	9**	1	9	-	
^t PHL	-		Ally Q	C _L = 15 pF		5.8**	7.8**	1**	9**	1	9	ns
^t PHL	CLR	Any Q	C _L = 50 pF		8.1	11.4) L	13	1	13	ns	
^t PLH	CLK	Any	C: 50 pF		6.3	8.8	01	10	1	10	ns	
^t PHL	ULK	Any Q	C _L = 50 pF	6.3 8.8 1	10	1	10	113				
t _{sk(o)}			C _L = 50 pF			1***				1	ns	

** On products compliant to MIL-PRF-38535, this parameter is not production tested.

*** On products compliant to MIL-PRF-38535, this parameter does not apply.

noise characteristics V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see Note 4)

	PARAMETER	SN7	UNIT		
		MIN	TYP	MAX	UNIT
VOL(P)	Quiet output, maximum dynamic V _{OL}		0.8		V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.8		V
VOH(V)	Quiet output, minimum dynamic V _{OH}	4			V
VIH(D)	High-level dynamic input voltage	2			V
VIL(D)	Low-level dynamic input voltage			0.8	V

NOTE 4: Characteristics are for surface-mount packages only.

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER	TEST C	ONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance	No load,	f = 1 MHz	28	pF

 $^{\circ}$ V_{CC} S O Open $\mathbf{R}_{\mathbf{I}} = \mathbf{1} \mathbf{k} \Omega$ TEST **S**1 From Output Test From Output ⊖ GND Under Test **Under Test** Point tPLH/tPHL Open CL CL tPLZ/tPZL Vcc (see Note A) (see Note A) tPHZ/tPZH GND **Open Drain** Vcc LOAD CIRCUIT FOR LOAD CIRCUIT FOR **TOTEM-POLE OUTPUTS 3-STATE AND OPEN-DRAIN OUTPUTS** 3 V 1.5 V **Timing Input** 0 V tw th 3 V tsu 3 V 1.5 V 1.5 V Input 1.5 1.5 V ν **Data Input** 0 V 0 V **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** PULSE DURATION SETUP AND HOLD TIMES - 3 V 3 V Output 1.5 V 1.5 V 1.5 V ν Input Control 0 V 0 V ^tPHL ^tPZL ^tPLH Output ≈Vcc - V_{OH} Waveform 1 In-Phase 50% V_{CC} 50% V_{CC} 50% V_{CC} V<u>OL + 0.3 V</u> VOL S1 at VCC Output Vol (see Note B) -- tPHZ tPHL -^tPLH ^tPZH Output ۷он ۷он Waveform 2 V_{OH} – 0.3 V **Out-of-Phase** 50% V_{CC} 50% V_{CC} 50% V_CC S1 at GND Output ≈0 V VOL (see Note B) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES ENABLE AND DISABLE TIMES** INVERTING AND NONINVERTING OUTPUTS LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		QLY	(2)	(6)	(3)		(4/5)	
SN74AHCT174D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHCT174	Samples
SN74AHCT174DBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HB174	Samples
SN74AHCT174DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHCT174	Samples
SN74AHCT174N	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-40 to 85	SN74AHCT174N	Samples
SN74AHCT174NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHCT174	Samples
SN74AHCT174PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HB174	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

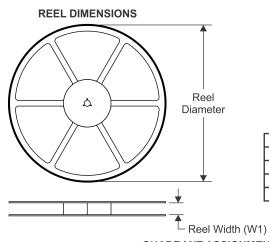
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

www.ti.com

6-Feb-2020

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

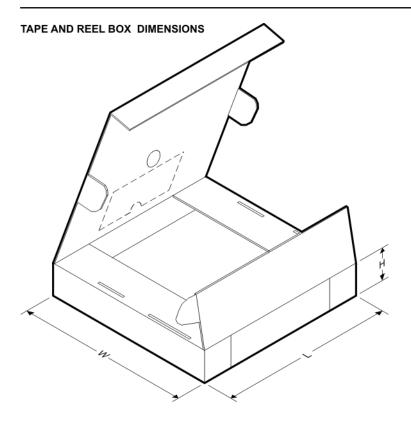

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHCT174DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74AHCT174NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74AHCT174PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Dec-2018

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHCT174DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74AHCT174NSR	SO	NS	16	2000	367.0	367.0	38.0
SN74AHCT174PWR	TSSOP	PW	16	2000	367.0	367.0	35.0

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

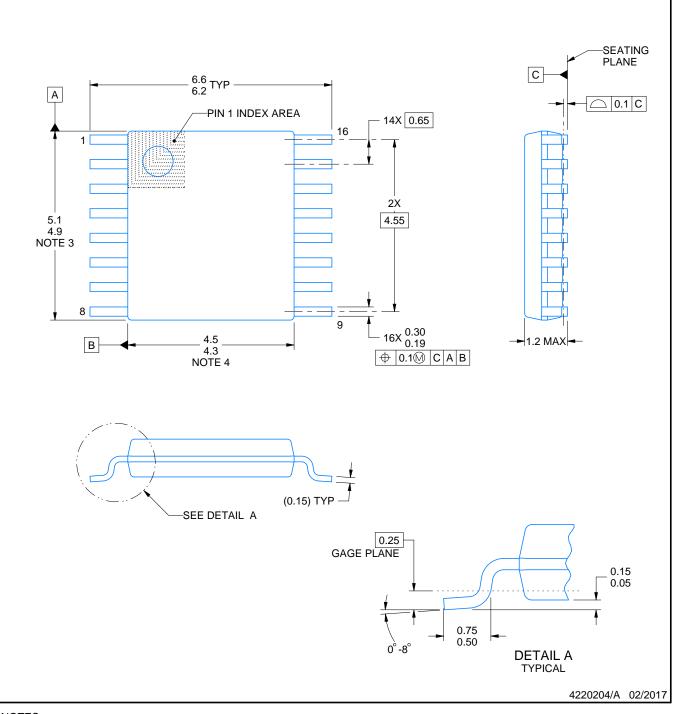
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0016A

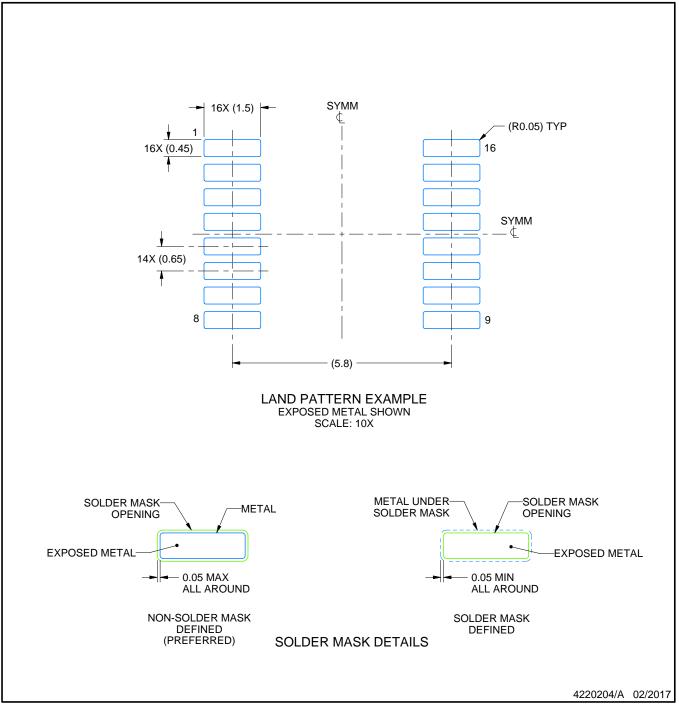
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

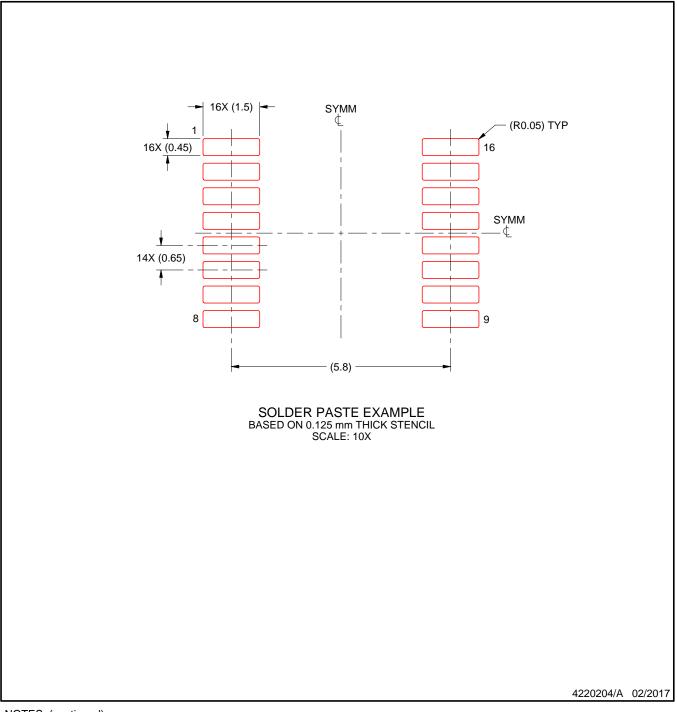
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

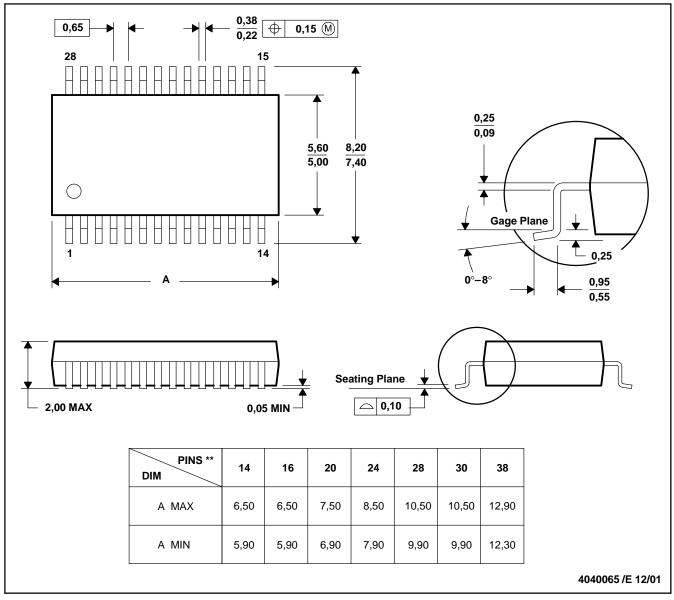
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated