

Is Now Part of

ON Semiconductor®

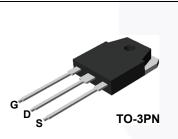
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

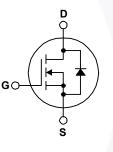
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FDA24N40F N-Channel UniFETTM FRFET[®] MOSFET 400 V, 23 A, 190 mΩ

Features


- $R_{DS(on)}$ = 150 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 11.5 A
- Low Gate Charge (Typ. 46 nC)
- Low C_{rss} (Typ. 25 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- Uninterruptible Power Supply
- AC-DC Power Supply

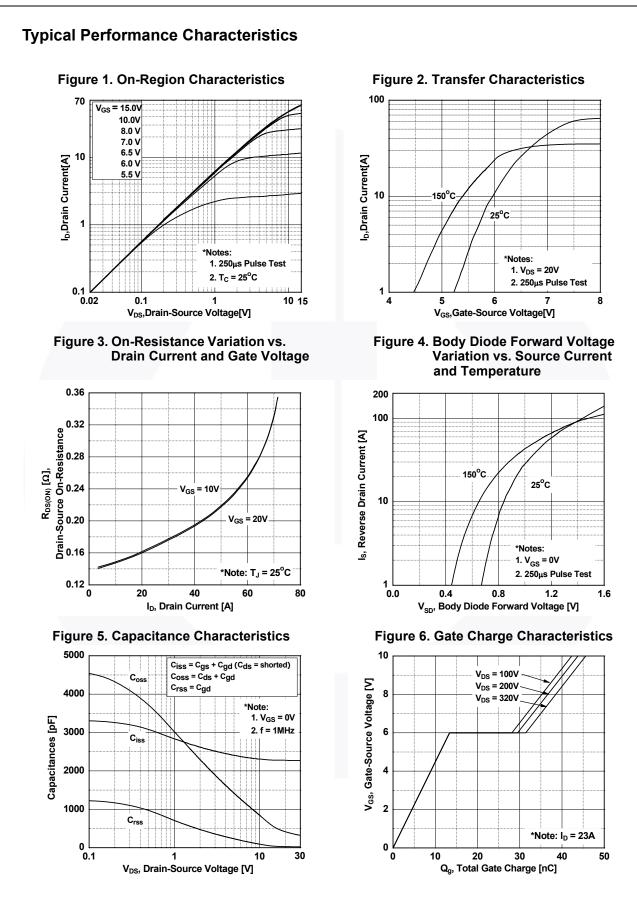
Description

UniFET[™] MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. The body diode's reverse recovery performance of UniFET FRFET[®] MOSFET has been enhanced by lifetime control. Its tri is less than 100nsec and the reverse dv/dt immunity is 15V/ns while normal planar MOSFETs have over 200nsec and 4.5V/nsec respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp balasts.

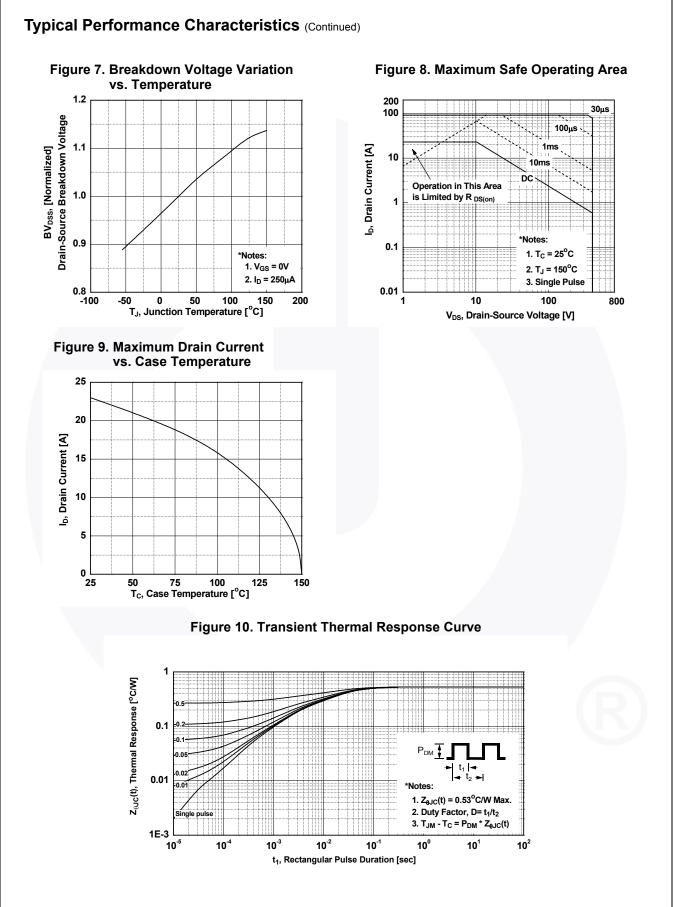
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

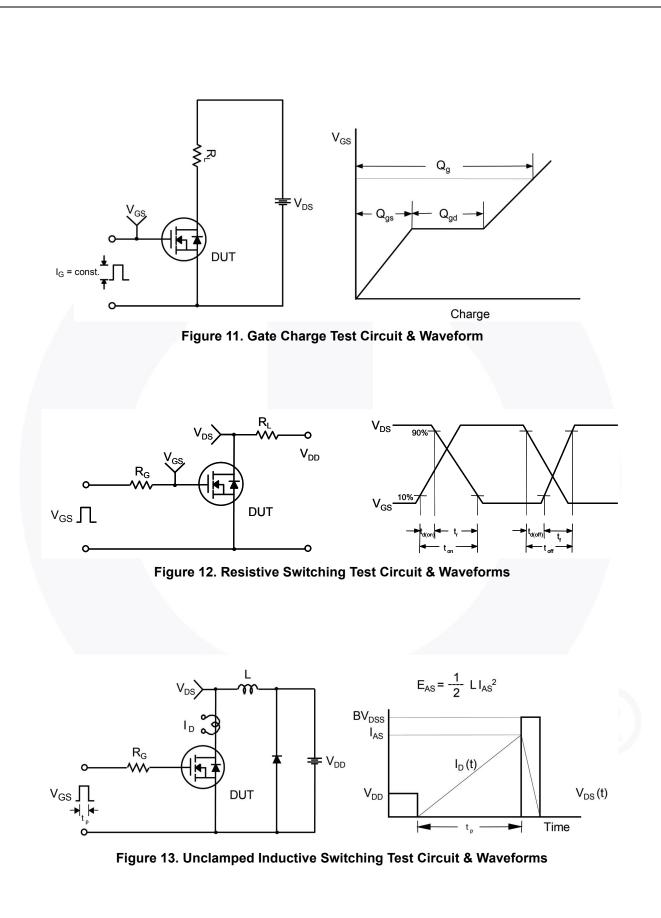
Symbol		FDA24N40F	Unit			
V _{DSS}	Drain to Source Voltage	400	V			
V _{GSS}	Gate to Source Voltage			±30	V	
ID	Drain Current	- Continuous (T _C = 25 ^o C)		23		
	Drain Current	- Continuous (T _C = 100 ^o C)		13.8	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	92	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			1190	mJ	
I _{AR}	Avalanche Current		(Note 1)	23	А	
E _{AR}	Repetitive Avalanche Ener	ду	(Note 1)	23.5	mJ	
dv/dt	Peak Diode Recovery dv/c	(Note 3)	4.5	V/ns		
P _D	Dewer Dissinction	(T _C = 25°C)		235	W	
	Power Dissipation	- Derate Above 25°C		1.8	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
T _I	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

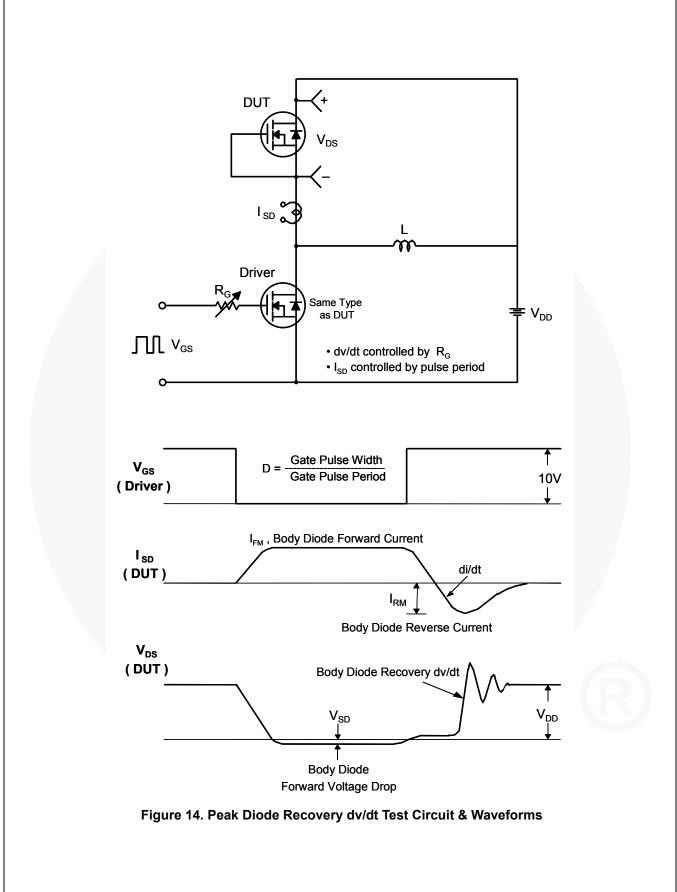
Thermal Characteristics


Symbol	Parameter	FDA24N40F	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.53	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	40	C/VV

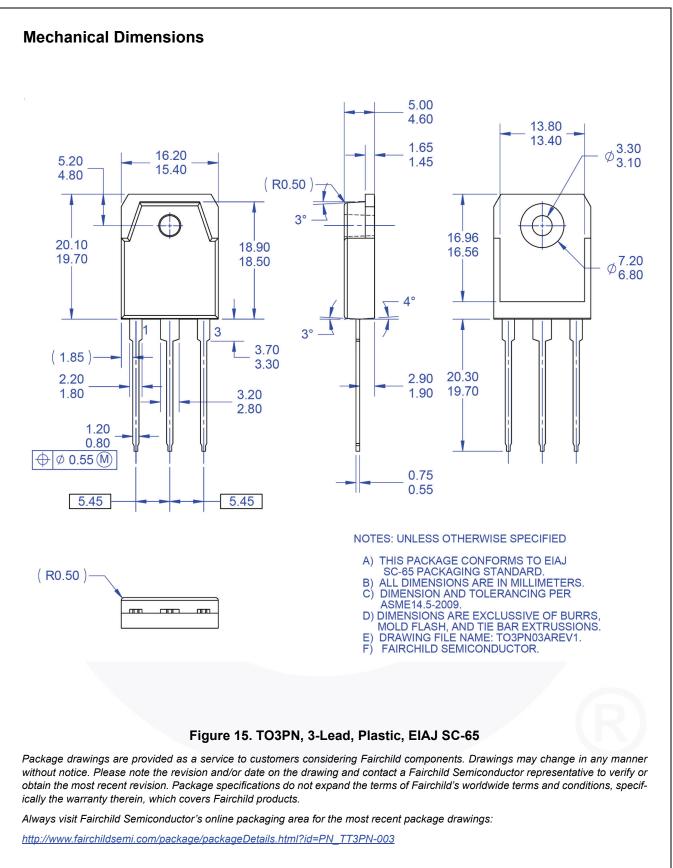
May 2014


		Top Mark	Package	Packing Method	Reel Size	e Ta	ape Width	Qu	antity
		TO-3PN			N/A		30 units		
Electrical	Chara	acteristics $T_C = 25^{\circ}C$	unless othe	erwise noted.					
Symbol		Parameter		Test Condition	S	Min.	Тур.	Max.	Unit
Off Charac	teristics								
BV _{DSS}	Drain to	Source Breakdown Voltage		I _D = 250 μA, V _{GS} = 0 V, T _J = 25 ^o C		400	_	-	V
∆BV _{DSS}		wn Voltage Temperature				400			
$/\Delta T_J$	Coefficient $I_D = 250 \ \mu$ A, Referenced to 25° C		to 25°C	-	0.5	-	V/ºC		
I _{DSS}	Zero Gate Voltage Drain Current			$V_{DS} = 400 V, V_{GS} = 0 V$ $V_{DS} = 320 V, T_{C} = 125^{o}C$		-	-	10	μA
'DSS						-	-	100	μι
I _{GSS}	Gate to Body Leakage Current $V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			-	-	±100	nA		
On Charact	teristics								
V _{GS(th)}	Gate Thr	eshold Voltage	VG	V _{GS} = V _{DS} , I _D = 250 μA		3.0	-	5.0	V
R _{DS(on)}	Static Dr	ain to Source On Resistance		$V_{GS} = 10 V, I_D = 11.5 A$		-	0.15	0.19	Ω
9 _{FS}	Forward	Transconductance		_S = 20 V, I _D = 11.5 A		-	29	-	S
Dynamic C	haracte	ristics					1 1		
C _{iss}	1	pacitance				-	2280	3030	pF
C _{oss}		apacitance		V _{DS} = 25 V, V _{GS} = 0 V,		-	370	490	pF
C _{rss}		Transfer Capacitance	f =	1 MHz	-	-	25	38	pF
Q _{g(tot)}		te Charge at 10V	V-	_S = 320 V, I _D = 23 A,		-	46	60	nC
Q _{gs}	Gate to S	Source Gate Charge		$V_{\rm GS} = 320$ V, $T_{\rm D} = 23$ A, $V_{\rm GS} = 10$ V (Note 4)		-	13	-	nC
Q _{gd}	Gate to D	Drain "Miller" Charge				-	18	-	nC
Switching	Charact	eristics	·						
t _{d(on)}	1	Delay Time		$V_{DS} = 200 \text{ V}, \text{ I}_{D} = 23 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{G} = 25 \Omega $ (Note 4)		-	40	90	ns
t _r		Rise Time	VD			-	92	195	ns
t _{d(off)}	Turn-Off	Delay Time				-	120	250	ns
t _f	Turn-Off	Fall Time				-	75	160	ns
Drain-Sour	ce Diod	e Characteristics	H				1		1
I _S		Continuous Drain to Source	e Diode Foi	ward Current			_	23	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current				-	-	92	Α	
V _{SD}	Drain to Source Diode Forward Voltage		1	V _{GS} = 0 V, I _{SD} = 23 A		-	-	1.5	V
t _{rr}	Reverse	e Recovery Time		$V_{GS} = 0 V, I_{SD} = 23 A,$		-	110		ns
	-	Reverse Recovery Charge		dl _F /dt = 100 A/μs		-	0.3	· _ · ·	μC


2



©2008 Fairchild Semiconductor Corporation FDA24N40F Rev. C2



FDA24N40F — N-Channel UniFETTM FRFET[®] MOSFET

FDA24N40F — N-Channel UniFETTM FRFET[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDA24N40F