

3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER

FEATURES

- Operates With 3-V to 5.5-V V_{CC} Supply
- Always-Active Noninverting Receiver Output (ROUT2B)
- Low Standby Current . . . 1 μA Typ
- External Capacitors . . . 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Inter-Operable With SN65C3238, SN75C3238
- Supports Operation From 250 kbit/s to 1 Mbit/s
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

C2+[28 C1+ C2-[27 🛮 V+ 26 V_{CC} V-**∏**3 25 | GND RIN1 ∏4 24 C1-RIN2∏5 23 FORCEON RIN3 6 RIN4¶7 22 FORCEOFF RIN5∏8 21 NVALID DOUT1 [] 9 20 ROUT2B DOUT2 10 19 **∏** ROUT1 DOUT3 11 18 ROUT2 17 ROUT3 DIN3 12 DIN2 13 16 ROUT4 DIN1 14 15 ROUT5

DB, DW, OR PW PACKAGE

(TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The TRSF3243 consists of three line drivers, five line receivers, and a dual charge-pump circuit with ± 15 -kV ESD protection pin to pin (serial-port connection pins, including GND). This device provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, this device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down. The device operates at data signaling rates up to 1 Mbit/s and an increased slew-rate range of 24 V/ μ s to 150 V/ μ s.

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2B) are shut off, and the supply current is reduced to 1 μA. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur.

Auto-powerdown can be disabled when FORCEON and $\overline{FORCEOFF}$ are high and should be done when driving a serial mouse. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The $\overline{INVALID}$ output is used to notify the user if an RS-232 signal is present at any receiver input. $\overline{INVALID}$ is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30 μ s. $\overline{INVALID}$ is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. Refer to Figure 5 for receiver input levels.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

T _A	PACK	(AGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC - DW	Tube of 20	TRSF3243CDW	TRSF3243C
	SOIC - DVV	Reel of 1000	TRSF3243CDWR	183532430
0°C to 70°C	SSOP - DB	Reel of 2000	TRSF3243CDBR	TRSF3243C
	TSSOP – PW	Tube of 50	TRSF3243CPW	RT43C
		Reel of 2000	TRSF3243CPWR	K143C
	0010 PW	Tube of 20	TRSF3243IDW	TRSF3243I
	SOIC – DW	Reel of 1000	TRSF3243IDWR	TRSF32431
-40°C to 85°C	SSOP - DB	Reel of 2000	TRSF3243IDBR	TDCF2042I
	TCCOD DW	Tube of 50	TRSF3243IPW	TRSF3243I
	TSSOP – PW	Reel of 2000	TRSF3243IPWR	RT43I

(1) Package drawings, thermal data, symbolization are available at www.ti.com/sc/packaging.

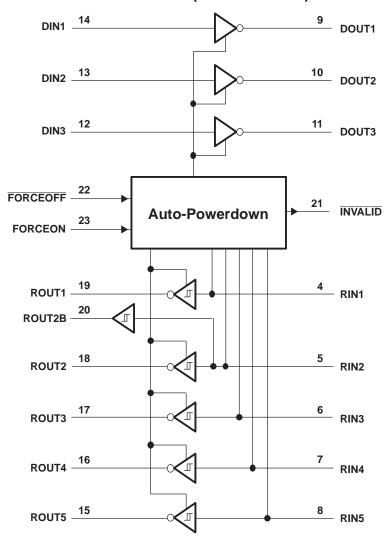
FUNCTION TABLES

EACH DRIVER(1)

	IN	PUTS		OUTPUT			
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS		
Χ	Χ	L	X	Z	Powered off		
L	Н	Н	X	Н	Normal aparation with auto powerdown disable		
Н	Н	Н	X	L	Normal operation with auto-powerdown disabled		
L	L	Н	Yes	Н	Normal aparation with outs nowardown analysis		
Н	L	Н	Yes	L	Normal operation with auto-powerdown enabled		
L	L	Н	No	Z	Dougrad off by outs nowardown footure		
Н	L	Н	No	Z	Powered off by auto-powerdown feature		

⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance

EACH RECEIVER (1)


	INP	UTS		OUTI	PUTS		
RIN2	RIN1, RIN3–RIN5	FORCEOFF	VALID RIN RS-232 LEVEL	ROUT2B	ROUT2	ROUT1, ROUT3–5	RECEIVER STATUS
L	Х	L	Х	L	Z	Z	Powered off while
Н	X	L	Χ	Н	Z	Z	ROUT2B is active
L	L	Н	YES	L	Н	Н	
L	Н	Н	YES	L	L	L	Normal operation with
Н	L	Н	YES	Н	Н	Н	auto-powerdown
Н	Н	Н	YES	Н	L	L	disabled/enabled
Open	Open	Н	YES	L	Н	Н	

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive-output supply voltage range (2)		-0.3	7	V
V-	Negative-output supply voltage range (2)		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
V	Innut voltage range	Driver (FORCEOFF, FORCEON)	-0.3	6 7 -7	V
V _I	Input voltage range	Receiver	-25		
Vo	Output voltage range	Driver	-13.2	13.2	V
		DB package		62	
θ_{JA}	Package thermal impedance (3)(4)	DW package		46	°C/W
		PW package		13	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND.

Recommended Operating Conditions⁽¹⁾

see Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 \text{ V}$	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	V
V	Driver and control high-level input voltage	tage DIN, FORCEOFF, FORCEON V _C	$V_{CC} = 3.3 \text{ V}$	2			V
V _{IH}	Driver and control high-level input voltage		$V_{CC} = 5 V$	2.4			V
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON				8.0	٧
V_{I}	Driver and control input voltage	DIN, FORCEOFF, FORCEON		0		5.5	V
V_{I}	Receiver input voltage			-25		25	V
т	T _A Operating free-air temperature		TRSF3243I	-40		85	٥
'A			TRSF3243C	0		70	10

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

Electrical Characteristics (1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAME	TER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μΑ
		Auto-powerdown disabled No load, FORCEOFF and FORCEON =	No load, FORCEOFF and FORCEON = V _{CC}		0.3	1	mA
		Powered off	No load, FORCEOFF = GND		1	10	
Icc	Supply current	Auto-powerdown enabled	No load, FORCEOFF = V _{CC} , FORCEON = GND, All RIN are open or grounded, All DIN are grounded		1	10	μΑ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with JESD 51-7.

DRIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

		· · · · · · · · · · · · · · · · · · ·					
	PARAMETER	Т	EST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega \text{ t}$	o GND	5	5.4		V
V _{OL}	Low-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ t	~~~		-5.4		V
Vo	Output voltage (mouse driveability)			±5			V
I _{IH}	High-level input current	$V_I = V_{CC}$			±0.01	±1	μΑ
I _{IL}	Low-level input current	V _I = GND			±0.01	±1	μΑ
	Short-circuit output	$V_{CC} = 3.6 \text{ V},$	V _O = 0 V		±35	±60	A
I _{OS}	current ⁽³⁾	V _{CC} = 5.5 V,	V _O = 0 V		±35	±90	mA
ro	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_O = \pm 2 \text{ V}$	300	10M		Ω
	Output lookaga aurrant	FORCEOFF = GND	$V_{O} = \pm 12 \text{ V}, \qquad V_{CC} = 3 \text{ V to } 3.6 \text{ V}$			±25	
I _{off}	Output leakage current	FURGEOFF = GND	$V_{O} = \pm 10 \text{ V}, \qquad V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$			±25	μΑ

