LM3704,LM3705

LM3704/LM3705 Microprocessor Supervisory Circuits with Power Fail Input,

Low Line Output and Manual Reset

Literature Number: SNVS088D

September 2003

LM3704/LM3705 Microprocessor Supervisory Circuits with Power Fail Input, Low Line Output and Manual Reset General Description • No external components required

The LM3704/LM3705 series of microprocessor supervisory circuits provide the maximum flexibility for monitoring power supplies and battery controlled functions in systems without backup batteries. The LM3704/LM3705 series are available in MSOP-10 and 9-bump micro SMD packages.

Built-in features include the following:

Reset: Reset is asserted during power-up, power-down, and brownout conditions. $\overline{\text{RESET}}$ is guaranteed down to V_{CC} of 1.0V.

Manual Reset Input: An input that asserts reset when pulled low.

Power-Fail Input: A 1.225V threshold detector for power fail warning, or to monitor a power supply other than $V_{\rm CC}.$

Low Line Output: This early power failure warning indicator goes low when the supply voltage drops to a value which is 2% higher than the reset threshold voltage.

Features

- Standard Reset Threshold voltage: 3.08V
- Custom Reset Threshold voltages: For other voltages between 2.2V and 5.0V in 10mV increments, contact National Semiconductor Corp.
- **Typical Application**

- Manual-Reset input
- RESET (LM3704) or RESET (LM3705) outputs
- Precision supply voltage monitor
- Factory programmable Reset Timeout Delay
- Separate Power Fail comparator
- Available in micro SMD package for minimum footprint
- ±0.5% Reset threshold accuracy at room temperature
- ±2% Reset threshold accuracy over temperature extremes
- Reset assertion down to 1V V_{CC} (RESET option only)
- 28 µA V_{CC} supply current

Applications

- Embedded Controllers and Processors
- Intelligent Instruments
- Automotive Systems
- Critical µP Power Monitoring

Connection Diagram

Pin Description

Pin No. micro SMD MSOP Name			
		Name	Function
A1	2	MR	Manual-Reset input. When $\overline{\text{MR}}$ is less than V_{MRT} (Manual Reset Threshold) $\overline{\text{RESET}}/\text{RESET}$ is engaged.
B1	1	V _{cc}	Power Supply input.
C1	10	RESET	Reset Logic Output. Pulses low for t_{RP} (Reset Timeout Period) when triggered, and stays low whenever V_{CC} is below the reset threshold or when \overline{MR} is below V_{MRT} . It remains low for t_{RP} after either V_{CC} rises above the reset threshold, or after \overline{MR} input rises above V_{MRT} (LM3704 only).
	RESET Reset		Reset Logic Output. RESET is the inverse of RESET (LM3705 only).
C2	8	PFO	Power-Fail Logic Output. When PFI is below V_{PFT} , \overline{PFO} goes low; otherwise, \overline{PFO} remains high.
C3	7	LLO	Low-Line Logic Output. Early Power-Fail warning output. Low when V_{CC} falls below V_{LLOT} (Low-Line Output Threshold). This output can be used to generate an NMI (Non-Maskable Interrupt) to provide an early warning of imminent power-failure.
B3	5 GND Ground reference for		Ground reference for all signals.
A3	4, 6	NC	No Connect.
A2	3	PFI	Power-Fail Comparator Input. When PFI is less than V_{PFT} (Power-Fail Reset Threshold), the \overline{PFO} goes low; otherwise, \overline{PFO} remains high.
B2	9	NC	No Connect. Test input used at factory only. Leave floating.

*For other voltages between 2.2V and 5.0V, please contact National Semiconductor sales office.

		Reset	Pack	kage	Dealer
Part Number	Output	Timeout Period	MSOP	micro SMD	 Package Marking
LM3704XBBP-232	totem-pole	28ms		х	%%l13
LM3704XBBPX-232	totem-pole	28ms		х	%%l13
LM3704XBBP-463	totem-pole	28ms		х	%%l27
LM3704XBBPX-463	totem-pole	28ms		х	%%l27
LM3704XBMM-232	totem-pole	28ms	х		R66B
LM3704XBMMX-232	totem-pole	28ms	х		R66B
LM3704XBMM-463	totem-pole	28ms	х		R27B
LM3704XBMMX-463	totem-pole	28ms	х		R27B
LM3704XCBP-308	totem-pole	200ms		х	%%l4
LM3704XCBPX-308	totem-pole	200ms		х	%%l4
LM3704XCMM-263	totem-pole	200ms	х		R79B
LM3704XCMMX-263	totem-pole	200ms	х		R79B
LM3704XCMM-308	totem-pole	200ms	х		R35B
LM3704XCMMX-308	totem-pole	200ms	х		R35B
LM3704XDBP-232	totem-pole	1600ms		х	%%l15
LM3704XDBPX-232	totem-pole	1600ms		х	%%l15
LM3704XDBP-463	totem-pole	1600ms		х	%%l17
LM3704XDBPX-463	totem-pole	1600ms		х	%%l17
LM3704XDMM-220	totem-pole	1600ms	х		R65B
LM3704XDMMX-220	totem-pole	1600ms	x		R65B
LM3704XDMM-232	totem-pole	1600ms	x		R67B
LM3704XDMMx-232	totem-pole	1600ms	х		R67B
LM3704XDMM-463	totem-pole	1600ms	х		R68B
LM3704XDMMX-463	totem-pole	1600ms	х		R68B
LM3704YAMM-308	open-drain	1.4ms	х		R78B
LM3704YAMMX-308	open-drain	1.4ms	х		R78B

I M3704/I M3705

	LM3704	LM3705 (Continued	d)		
		kage			
Part Number	Output	put Timeout Period	MSOP	micro SMD	 Package Marking
LM3704YBMM-360	open-drain	28ms	х		R49B
LM3704YBMMX-360	open-drain	28ms	х		R49B
LM3704YCMM-232	open-drain	200ms	х		R76B
_M3704YCMMX-232	open-drain	200ms	х		R76B
_M3704YCMM-308	open-drain	200ms	х		R48B
_M3704YCMMX-308	open-drain	200ms	х		R48B
_M3705XBBP-232	totem-pole	28ms		х	%%l14
_M3705XBBPX-232	totem-pole	28ms		х	%%l14
_M3705XBBP-463	totem-pole	28ms		х	%%I33
_M3705XBBPX-463	totem-pole	28ms		х	%%I33
_M3705XBMM-232	totem-pole	28ms	х		R69B
_M3705XBMMX-232	totem-pole	28ms	х		R69B
_M3705XBMM-463	totem-pole	28ms		х	R44B
_M3705XBMMX-463	totem-pole	28ms		х	R44B
_M3705XCBP-463	totem-pole	200ms		х	%%I5
_M3705XCBPX-463	totem-pole	200ms		х	%%I5
_M3705XCMM-308	totem-pole	200ms	x		R36B
_M3705XCMMX-308	totem-pole	200ms	х		R36B
_M3705XDBP-232	totem-pole	1600ms		х	%%l16
_M3705XDBPX-232	totem-pole	1600ms		х	%%l16
_M3705XDBP-463	totem-pole	1600ms		х	%% 18
_M3705XDBPX-463	totem-pole	1600ms		х	%%l18
_M3705XDMM-232	totem-pole	1600ms	x		R70B
_M3705XDMMX-232	totem-pole	1600ms	х		R70B
LM3705XDMM-463	totem-pole	1600ms	х		R71B

Table of Functions

Part Number	Active Low Reset	Active High Reset	Output (X = totem-pole) (Y = open-drain)	Reset Timeout Period	Manual Reset	Power Fail Comparator	Low Line Output
LM3704	x		X, Y*	Customized	x	x	х
LM3705		х	Х	Customized	х	х	х

* = available upon request. Contact National

Absolute Maximum Ratings (Note 1)

Power Dissipation

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 3)

Operating Ratings (Note 1)

Temperature Range

 $-40^{\circ}C \le T_{J} \le 85^{\circ}C$

Supply Voltage (V _{CC})	-0.3V to 6.0V
All Other Inputs	-0.3V to V _{CC} + 0.3V
ESD Ratings (Note 2)	
Human Body Model	1.5kV
Machine Model	150V

LM3704/LM3705 Series Electrical Characteristics

Limits in the standard typeface are for $T_J = 25^{\circ}C$ and limits in **boldface type** apply over full operating range. Unless otherwise specified: $V_{CC} = +2.2V$ to 5.5V.

Symbol	Parameter	Conditions	Min	Тур	Мах	Uni
POWER S	UPPLY					
V_{CC}	Operating Voltage	LM3704	1.0		5.5	- v
	Range: V _{CC}	LM3705	1.2		5.5	, v
I _{CC}	V _{CC} Supply Current	All inputs = V_{CC} ; all outputs floating		28	50	μA
RESET TH	IRESHOLD					
V _{RST}	Reset Threshold	V _{CC} falling	-0.5		+0.5	
			-2	V _{RST}	+2	%
		V_{CC} falling: $T_A = 0^{\circ}C$ to $70^{\circ}C$	-1.5	1 [+1.5	1
V _{RSTH}	Reset Threshold Hysteresis			0.0032•V _{RST}		m
t _{RP}	Reset Timeout	Reset Timeout Period = A	1	1.4	2	
	Period	Reset Timeout Period = B	20	28	40	
		Reset Timeout Period = C	140	200	280	m
		Reset Timeout Period = D	1120	1600	2240	
t _{RD}	V _{CC} to Reset Delay	V _{CC} falling at 1mV/µs		20		μ
ESET (LI	W3705)		L. L			
V _{OL}	RESET	V _{CC} > 2.25V, I _{SINK} = 900μA			0.3	
		$V_{\rm CC} > 2.7V, I_{\rm SINK} = 1.2mA$			0.3	1 ν
		$V_{CC} > 4.5V, I_{SINK} = 3.2mA$			0.4	1
V _{OH}	RESET	$V_{CC} > 1.2V, I_{SOURCE} = 50\mu A$	0.8 V _{cc}			
		$V_{CC} > 1.8V, I_{SOURCE} = 150\mu A$	0.8 V _{cc}			1
		$V_{CC} > 2.25V, I_{SOURCE} = 300\mu A$	0.8 V _{cc}			Τ ν
		$V_{CC} > 2.7V, I_{SOURCE} = 500\mu A$	0.8 V _{cc}			1
		$V_{CC} > 4.5V, I_{SOURCE} = 800\mu A$	V _{cc} – 1.5V			-
I _{LKG}	Output Leakage Current	$V_{\text{RESET}} = 5.5 \text{V}$			1.0	μ
RESET (LI	W3704)					
V _{OL}	RESET	$V_{\rm CC} > 1.0V, I_{\rm SINK} = 50\mu A$			0.3	
		$V_{\rm CC} > 1.2V, I_{\rm SINK} = 100\mu A$			0.3	1
		V _{CC} > 2.25V, I _{SINK} = 900μA			0.3	1
		$V_{CC} > 2.7V, I_{SINK} = 1.2mA$			0.3	1.
		$V_{CC} > 4.5V, I_{SINK} = 3.2mA$			0.4	- V
V _{OH}	RESET	$V_{CC} > 2.25V, I_{SOURCE} = 300\mu A$	0.8 V _{cc}			1
011		$V_{CC} > 2.7V$, $I_{SOURCE} = 500\mu A$	0.8 V _{cc}			1
		$V_{CC} > 4.5V$, $I_{SOURCE} = 800\mu A$	V _{cc} – 1.5V			-

LM3704/LM3705 Series Electrical Characteristics (Continued)

Limits in the standard typeface are for $T_J = 25^{\circ}C$ and limits in **boldface type** apply over full operating range. Unless otherwise specified: $V_{CC} = +2.2V$ to 5.5V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PFI/MR			_	1		
V _{PFT}	PFI Input		1.200	1.225	1.250	V
	Threshold					
V _{MRT}	MR Input	MR, Low			0.8	
	Threshold	MR, High	2.0			V
V _{PFTH} /	PFI/MR Threshold	PFI/ $\overline{\text{MR}}$ falling: V _{CC} = V _{RST MAX} to 5.5V		0.0032•V _{RST}		m\
V _{MRTH}	Hysteresis					
I _{PFI}	Input Current (PFI		-75		75	n/
	only)					
R _{MR}	MR Pull-up		35	56	75	k۵
	Resistance					
t _{MD}	MR to Reset			12		μ
	Delay					
t _{MR}	MR Pulse Width		25			μ
PFO, LLO						
V _{OL}	PFO, LLO Output	$V_{CC} > 2.25V, I_{SINK} = 900\mu A$			0.3	
	Voltage	V _{CC} > 2.7V, I _{SINK} = 1.2mA			0.3	
		V _{CC} > 4.5V, I _{SINK} = 3.2mA			0.4	v
V _{OH}		$V_{\rm CC} > 2.25 V, I_{\rm SOURCE} = 300 \mu A$	0.8 V _{cc}			v
		$V_{CC} > 2.7V$, $I_{SOURCE} = 500\mu A$	0.8 V _{cc}			
		$V_{\rm CC} > 4.5V, I_{\rm SOURCE} = 800\mu A$	V _{cc} – 1.5V			
LO OUTF	TUT	-				
V _{LLOT}	LLO Output		1.01•V _{RST}	1.02•V _{RST}	1.03•V _{RST}	V
	Threshold					
	$(V_{LLO} - V_{RST}, V_{CC})$					
	falling)					
V_{LLOTH}	Low-Line			0.0032•V _{RST}		m
	Comparator					
	Hysteresis					
t _{CD}	Low-Line	V _{CC} falling at 1mV/µs		20		με
	Comparator Delay					

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed conditions.

Note 2: The Human Body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{J-A} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using:

$$P(MAX) = \frac{T_{J}(MAX) - T_{A}}{\theta_{J-A}}$$

Where the value of θ_{J-A} for the MSOP-10 package is 195°C/W in a typical PC board mounting and the micro SMD package is 220°C/W.

Typical Performance Characteristics

Supply Current vs Supply Voltage Supply Current (iuA) Supply Voltage (V)

Reset Timeout Period vs Temperature

Reset Timeout Period vs V_{CC}

Max. Transient Duration vs Reset Comparator Overdrive $(V_{CC} = 3.3V)$

Typical Performance Characteristics (Continued)

Low-Line Comparator Propagation Delay vs Temperature

Circuit Information

RESET OUTPUT

The Reset input of a μP initializes the device into a known state. The LM3704/LM3705 microprocessor supervisory circuits assert a forced reset output to prevent code execution errors during power-up, power-down, and brownout conditions.

RESET is guaranteed valid for $V_{CC} > 1V$. Once V_{CC} exceeds the reset threshold, an internal timer maintains the output for the reset timeout period. After this interval, reset goes high. The LM3704 offers an active-low RESET; The LM3705 offers an active-high RESET.

Any time V_{CC} drops below the reset threshold (such as during a brownout), the reset activates. When V_{CC} again rises above the reset threshold, the internal timer starts. Reset holds until V_{CC} exceeds the reset threshold for longer than the reset timeout period. After this time, reset releases.

The Manual Reset input $(\overline{\text{MR}})$ will initiate a forced reset also. See the *Manual Reset Input* section.

RESET THRESHOLD

The LM3704/LM3705 family is available with a reset voltage of 3.08V. Other reset thresholds in the 2.20V to 5.0V range, in steps of 10 mV, are available; contact National Semiconductor for details.

MANUAL RESET INPUT (MR)

Many μP -based products require a manual reset capability, allowing the operator to initiate a reset. The \overline{MR} input is fully debounced and provides an internal 56 k Ω pull-up. When the \overline{MR} input is pulled below V_{MRT} (1.225V) for more than 25 μs , reset is asserted after a typical delay of 12 μs . Reset remains active as long as \overline{MR} is held low, and releases after the reset timeout period expires after \overline{MR} rises above V_{MRT} . Use \overline{MR} with digital logic to assert or to daisy chain supervisory circuits. It may be used as another low-line comparator by adding a buffer.

POWER-FAIL COMPARATOR (PFI/PFO)

The PFI is compared to a 1.225V internal reference, V_{PFT}. If PFI is less than V_{PFT}, the Power Fail Output PFO drops low. The power-fail comparator signals a falling power supply, and is driven typically by an external voltage divider that senses either the unregulated supply or another system

supply voltage. The voltage divider generally is chosen so the voltage at PFI drops below V_{PFT} several milliseconds before the main supply voltage drops below the reset threshold, providing advanced warning of a brownout.

The voltage threshold is set by R_1 and R_2 and is calculated as follows:

$$V_{PFT} = \left(\frac{R1 + R2}{R2}\right) \times 1.225V$$

Note this comparator is completely separate from the rest of the circuitry, and may be employed for other functions as needed.

LOW-LINE OUTPUT (LLO)

The low-line output comparator is typically used to provide a non-maskable interrupt to a μ P when V_{CC} begins falling. LLO monitors V_{CC} and goes low when V_{CC} falls below V_{LLOT} (typically 1.02 • V_{RST}) with hysteresis of 0.0032 • V_{RST}.

SPECIAL PRECAUTIONS FOR THE MICRO SMD PACKAGE

As with most integrated circuits, the LM3704 and LM3705 are sensitive to exposure from visible and infrared (IR) light radiation. Unlike a plastic encapsulated IC, the micro SMD package has very limited shielding from light, and some sensitivity to light reflected from the surface of the PC board or long wavelength IR entering the die from the side may be experienced. This light could have an unpredictable affect on the electrical performance of the IC. Care should be taken to shield the device from direct exposure to bright visible or IR light during operation.

MICRO SMD MOUNTING

The micro SMD package requires specific mounting techniques which are detailed in National Semiconductor Application Note AN-1112. Referring to the section *Surface Mount Technology (SMT) Assembly Considerations*, it should be noted that the pad style which must be used with the 9-pin package is the NSMD (non-solder mask defined) type.

For best results during assembly, alignment ordinals on the PC board may be used to facilitate placement of the micro SMD device.

LM3704/LM3705

Typical Application Circuits

FIGURE 4. Monitoring Two Critical Supplies

10136919

FIGURE 5. Monitoring Two Supplies plus Manual Reset

Note: $\overline{\text{MR}}$ input with its 1.225V nominal threshold, may monitor an additional supply voltage. An internal 56 k Ω pull-up resistor is included on this input.

FIGURE 7. Microprocessor Supervisor with Early Warning Detector

FIGURE 9. LM3705 Power-On Delay with Overvoltage Protection

Typical Application Circuits (Continued)

Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

Support Center Email: ap.support@nsc.com

Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated