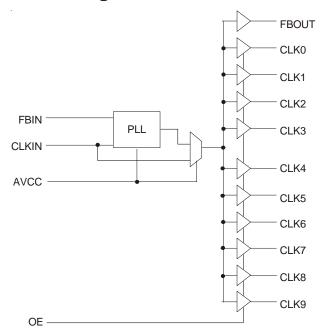


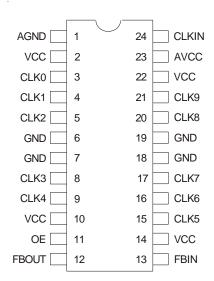
3.3V Phase-Lock Loop Clock Driver

General Description

The ICS2510C is a high performance, low skew, low jitter clock driver. It uses a phase lock loop (PLL) technology to align, in both phase and frequency, the CLKIN signal with the CLKOUT signal. It is specifically designed for use with synchronous SDRAMs. The **ICS2510C** operates at 3.3V VCC and drives up to ten clock loads.


One bank of ten outputs provide low-skew, low-jitter copies of CLKIN. Output signal duty cycles are adjusted to 50 percent, independent of the duty cycle at CLKIN. Outputs can be enabled or disabled via control (OE) inputs. When the OE inputs are high, the outputs align in phase and frequency with CLKIN; when the OE inputs are low, the outputs are disabled to the logic low state.

The ICS2510C does not require external RC filter components. The loop filter for the PLL is included on-chip, minimizing component count, board space, and cost. The test mode shuts off the PLL and connects the input directly to the output buffer. This test mode, the ICS2510C can be use as low skew fanout clock buffer device. The ICS2510C comes in 24 pin 173mil Thin Shrink Small-Outline package (TSSOP) package.


Features

- Meets or exceeds PC133 registered DIMM specification1.1
- Spread Spectrum Clock Compatible
- Distributes one clock input to one bank of ten outputs
- Operating frequency 25MHz to 175MHz
- External feedback input (FBIN) terminal is used to synchrionize the outputs to the clock input
- No external RC network required
- Operates at 3.3V Vcc
- Plastic 24-pin 173mil TSSOP package

Block Diagram

Pin Configuration

24 Pin TSSOP 4.40 mm. Body, 0.65 mm. pitch

ICS2510C

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1	AGND	PWR	Analog Ground
2, 10, 14	VCC	PWR	Power Supply (3.3V)
3	CLK0	OUT	Buffered clock output.
4	CLK1	OUT	Buffered clock output.
5	CLK2	OUT	Buffered clock output.
6, 7, 18, 19	GND	PWR	Ground
8	CLK3	OUT	Buffered clock output.
9	CLK4	OUT	Buffered clock output.
11	OE ¹	IN	Output enable (has internal pull_up). When high, normal operation. When low, clock outputs are disabled to a logic low state.
12	FBOUT	OUT	Feedback output
13	FBIN	IN	Feedback input
15	CLK5	OUT	Buffered clock output.
16	CLK6	OUT	Buffered clock output.
17	CLK7	OUT	Buffered clock output.
20	CLK8	OUT	Buffered clock output.
21	CLK9	OUT	Buffered clock output.
22	VCC	PWR	Power Supply (3.3V) digital supply.
23	AVCC	IN	Analog power supply (3.3V). When input is ground PLL is off and bypassed.
24	CLKIN	IN	Clock input

Note:

1. Weak pull-ups on these inputs

Functionality

INPUTS			PLL			
OE	AVCC	CLK (9:0)	FBOUT	Source	Shutdown	
0	3.33	0	Driven	PLL	N	
1	3.33	Driven	Driven	PLL	N	
Buffer Mode						
0	0	0	Driven	CLKIN	Y	
1	0	Driven	Driven	CLKIN	Y	

Test mode:

When AVCC is 0, shuts off the PLL and connects the input directly to the output buffers

0010G-09/22/09

Absolute Maximum Ratings

Supply Voltage (AVCC) AVCC < (V_{cc} + 0.7V)

Supply Voltage (VCC) 4.3 V

Logic Inputs GND -0.5 V to V_{cc} +0.5 V

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - OUTPUT

 $T_A = 0 - 70^{\circ}C$; $V_{DD} = V_{DDL} = 3.3 \text{ V +/-10\%}$; $C_L = 20 - 30 \text{ pF}$; $R_L = 470 \text{ Ohms (unless otherwise stated)}$

PARAMETER	PARAMETER SYMBOL CONDITIONS		MIN	TYP	MAX	UNITS	
Output Impedance	R_{DSP}	$V_{O} = V_{DD}^{*}(0.5)$		36		Ω	
Output Impedance	R _{DSN}	$V_{O} = V_{DD}^{*}(0.5)$		32		Ω	
Output High Voltage	V_{OH}	Am 8- = _{HC}		2.9		V	
Output Low Voltage	V_{OL}	$I_{OL} = 8 \text{ mA}$		0.25	0.4	V	
Output High Current	1	V _{OH} = 2.4 V		-26	-13.6	mΛ	
Output High Current	I _{OH}	V _{OH} = 2.0 V		-37	-22	mA	
Output Low Current	la.	V _{OL} = 0.8 V	19	25		mA	
Odiput Low Current	I _{OL}	$V_{OL} = 0.55 \text{ V}$	13	17			
Rise Time ¹ T_r $V_{OL} = 0.8 \text{ V}, V_{OH} = 2.0 \text{ V}$		0.5	1.4	2.1	ns		
Fall Time ¹	T_f	$V_{OH} = 2.0 \text{ V}, V_{OL} = 0.8 \text{ V}$	0.5	1.5	2.7	ns	
Duty Cycle ¹	D_{t}	$V_T = 1.5 \text{ V;} C_L = 30 \text{ pF}$	45	50	55	%	
Cycle to Cycle iitter1	Тсус-сус	at 66-100 MHz ; loaded outputs		52	100	ne	
Cycle to Cycle jitter ¹	TCyc-cyc	at 133 MHz ; loaded outputs		39	75	ps	
Absolute Jitter ¹	Tjabs	10000 cycles; C _L = 30 pF		57		ps	
Skew ¹	T_sk	$V_T = 1.5 \text{ V (Window) Output to Output}$		80	150	ps	
Phase error ¹	T_pe	$V_T = Vdd/2$; CLKIN-FBIN	-150	40	150	ps	
Phase error Jitter ¹			-50	35	50	ps	
Delay Input-Output ¹ D _{R1}		$V_T = 1.5 V$; PLL_EN = 0		3.3	3.7	ns	

¹ Guaranteed by design, not 100% tested in production.

ICS2510C

Electrical Characteristics - Input & Supply

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V} + /-10\%$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V_{IH}		2		$V_{DD} + 0.3$	V
Input Low Voltage	V_{IL}		V _{SS} - 0.3		0.8	V
Input High Current	I _{IH}	$V_{IN} = V_{DD}$		0.1	100	uA
Input Low Current	I _{IL}	$V_{IN} = 0 V;$		19	50	uA
Operating current	I _{DD1}	C _L = 0 pF; F _{IN} @ 66M		140	170	mA
Input Capacitance	C_{IN}^{-1}	Logic Inputs		4		рF
Output Capacitance	C_0^{-1}	Logic Outputs		8		рF

¹Guaranteed by design, not 100% tested in production.

Timing requirements over recommended ranges of supply voltage and operating free-air temperature

	<u></u>				
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Fclk	Input clock		25	175	MHz
FUIK	frequency		25	175	IVITIZ
	Input clock				
	frequency duty		40	60	%
	cycle				
	Stabilization time	After power up		1	ms

Note: Time required for the PLL circuit to obtain phase lock of its feedback signal to its In order for phase lock to be obtained, a fixed-frequency, fixed-phase reference signal Until phase lock is obtained, the specifications for parameters given in the switching

PARAMETER MEASUREMENT INFORMATION

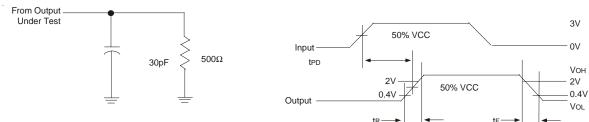


Figure 1. Load Circuit for Outputs

Notes:

- 1. C_L includes probe and jig capacitance.
- characteristics: PRR \leq 133 MHz, $Z_0 = 50 \Omega$, $T_r \leq$ 1.2 ns, $T_f \leq$ 1.2 ns.

3. The outputs are measured one at a time with one transition per measurement.

Figure 2. Voltage Waveforms **Propagation Delay Times** 2. All input pulses are supplied by generators having the following

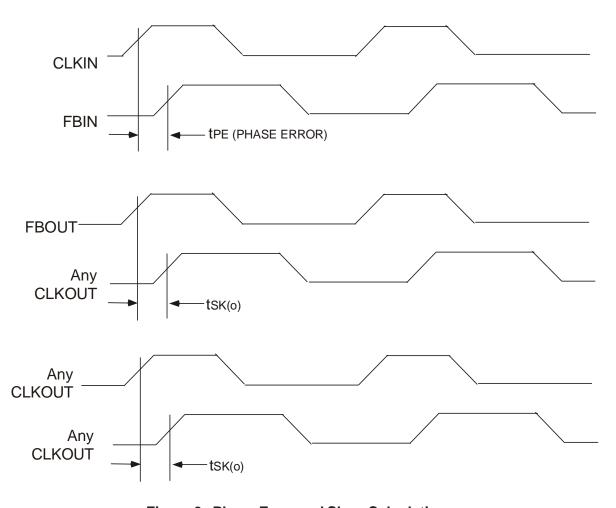
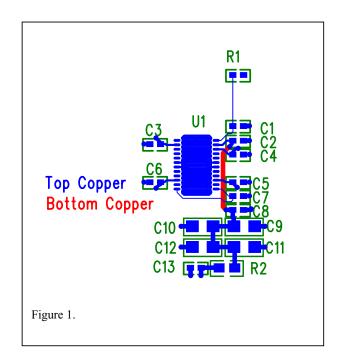


Figure 3. Phase Error and Skew Calculations


ICS2510C

General Layout Precautions:

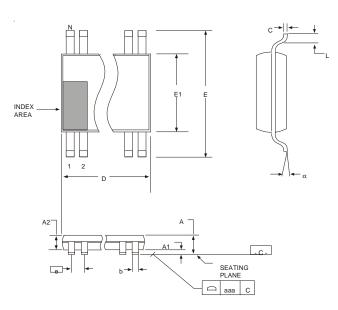
An ICS2509C is used as an example. It is similar to the ICS2510C. The same rules and methods apply.

- Use copper flooded ground on the top signal layer under the clock buffer The area under U1 in figure 1 on the right is an example. Every ground pin goes to a ground via. The vias are not visible in figure 1.
- Use power vias for power and ground. Vias 20 mil or larger in diameter have lower high frequency impedance. Vias for signals may be minimum drill size.
- 3) Make all power and ground traces are as wide as the via pad for lower inductance.
- 4) VAA for pin 23 has a low pass RC filter to decouple the digital and analog supplies. C9-12 may be replaced with a single low ESR (0.8 ohm or less) device with the same total capacitance. R2 may be replaced with a ferrite bead. The bead should have a DC resistance of at least 0.5 ohms. 1 ohm is better. It should have an impedance of at least 300 ohms at 100MHz. 600 ohms at 100MHz is better.
- 5) Notice that ground vias are never shared.
- 6) All VCC pins have a decoupling capacitor. Power is always routed from the plane connection via to the capacitor pad to the VCC pin on the clock buffer.
- 7) Component R1 is located at the clock source.
- 8) Component C1, if used, has the effect of adding delay.
- 9) Component C7, if used, has the effect of subtracting delay. Delaying the FBIn clock will cause the output clocks to be earlier. A more effective method is to use the propagation time of a trace between FBOut and FBIn.

Component Values:

C1,C7= As necessary for delay adjust

C[6:2] = .01uF


C8, C13 = 0.1uF

C[12:9]=4.7Uf

R1=10 ohm. Locate at driver

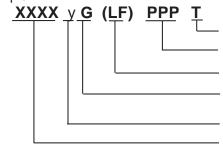
R2=10 ohm.

	In Millimeters		In Inches		
SYMBOL		IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20	-	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VARIATIONS		
Е	6.40 BASIC		0.252 BASIC		
E1	4.30	4.50	.169	.177	
е	0.65 BASIC		0.0256	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

N	Dr	nm.	D (inch)						
	MIN	MAX	MIN	MAX					
	24	7.70	7.90	.303	.311				

Reference Doc.: JEDEC Publication 95, MO-153


10-0035

4.40 mm. Body, 0.65 mm. pitch TSSOP (173 mil) (0.0256 lnch)

Ordering Information

2510CGLFT

Designation for tape and reel packaging

Pattern Number (2 or 3 digit number for parts with ROM code patterns)

Lead Free, RoHS Compliant (Optional)

Package Type

G = TSSOP

Revision Designator (will not correlate with datasheet revision)

Device Type

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology): 2510CGLF 2510CGT 2510CGLFT 2510CG 2510CGT-CQ0