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate (see Figure 1)		C _L = 1000 pF		250			
		$R_L = 3 k\Omega$, One DOUT switching	$C_L = 250 \text{ pF},$	V_{CC} = 3 V to 4.5 V	1000			kbit/s
	(666) iguio 1)	one book entreming	$C_L = 1000 \text{ pF},$	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	1000			
t _{sk(p)}	Pulse skew ⁽³⁾	$C_L = 150 \text{ pF to } 2500 \text{ pF},$	$R_L = 3 k\Omega$ to $7 k\Omega$,	See Figure 2		25		ns
SR(tr)	Slew rate, transition region (see Figure 1)	$C_L = 150 \text{ pF to } 1000 \text{ pF},$	$R_L = 3 k\Omega$ to $7 k\Omega$,	V _{CC} = 3.3 V	18		150	V/µs

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

RECEIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} - 0.6	$V_{CC} - 0.1$		V
V_{OL}	Low-level output voltage	$I_{OL} = 1.6 \text{ mA}$			0.4	V
V	Positive-going input threshold voltage	$V_{CC} = 3.3 \text{ V}$		1.6	2.4	V
V _{IT+}	Fositive-going input tilleshold voltage	$V_{CC} = 5 V$		1.9	2.4	V
V	Negative going input threshold voltage	$V_{CC} = 3.3 \text{ V}$	0.6	1.1		V
V _{IT} _	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.4		V
V_{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.5		V
I _{off}	Output leakage current (except ROUT2B)	FORCEOFF = 0 V		±0.05	±10	μΑ
rį	Input resistance	$V_I = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

AUTO-POWERDOWN SECTION

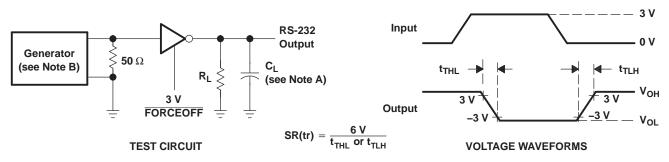
Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	I _{OH} = -1 mA, FORCEON = GND, FORCEOFF = V _{CC}	V _{CC} – 0.		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V_{CC}		0.4	V

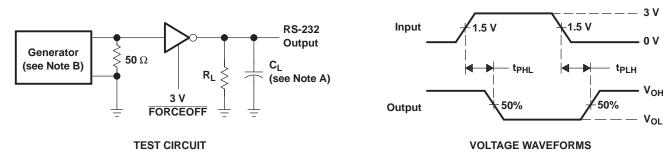
Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)


	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

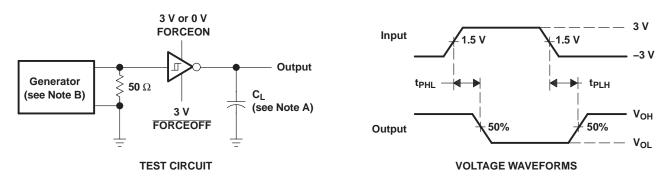
⁽¹⁾ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Copyright © 2007–2008, Texas Instruments Incorporated


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

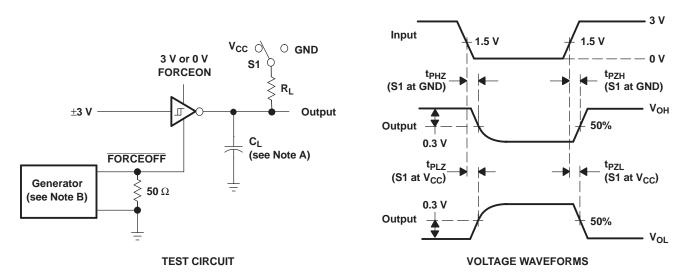
B. The pulse generator has the following characteristics: PRR = 1 Mbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.


Figure 1. Driver Slew Rate

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 1 Mbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

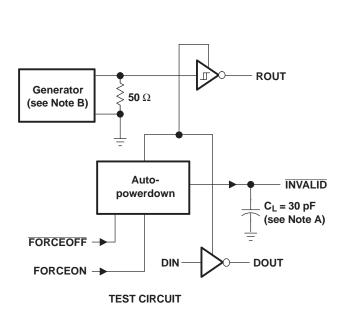

NOTES: A. C_L includes probe and jig capacitance.

