

Is Now Part of

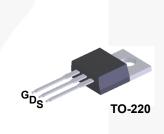
ON Semiconductor®

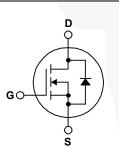
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

N-Channel QFET[®] MOSFET


600 V, 7.5 A, 1.2 Ω


Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction, electronic lamp ballasts based on half bridge topology.

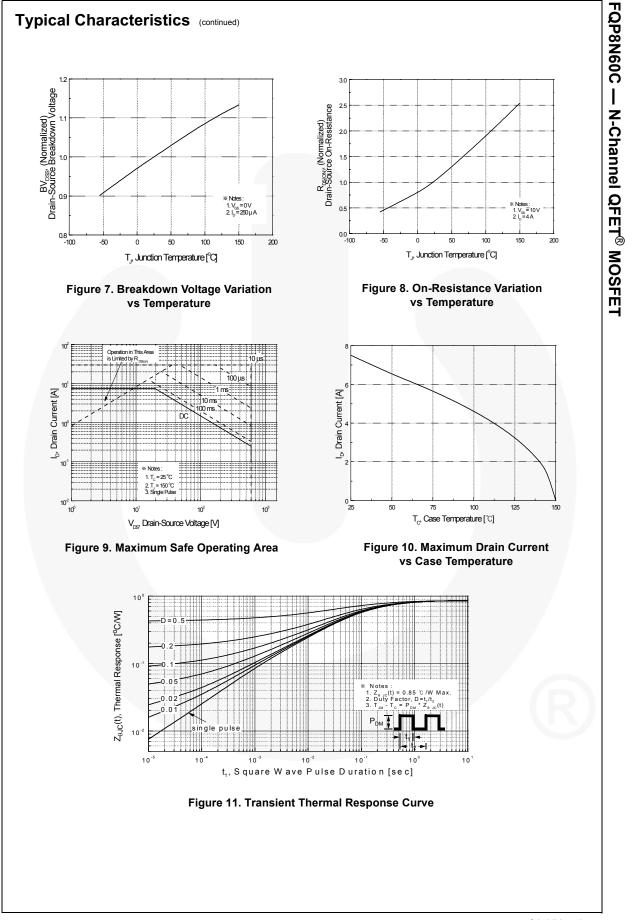
Features

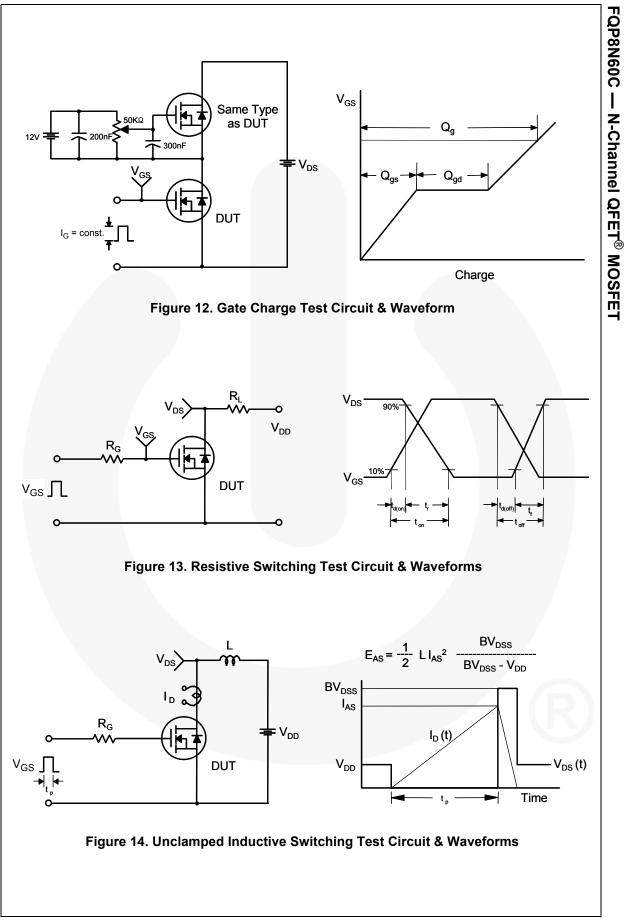
- 7.5 A, 600 V, $R_{DS(on)}$ = 1.2 Ω (Max.) @ V_{GS} = 10 V, I_{D} = 3.75 A
- Low Gate Charge (Typ. 28 nC)
- Low Crss (Typ. 12 pF)
- 100% Avalanche Tested

