

 $V_n = 400 \text{ V} 3 \sim$

 $f_T = 15 \text{ kHz}$ $T_C = 80^{\circ}\text{C}$

Typ. Rectified Mains Power

P_n = **15 kW** at

Rectifier Module for Three Phase Power Factor Correction

Preliminary data

Part name (Marking on product)

VUI30-12N1

Features:

- NPT IGBT with low saturation voltage
- Fast recovery epitaxial diodes (FRED)

Application:

Three phase rectifier with power factor correction, set up as follows:

- input from three phase mains
- wide range of input voltage
- mains currents approx. sinusoidal
- in phase with mains voltage
- topology permits to control overcurrent such as in case of input voltage peaks
- output
- direct current link
- buck type converter reduced output voltage
- possibility to supply boost converter, inverter etc.
- required components
- one power semiconductor module per phase
- one inductor and one capacitor per
- phase on mains side
- output inductor, depending on supplied circuit

Package:

- High level of integration
- Solder terminals for PCB mounting
- Isolated DCB ceramic base plate
- Large creepage and strike distances

IXYS reserves the right to change limits, test conditions and dimensions.

LIXYS

Transistor T

				Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit	
V_{ces}	collector emitter voltage	$T_{VJ} = 25^{\circ}C$ to	150°C		1200	V	
V_{ges}	DC gate voltage	continuous	-20		+20	V	
I _{С25} I _{С80}	collector current	$\begin{array}{c} DC & T_c = \\ DC & T_c = \end{array}$			95 65	A A	
V _{CE(sat)}	collector emitter saturation voltage	$I_{c} = 20 \text{ A}; V_{GE} = 15 \text{ V}$ $T_{VJ} = T_{VJ} = 1000 \text{ C}$		1.7 1.9	2.0	V	
V _{GE(th)}	gate emitter threshold voltage	$I_{\rm C}=2\ m{\rm A}; V_{\rm GE}=V_{\rm CE} \qquad \qquad T_{\rm VJ}=$	25°C 4.5		6.5	V	
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V \qquad T_{VJ} = T_{VJ} = 1$		1.8	1.6	mA mA	
I _{GES}	gate emitter leakage current	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$			400	nA	
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	hinductive load $T_{VJ} = 1$ $V_{CE} = 600 V; I_C = 20 A$ $V_{GE} = \pm 15 V; R_G = 22 \Omega; L = 100 \mu H$	25°C	100 70 500 70 3.0 2.2		ns ns ns mJ mJ	
C _{ies}	input capacitance	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; \text{ f} = 1 \text{ MHz}$		3.3		nF	
\mathbf{Q}_{Gon}	total gate charge	$V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 50 \text{ A}$		240		nC	
I _{см} V _{сек}	reverse bias safe operating area	$\begin{array}{l} \text{RBSOA; } \text{V}_{\text{GE}} = \pm 15 \text{ V; } \text{R}_{\text{G}} = 22 \ \Omega; \text{L} = 100 \ \mu\text{H} \\ \text{clamped inductive load; } \\ \text{T}_{\text{vJ}} = 125^{\circ}\text{C} \end{array}$		100 ′ _{ces} -L _s ⋅d _i	/dt	A V	
t _{sc} (SCSOA)	short circuit safe operating area		125°C		10	μs	
R _{thJC}	thermal resistance junction to case				0.3	K/W	
\mathbf{R}_{thJH}	thermal resistance case to heatsink	with heat transfer paste, see mounting instru	ictions	0.6		K/W	

Diodes D1 - D4

Symbol	Conditions			Ratings			
				min.	typ.	max.	
V _{RRM}	repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			1200	V
I _{F25} I _{F80}	collector current		$T_{c} = 25^{\circ}C$ $T_{c} = 80^{\circ}C$			40 25	A A
I _R	reverse current	$V_{R} = V_{RRM}$ $V_{R} = 0.8 \cdot V_{RRM}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		2	0.75	mA mA
V _F	forward voltage	I _F = 20 A	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		2.2 1.9	2.4	V V
l _{RM} t _{rr}	reverse recovery current reverse recovery time	$I_F = 30 \text{ A}; \text{ di}_F/\text{dt} = -250 \text{ A}/\mu\text{s}$ $V_R = 540 \text{ V}$	T _{vJ} = 125°C		16 400		A ns
R _{thJC}	thermal resistance junction to case	per diode	$T_{VJ} = 25^{\circ}C$			1.3	K/W
R _{thJH}	thermal resistance case to heatsink	with heat transfer paste	$T_{VJ} = 25^{\circ}C$		2.6		K/W

LIXYS

				Ratir	igs	
ymbol	Definitions	Conditions	min.	typ.	max.	Un
VJ	operating temperature		-40		150	٥
stg	storage temperature		-40		125	٥
ISOL	isolation voltage	$I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz};$	t = 1 min		3600	V
l _d	mounting torque	(M5)	2		2.5	Ni
_s ; d _A	creep distance on surface / t	hrough air	5			m
Veight				35		
Dutline Dr	rawing		Dimensions in mr	n (1 mm	= 0.039	94")
<u>0,25</u> =		"X" "X" 35 63	0.5 +0.2 0.5 +0.2 0.5 +0.2 0.5 +0.2		9.2±0.5	
4 4 2 4 2 4 4 2 2 4 4 4 4 4 5 7 5 4 4 4 4 5 7 5 4 4 4 5 7 5 7	5° 14 ±0,. 7 ±0, 7 ±0, 25,75 ±0,15	3 7±0,3 R1 R1 S S S Marking	$\frac{Detail "X"}{\phi}$	M 2	<i>6.</i>	
	- -	-				

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	VUI30-12N1	VUI30-12N1	Box	10	487554

IXYS reserves the right to change limits, test conditions and dimensions.