
Silicon Tuning Diode

- High Q hyperabrupt tuning diode
- Designed for low tuning voltage operation
- For VCO's in mobile communications equipment
- Pb-free (RoHS compliant) package

BBY51-02L BBY51-02V BBY51-02W BBY51-03W **BBY51**

Туре	Package	Configuration	Marking	
BBY51	SOT23	common cathode	S3s	
BBY51-02L	TSLP-2-1	single, leadless	II	
BBY51-02V	SC79	single	f	
BBY51-02W*	SCD80	single	II	
BBY51-03W	SOD323	single	white H	

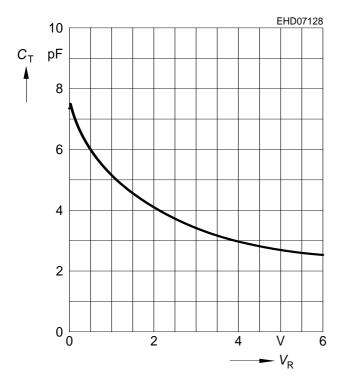
^{*} Not for new design

Maximum Ratings at T_A = 25 °C, unless otherwise specified

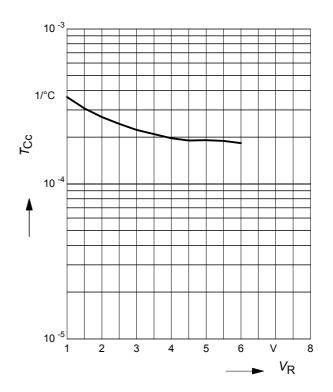
Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	7	V
Forward current	I _F	20	mA
Operating temperature range	Top	-55125	°C
Storage temperature	T _{stg}	-55150	

1

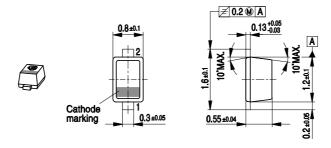
2014-02-11



Electrical Characteristics at T_A = 25 °C, unless otherwise specified

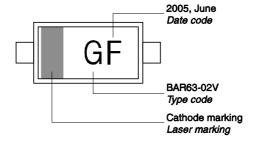

Parameter	Symbol		Unit		
		min.	typ.	max.	
DC Characteristics					_
Reverse current	I_{R}				nA
V_{R} = 6 V		-	-	10	
V_{R} = 6 V, T_{A} = 85 °C		-	-	200	
AC Characteristics				•	
Diode capacitance	C _T				pF
$V_{R} = 1 \text{ V}, f = 1 \text{ MHz}$		5.05	5.4	5.75	
$V_{R} = 2 \text{ V}, f = 1 \text{ MHz}$		3.4	4.2	5.2	
$V_{R} = 3 \text{ V}, f = 1 \text{ MHz}$		2.7	3.5	4.6	
$V_{R} = 4 \text{ V}, f = 1 \text{ MHz}$		2.5	3.1	3.7	
Capacitance ratio	C _{T1} /C _{T4}	1.55	1.75	2.2	
$V_{R} = 1 \text{ V}, V_{R} = 4 \text{ V}, f = 1 \text{ MHz}$					
Capacitance difference	C _{1V} -C _{3V}	1.4	1.78	2.2	pF
$V_{R} = 1 \text{ V}, V_{R} = 3 \text{ V}, f = 1 \text{ MHZ}$					
Capacitance difference	C _{3V} -C _{4V}	0.3	0.5	0.7	
$V_{R} = 3 \text{ V}, V_{R} = 4 \text{ V}, f = 1 \text{ MHZ}$					
Series resistance	r _S	-	0.37	_	Ω
V _R = 1 V, <i>f</i> = 1 GHz					

Diode capacitance $C_T = f(V_R)$ f = 1MHz



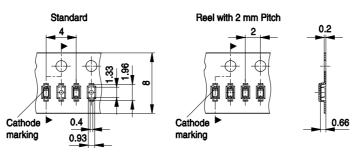
Temperature coefficient of the diode capacitance $T_{Cc} = f(V_R)$

3 2014-02-11



Foot Print

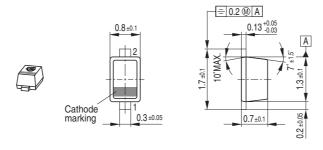
Marking Layout (Example)

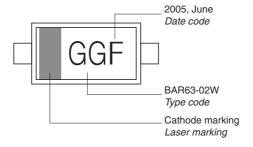


Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel

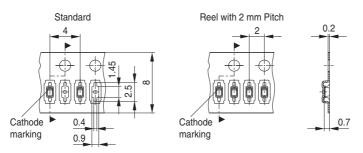
Reel ø180 mm = 8.000 Pieces/Reel (2 mm Pitch)


Reel ø330 mm = 10.000 Pieces/Reel



Foot Print

Marking Layout (Example)

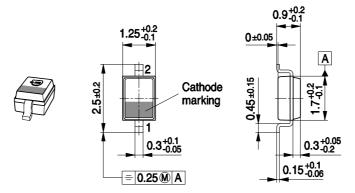


Standard Packing

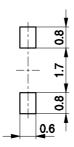
Reel ø180 mm = 3.000 Pieces/Reel

Reel ø180 mm = 8.000 Pieces/Reel (2 mm Pitch)

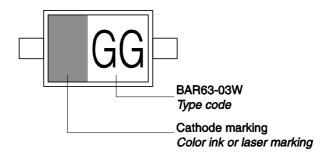
Reel ø330 mm = 10.000 Pieces/Reel


Date Code marking for discrete packages with one digit (SCD80, SC79, SC75¹⁾) CES-Code

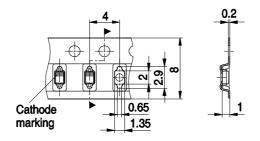
Month	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
01	а	р	Α	Р	а	р	Α	Р	а	р	Α	Р
02	b	q	В	Q	b	q	В	Q	b	q	В	Q
03	С	r	С	R	С	r	С	R	С	r	С	R
04	d	S	D	S	d	S	D	S	d	S	D	S
05	е	t	Е	Т	е	t	Е	Т	е	t	Е	Т
06	f	u	F	U	f	u	F	U	f	u	F	U
07	g	٧	G	V	g	٧	G	٧	g	٧	G	V
08	h	Х	Н	Х	h	Х	Н	Х	h	Х	Н	Х
09	j	У	J	Υ	j	у	J	Υ	j	У	J	Y
10	k	Z	K	Z	k	Z	K	Z	k	Z	K	Z
11	I	2	L	4	I	2	L	4	I	2	L	4
12	n	3	N	5	n	3	N	5	n	3	N	5


¹⁾ New Marking Layout for SC75, implemented at October 2005.

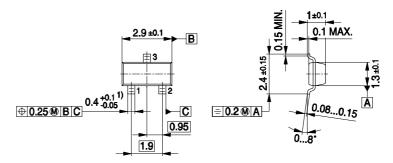
6 2014-02-11



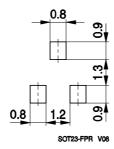
Foot Print

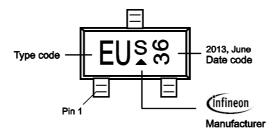


Marking Layout (Example)


Standard Packing

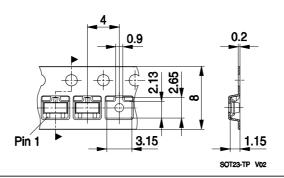
Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel



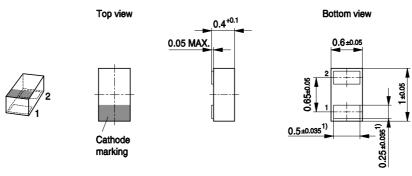

1) Lead width can be 0.6 max. in dambar area

SOT29-PO V08

Foot Print

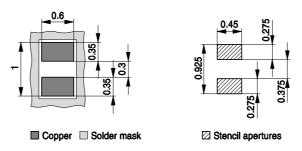


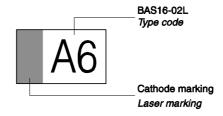
Marking Layout



Standard Packing

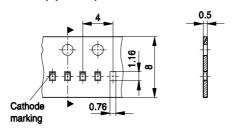
Reel o 180 mm: 3.000 Pieces / Reel Reel o 330 mm = 10.000 Pieces / Reel




1) Dimension applies to plated terminal

Foot Print

For board assembly information please refer to Infineon website "Packages"



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel Reel ø330 mm = 50.000 Pieces/Reel (optional)

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.