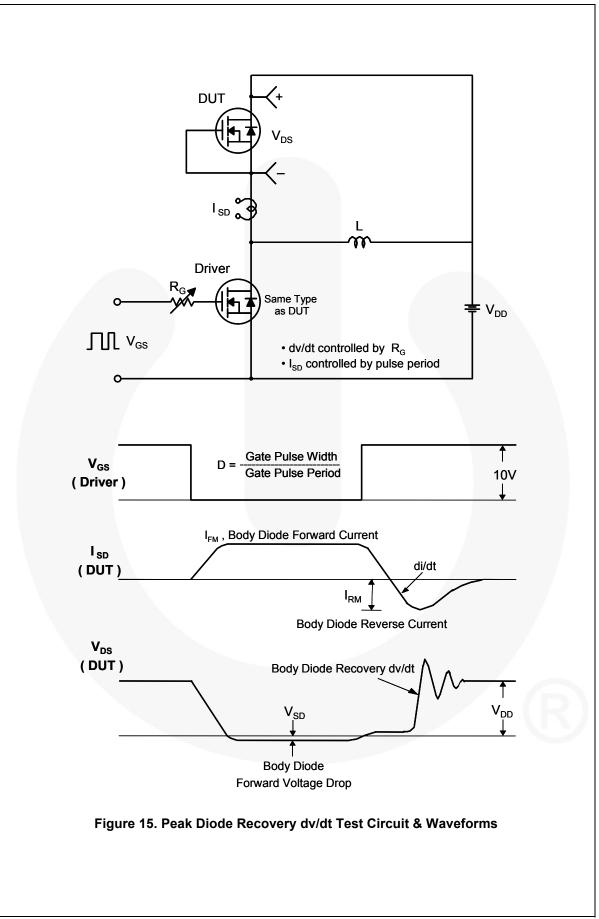
Absolute Maximum Ratings T_c = 25°C unless otherwise noted.

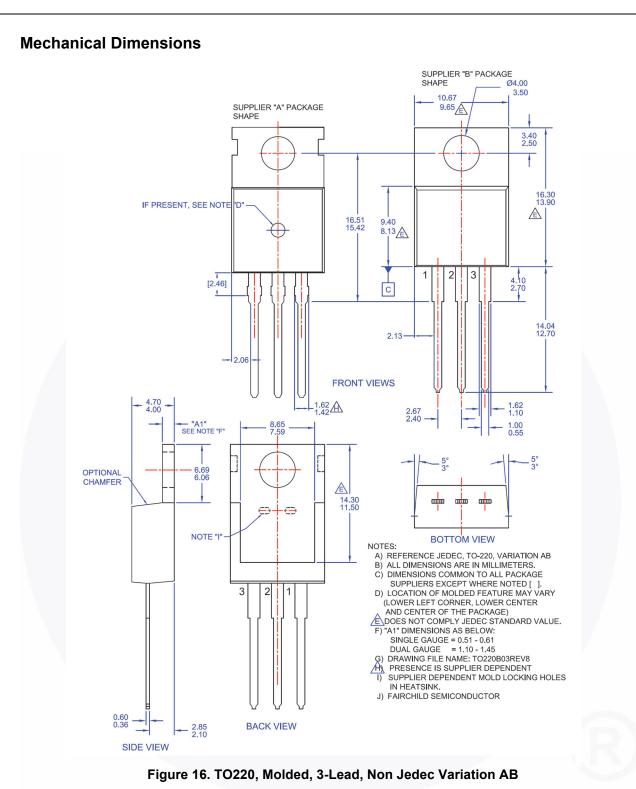
Symbol	Parameter		FQP8N60C	Unit	
V _{DSS}	Drain-Source Voltage		600	V	
I _D	Drain Current - Continuous (T _C = 25°C	2)	7.5	A	
	- Continuous (T _C = 100°	°C)	4.6	A	
DM	Drain Current - Pulsed	(Note 1)	30	A	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	230	mJ	
AR	Avalanche Current	(Note 1)	7.5	A	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	14.7	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns	
P _D	Power Dissipation (T _C = 25°C)		147	W	
	- Derate above 25°C		1.18	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range	ge	-55 to +150	°C	
Τ _L	Maximum lead temperature for soldering 1/8" from case for 5 seconds	purposes,	300	°C	

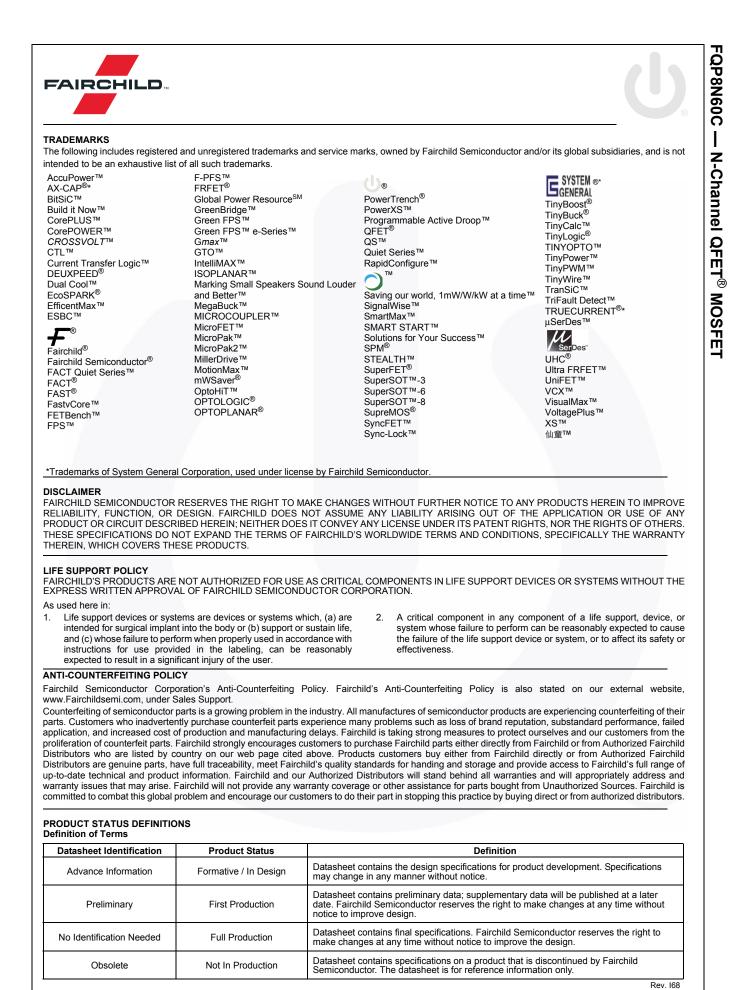

* Drain current limited by maximum junction temperature.


Thermal Characteristics


Symbol	Parameter	FQP8N60C	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	0.85	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W


April 2014


Symbol Off Cha BV _{DSS} ABV _{DSS} AT _J	cal Ch	FQP8N60C				Reel	Size			Quantity
Symbol Off Cha BV _{DSS} ΔBV _{DSS} ΔT _J			TO-2	220 Tube N/		A	N/A		50 units	
Off Cha ^{3V_{DSS} ΔBV_{DSS} ΔT_J}	racteri	aracteristics	T _c = 25°C unl	ess otherv	vise noted.					
Off Cha BV _{DSS} ΔBV _{DSS} / ΔT _J	racteri	Parameter			Test Conditions		Min	Тур	Max	Unit
ΔBV _{DSS} ′ΔT _J		stics								
ΔT_{J}	Drain-Se	ource Breakdown Volt	age	V_{GS} =	0 V, I _D = 250 μA		600			V
DSS	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse		$I_{D} = 250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 600 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = 480 \ \text{V}, \ T_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$				0.7	 1 10	V/°C μΑ μΑ	
200										
GSSF								100	nA	
GSSF				$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$					-100	nA
				•65					-100	ПА
On Cha V _{GS(th)}		reshold Voltage	_	Vac =	V _{GS} , I _D = 250 μA		2.0		4.0	V
GS(th) R _{DS(on)}	Static D	rain-Source		-	10 V, I _D = 3.75 A			1.0	1.2	Ω
9 _{FS}	On-Res Forward	I Transconductance		V _{DS} = 40 V, I _D = 3.75 A				8.7		S
Dynami	c Char	acteristics								
C _{iss}	Input Ca	apacitance		V _D e =	25 V, V _{GS} = 0 V,			965	1255	pF
C _{oss}	Output (Capacitance		f = 1.0				105	135	pF
C _{rss}	Reverse	Transfer Capacitance	e					12	16	pF
	Ok .									
d(on)	Turn-Or	Delay Time	_		300 V, I _D = 7.5 A,			16.5 60.5	45 130	ns
d(on) r	Turn-Or Turn-Or	n Delay Time n Rise Time		V _{DD} = R _G = 2				60.5	130	ns
d(on) r d(off)	Turn-Or Turn-Or Turn-Of	Delay Time Rise Time f Delay Time			25 Ω	(Note 4)		60.5 81	130 170	ns ns
d(on) r d(off) f	Turn-Or Turn-Or Turn-Of Turn-Of	n Delay Time n Rise Time f Delay Time f Fall Time		R _G = 2	25 Ω	(Note 4)		60.5 81 64.5	130 170 140	ns ns ns
d(on) r d(off) f Q _g	Turn-Or Turn-Or Turn-Off Turn-Off Total Ga	n Delay Time n Rise Time f Delay Time f Fall Time ate Charge		R _G = 2	25 Ω 480 V, I _D = 7.5 A,	(Note 4)		60.5 81 64.5 28	130 170	ns ns ns nC
d(on) r d(off) f Q _g Q _{gs}	Turn-Or Turn-Of Turn-Off Turn-Off Total Ga Gate-Sc	a Delay Time n Rise Time f Delay Time f Fall Time ate Charge purce Charge		R _G = 2	25 Ω 480 V, I _D = 7.5 A,	(Note 4)		60.5 81 64.5	130 170 140 36	ns ns ns nC nC
$\begin{array}{c} d(on) \\ \hline r \\ \hline d(off) \\ \hline f \\ Q_g \\ Q_{gs} \\ Q_{gd} \end{array}$	Turn-Or Turn-Of Turn-Off Turn-Off Total Ga Gate-Sc Gate-Dr	n Delay Time n Rise Time f Delay Time f Fall Time ate Charge	istics ar	R _G = 2 V _{DS} = V _{GS} =	25 Ω 480 V, I _D = 7.5 A, 10 V		 	60.5 81 64.5 28 4.5	130 170 140 36 	ns ns ns nC
$\begin{array}{c} d(on) \\ r \\ d(off) \\ f \\ \lambda_{g} \\ \lambda_{gs} \\ \lambda_{gd} \end{array}$	Turn-Or Turn-Or Turn-Off Turn-Off Total Ga Gate-So Gate-Dr	a Delay Time a Rise Time f Delay Time f Fall Time ate Charge ource Charge ain Charge		R _G = 2 V _{DS} = V _{GS} =	25 Ω 480 V, I _D = 7.5 A, 10 V kimum Ratings		 	60.5 81 64.5 28 4.5	130 170 140 36 	ns ns ns nC nC
d(on) r d(off) f Q _g Q _{gs} Q _{gd} Drain-S s	Turn-Or Turn-Or Turn-Of Turn-Off Total Ga Gate-Sc Gate-Dr Ource I Maximu	a Delay Time a Rise Time f Delay Time f Fall Time ate Charge purce Charge ain Charge Diode Characteri	Source Dio	$R_G = 2$ $V_{DS} =$ $V_{GS} =$ Ind Max de Forw	25 Ω 480 V, I _D = 7.5 A, 10 V kimum Ratings vard Current		 	60.5 81 64.5 28 4.5 12	130 170 140 36 	ns ns nC nC nC
$\frac{d(on)}{r}$ $\frac{d(off)}{f}$ $\frac{\lambda_{g}}{\lambda_{gs}}$ $\frac{\lambda_{gd}}{Drain-S}$	Turn-Or Turn-Or Turn-Off Turn-Off Total Ga Gate-Sc Gate-Dr Ource I Maximu Maximu	a Delay Time a Rise Time f Delay Time f Fall Time ate Charge purce Charge ain Charge Diode Characteri m Continuous Drain-S	Source Dio ce Diode F	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $M Max$ $M ax$ $M ax$ $M ax$	25 Ω 480 V, I _D = 7.5 A, 10 V kimum Ratings vard Current		 	60.5 81 64.5 28 4.5 12	130 170 140 36 7.5	ns ns nC nC nC A
d(on) r d(off) f λ_{g} λ_{gs} λ_{gd} Drain-S s SM	Turn-Or Turn-Or Turn-Of Turn-Of Total Ga Gate-Sc Gate-Dr Ource I Maximu Maximu Drain-Sc	a Delay Time a Rise Time f Delay Time f Fall Time ate Charge ource Charge ain Charge Diode Characteri m Continuous Drain-S m Pulsed Drain-Source	Source Dio ce Diode F	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $M Max$ $M ax$	480 V, $I_D = 7.5$ A, 10 V kimum Ratings rard Current Current		 	60.5 81 64.5 28 4.5 12	130 170 140 36 7.5 30	ns ns nC nC nC A A


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003

FQP8N60C ---

N-Channel QFET[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FQP8N60C