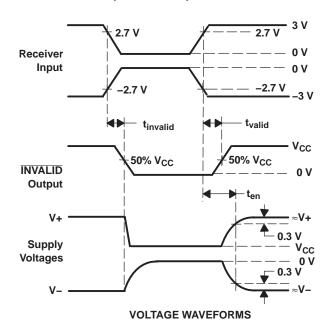
B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_f \le 10 \ ns$.

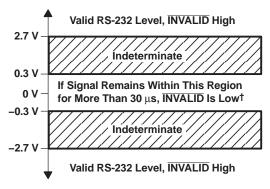
Figure 3. Receiver Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION (continued)

NOTES: A. C_L includes probe and jig capacitance.

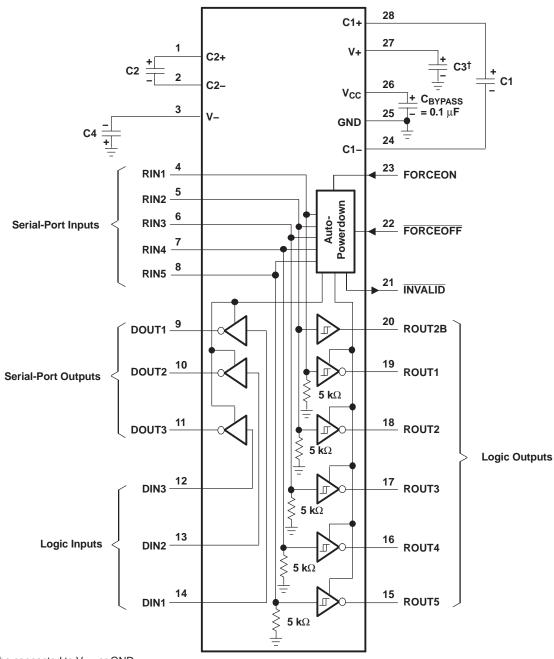

- B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns, $t_f \le$ 10 ns.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en}.


Figure 4. Receiver Enable and Disable Times


Copyright © 2007–2008, Texas Instruments Incorporated

PARAMETER MEASUREMENT INFORMATION (continued)

 $^{^{\}dagger}$ Auto-powerdown disables drivers and reduces supply current to 1 $\mu A.$


NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 5 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 5. INVALID Propagation Delay Times and Supply Enabling Time

PARAMETER MEASUREMENT INFORMATION (continued)

 $^{^{\}dagger}$ C3 can be connected to V_{CC} or GND. NOTE A: Resistor values shown are nominal.

V_{CC} vs CAPACITOR VALUES

V _{CC}	C1	C2, C3, and C4
$\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

Figure 6. Typical Operating Circuit and Capacitor Values

Copyright © 2007–2008, Texas Instruments Incorporated

PACKAGE OPTION ADDENDUM

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TRSF3243CPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM		RT43C	Samples
TRSF3243IDB	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM		TRSF3243I	Samples
TRSF3243IPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT43I	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

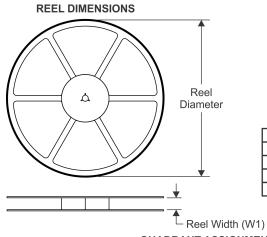
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

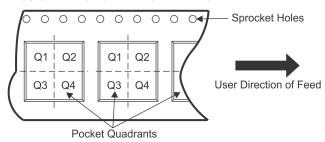
PACKAGE OPTION ADDENDUM


6-Feb-2020

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Mar-2020


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

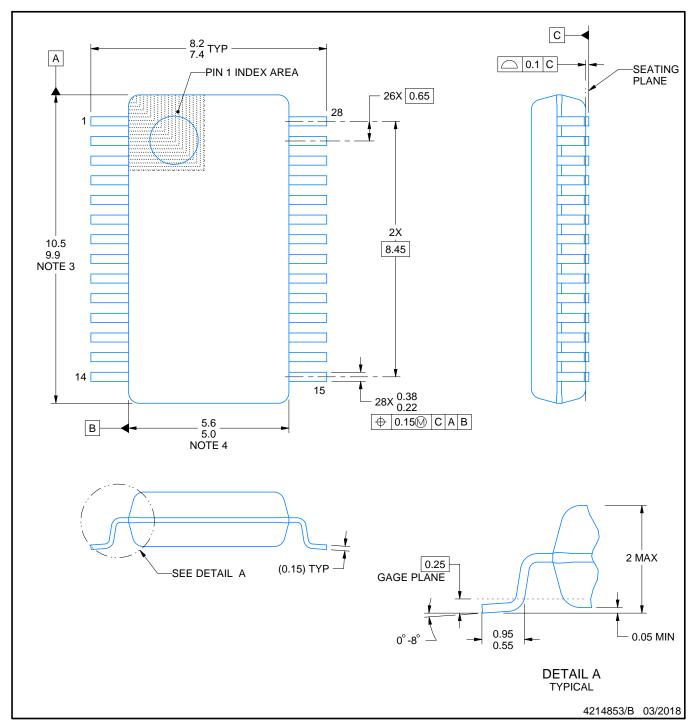
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are normal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRSF3243CPWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
TRSF3243IPWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
TRSF3243IPWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Mar-2020

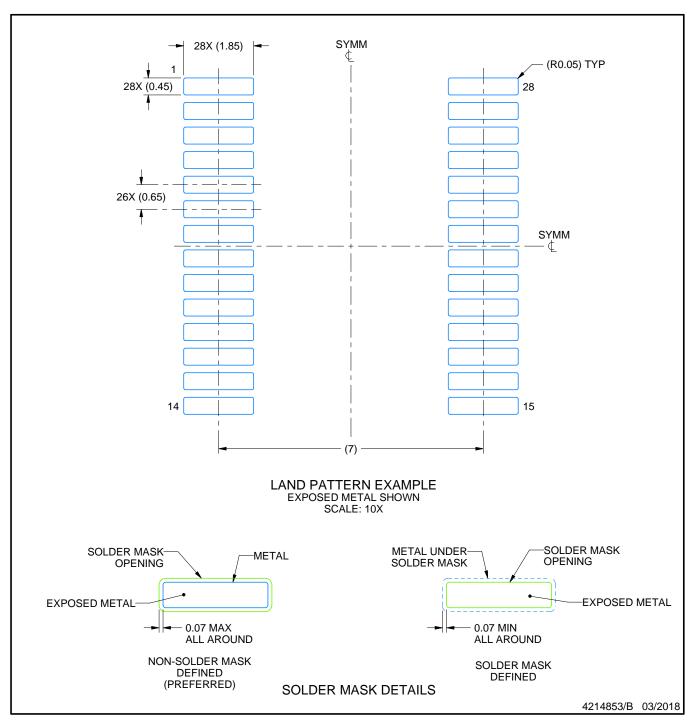


*All dimensions are nominal

7 til diritoriororio di o rioriiridi								
Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TRSF3243CPWR	TSSOP	PW	28	2000	367.0	367.0	38.0	
TRSF3243IPWR	TSSOP	PW	28	2000	350.0	350.0	43.0	
TRSF3243IPWR	TSSOP	PW	28	2000	367.0	367.0	38.0	

SMALL OUTLINE PACKAGE

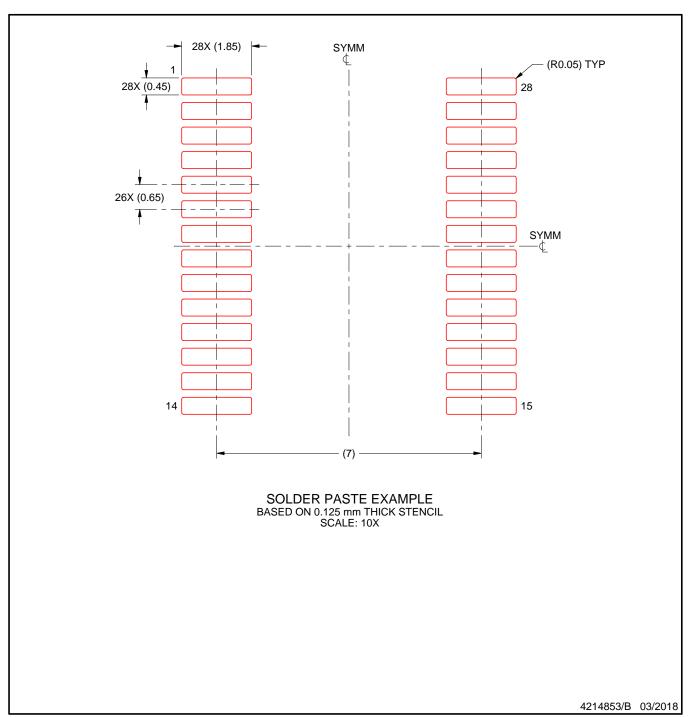
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

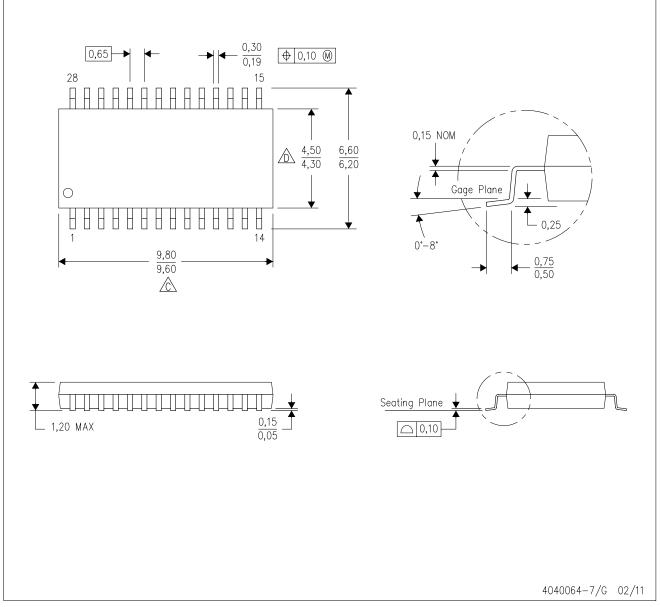
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

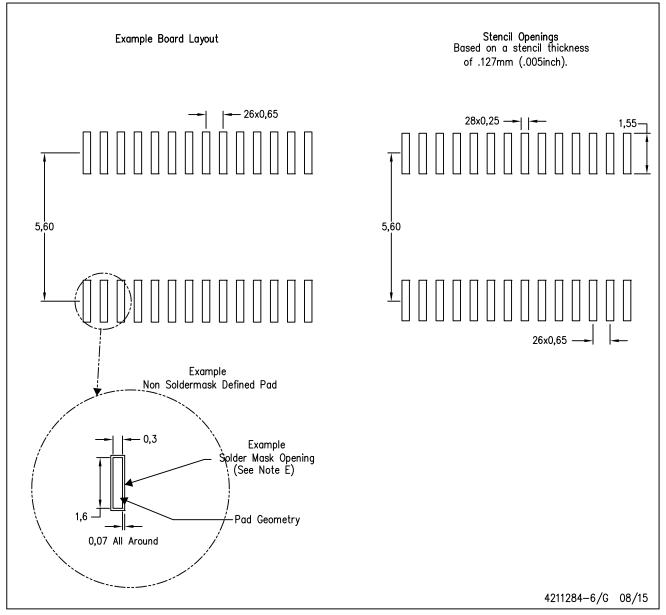
SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated