() IDT.

QUICKSWITCH[®] PRODUCTS 2.5V / 3.3V 10-BIT HIGH BANDWIDTH BUS SWITCH

terminals.

DESCRIPTION:

communications applications.

The QS3VH384 HotSwitch is a high bandwidth, 10-bit bus switch. The

QS3VH384 has very low ON resistance, resulting in under 250ps propagation

delay through the switch. Two banks of five switches are controlled by

independent (xOE), LVTTL compatible signals for bidirectional data flow with

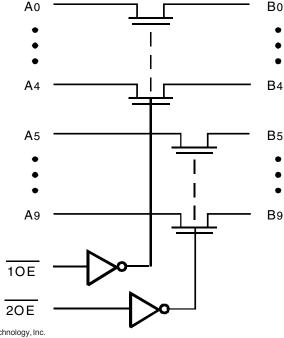
no added delay or ground bounce. In the ON state, the switch can pass signals

up to 5V. In the OFF state, the switches offer very high impedence at the

The combination of near-zero propagation delay, high OFF impedance, and

over-voltage tolerance makes the QS3VH384 ideal for high performance

The QS3VH384 is characterized for operation from -40°C to +85°C.

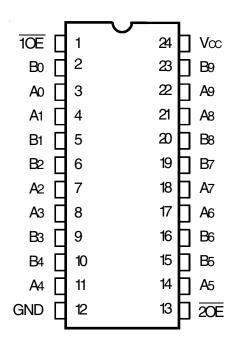

FEATURES:

- N channel FET switches with no parasitic diode to Vcc
 - Isolation under power-off conditions
 - No DC path to Vcc or GND
 - 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- Low Ron 4Ω typical
- · Flat Row characteristics over operating range
- Rail-to-rail switching 0 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Excellent Ron matching between channels
- Vcc operation: 2.3V to 3.6V
- High bandwidth up to 500MHz
- LVTTL-compatible control Inputs
- · Undershoot Clamp Diodes on all switch and control Inputs
- Low I/O capacitance, 4pF typical
- Available in QSOP and TSSOP packages

APPLICATIONS:

- · Hot-swapping
- 10/100 Base-T, Ethernet LAN switch
- · Low distortion analog switch
- · Replaces mechanical relay
- ATM 25/155 switching

FUNCTIONAL BLOCK DIAGRAM


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

SEPTEMBER 2008

INDUSTRIAL TEMPERATURE RANGE

PIN CONFIGURATION

QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	SupplyVoltage to Ground	-0.5 to +4.6	V
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +5.5	V
VTERM ⁽³⁾	DC Input Voltage VIN	-0.5 to +5.5	V
VAC	AC Input Voltage (pulse width ≤20ns)	ዻ	V
Ιουτ	DC Output Current (max. sink current/pin)	120	mA
Tstg	Storage Temperature	–65 to +150	°C

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc .

	(TA = +25°C, F = 1MHz, VIN = 0V, VOUT = 0V)
--	---

Symbol	Parameter ⁽¹⁾	Тур.	Max.	Unit
CIN	Control Inputs	3	5	рF
CI/O	Quickswitch Channels (Switch OFF)	4	6	рF
Ci/o	Quickswitch Channels (Switch ON)	8	12	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	Description
A0 - A9	I/O	Bus A
B0 - B9	I/O	Bus B
10E, 20E	I	Output Enable

FUNCTION TABLE(1)

10E	20E	B0 - B4	B5 - B9	Function
Н	Н	Z	Z	Disconnect
L	Н	A0 - A4	Z	Connect
Н	L	Z	A5 - A9	Connect
L	L	A0 - A4	A5 - A9	Connect

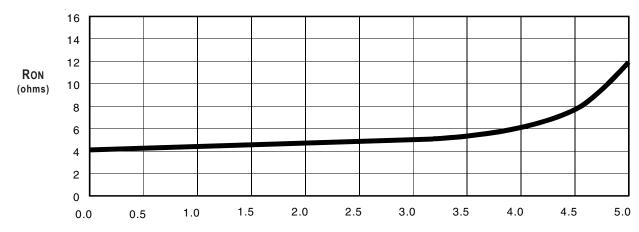
NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE


Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40°C to +85°C, Vcc = $3.3V \pm 0.3V$

Symbol	Parameter	Test C	onditions		Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH	Vcc = 2.3V to 2.7	'V	1.7	_	_	V
		for Control Inputs	Vcc = 2.7V to 3.6	SV	2	—	—	
Vil	Input LOW Voltage	GuaranteedLogicLOW	Vcc = 2.3V to 2.7	'V	—	_	0.7	V
		for Control Inputs	Vcc = 2.7V to 3.6	γV	—	_	0.8]
lin	Input Leakage Current (Control Inputs)	$0V \le VIN \le VCC$			—	_	±1	μA
loz	Off-State Current (Hi-Z)	$0V \le VOUT \le 5V$, Switches OFF		—	_	±1	μA	
IOFF	Data Input/Output Power Off Leakage	VIN or VOUT 0V to 5V, VCC = 0V		—	_	±1	μA	
		Vcc = 2.3V	VIN = 0V	Ion = 30mA	—	6	8	
Ron	Switch ON Resistance	Typical at Vcc = 2.5V	VIN = 1.7V	Ion = 15mA	_	7	9	Ω
		Vcc = 3V	VIN = 0V	Ion = 30mA	—	4	6	
			VIN = 2.4V	Ion = 15mA	-	5	8	

NOTE:

1. Typical values are at Vcc = 3.3V and TA = 25° C.

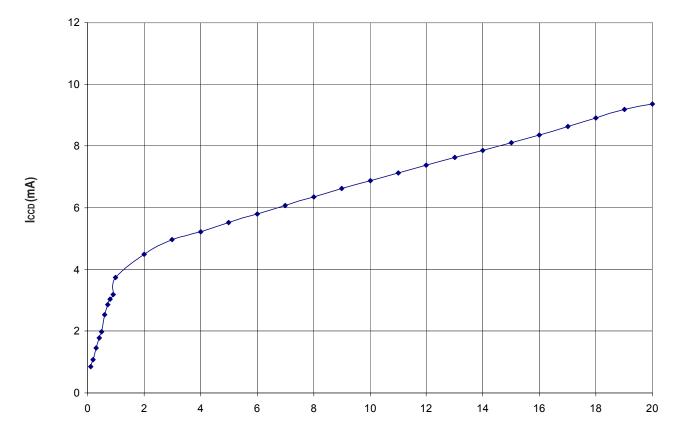
TYPICAL ON RESISTANCE vs VIN AT Vcc = 3.3V

VIN (Volts)

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
lccq	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f = 0	_	2	4	mA
Δlcc	Power Supply Current ^(2,3) per Input HIGH	Vcc = Max., VIN = 3V, f = 0 per Control Input	—	—	30	μA
ICCD	Dynamic Power Supply Current (4)	Vcc = 3.3V, A and B Pins Open, Control Inputs	Its See Typical ICCD vs Enable Frequency graph		graph below	
		Toggling @ 50% Duty Cycle				

NOTES:


1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

2. Per input driven at the specified level. A and B pins do not contribute to Δ lcc.

3. This parameter is guaranteed but not tested.

4. This parameter represents the current required to switch internal capacitance at the specified frequency. The A and B inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT VCC = 3.3V

ENABLE FREQUENCY (MHz)

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

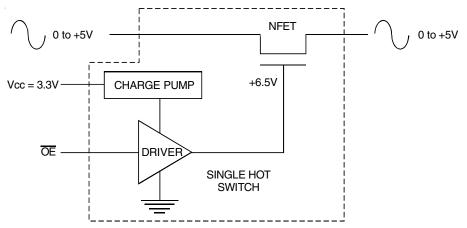
TA = -40°C to +85°C

		$Vcc = 2.5 \pm 0.2V^{(1)}$		$Vcc = 3.3 \pm 0.3 V^{(1)}$		
Symbol	Parameter	Min. ⁽⁴⁾	Max.	Min. ⁽⁴⁾	Max.	Unit
tPLH	Data Propagation Delay ^(2,3)		0.2	—	0.2	ns
t PHL	Ax to/from Bx					
tPZL	Switch Turn-On Delay	1.5	7.5	1.5	7.5	ns
tРZH	XOE to Ax/Bx					
tPLZ	Switch Turn-Off Delay	1.5	7	1.5	7	ns
tPHZ	XOE to Ax/Bx					
fxOE	Operating Frequency-Enable ^(2,5)		10		20	MHz

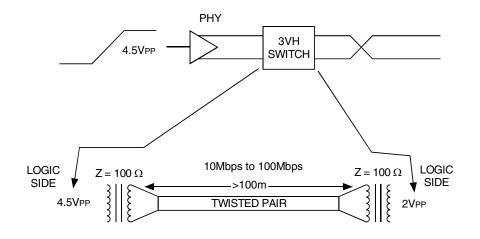
NOTES:

1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.

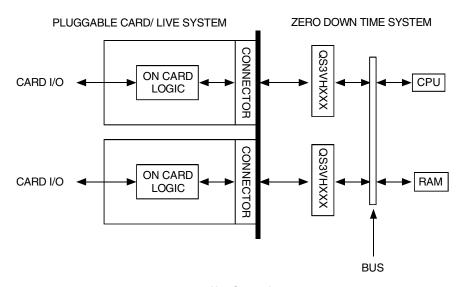
2. This parameter is guaranteed but not production tested.


3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.2ns at C_L = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

4. Minimums are guaranteed but not production tested.


5. Maximum toggle frequency for \overline{xOE} control input (pass voltage > Vcc, VIN = 5V, RLOAD \geq 1M Ω , no CLOAD).

IDTQS3VH384 2.5V / 3.3V 10-BIT HIGH BANDWIDTH BUS SWITCH


SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

Rail-to-Rail Switching

Fast Ethernet Data Switching (LAN Switch)

Hot-Swapping

DISABLE

tplz <

Ин

Vт

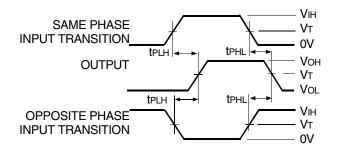
0V

VLOAD/2

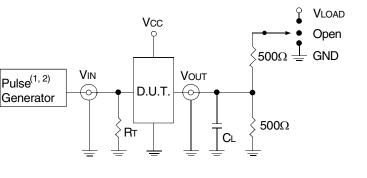
Vol

Vон

0V


VOL + VLZ

Voh -Vhz


TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)}= 3.3V \pm 0.3V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
Vload	6	2 x Vcc	V
Vih	3	Vcc	V
Vт	1.5	Vcc/2	V
VLZ	300	150	mV
Vнz	300	150	mV
CL	50	30	pF

Propagation Delay

Test Circuits for All Outputs

OUTPUT NORMALLY LOW OUTPUT NORMALLY HIGH

ENABLE

tPZL

CONTROL

INPUT

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

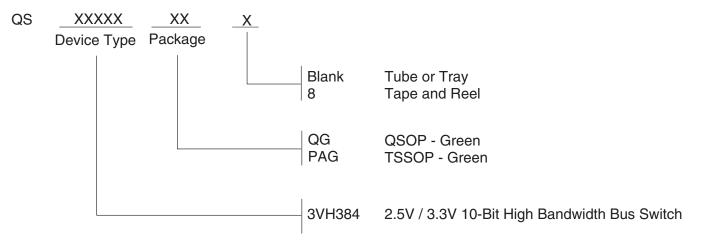
 $\mathsf{R} \mathsf{T}$ = Termination resistance: should be equal to $\mathsf{Z} \mathsf{O} \mathsf{U} \mathsf{T}$ of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.

2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION


Test	Switch
tplz/tpzl	VLOAD
tphz/tpzh	GND
tPD	Open

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERING INFORMATION

Datasheet Document History

09/01/08 Pg. 4, 8 02/24/14 Pg. 8 Revise IccQ Typ. and Max. Add QSOP green package, remove non green package version and updated the ordering information by removing the "IDT" notation. Updated the Ordering Information by Adding Tape and Reel information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology): QS3VH384PAG8 QS3VH384QG QS3VH384QG8 QS3VH384PAG