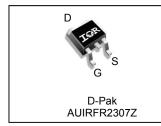

AUTOMOTIVE GRADE

AUIRFR2307Z

HEXFET® Power MOSFET

Features


- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- · Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

V _{DSS}	75V
R _{DS(on)} max.	16mΩ
I _{D (Silicon Limited)}	53A
D (Package Limited)	42A

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

G	D	S
Gate	Drain	Source

Base part number	Dookogo Typo	Standard Pack		Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
ALUDED22077	D. Dok	Tube	75	AUIRFR2307Z
AUIRFR2307Z D-Pak		Tape and Reel Left	3000	AUIRFR2307ZTRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	53	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	38	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	42	
I _{DM}	Pulsed Drain Current ①	210	
P _D @T _C = 25°C	Maximum Power Dissipation	110	W
	Linear Derating Factor	0.70	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	100	m I
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ®	140	- mJ
I _{AR}	Avalanche Current ①	See Fig.15,16, 12a, 12b	Α
E _{AR}	Repetitive Avalanche Energy ⑤		mJ
T_J	Operating Junction and -55 to + 175		
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		1.42	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ∅		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter		Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.072		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		12.8	16	mΩ	V _{GS} = 10V, I _D = 32A ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	٧	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$
gfs	Forward Trans conductance	30				$V_{DS} = 25V, I_{D} = 32A$
	Drain-to-Source Leakage Current			25		$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{V}$
IDSS				250	μA	$V_{DS} = 75V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			200	- A	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

-		_	_		
Total Gate Charge		50	75		I _D = 32A
Gate-to-Source Charge		14		nC	$V_{DS} = 60V$
Gate-to-Drain Charge		19			V _{GS} = 10V3
Turn-On Delay Time		16			$V_{DD} = 38V$
Rise Time		65		no	I _D = 32A
Turn-Off Delay Time		44		115	$R_G = 10\Omega$
Fall Time		29			V _{GS} = 10V3
Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
Internal Source Inductance		7.5			from package and center of die contact
Input Capacitance		2190			$V_{GS} = 0V$
Output Capacitance		280			$V_{DS} = 25V$
Reverse Transfer Capacitance		150		nΕ	f = 1.0MHz
Output Capacitance		1070		ρΓ	$V_{GS} = 0V$, $V_{DS} = 1.0V$ $f = 1.0MHz$
Output Capacitance		190			$V_{GS} = 0V, V_{DS} = 60V f = 1.0MHz$
Effective Output Capacitance		400			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V $
	Gate-to-Source Charge Gate-to-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Output Capacitance Output Capacitance	Gate-to-Source Charge —— Gate-to-Drain Charge —— Turn-On Delay Time —— Rise Time —— Turn-Off Delay Time —— Fall Time —— Internal Drain Inductance —— Input Capacitance —— Output Capacitance —— Reverse Transfer Capacitance —— Output Capacitance ——	Gate-to-Source Charge — 14 Gate-to-Drain Charge — 19 Turn-On Delay Time — 16 Rise Time — 65 Turn-Off Delay Time — 44 Fall Time — 29 Internal Drain Inductance — 4.5 Internal Source Inductance — 7.5 Input Capacitance — 2190 Output Capacitance — 280 Reverse Transfer Capacitance — 150 Output Capacitance — 1070 Output Capacitance — 190	Gate-to-Source Charge — 14 — Gate-to-Drain Charge — 19 — Turn-On Delay Time — 16 — Rise Time — 65 — Turn-Off Delay Time — 44 — Fall Time — 29 — Internal Drain Inductance — 4.5 — Input Capacitance Inductance — 7.5 — Input Capacitance — 2190 — Output Capacitance — 280 — Reverse Transfer Capacitance — 150 — Output Capacitance — 1070 — Output Capacitance — 190 —	Gate-to-Source Charge — 14 — nC Gate-to-Drain Charge — 19 — Turn-On Delay Time — 16 — Rise Time — 65 — Turn-Off Delay Time — 44 — Fall Time — 29 — Internal Drain Inductance — 4.5 — Input Capacitance Inductance — 7.5 — Input Capacitance — 2190 — Output Capacitance — 280 — Reverse Transfer Capacitance — 150 — Output Capacitance — 1070 — Output Capacitance — 190 —

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			42		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			210		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 32A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		31	47	ns	$T_J = 25^{\circ}C$, $I_F = 32A$, $V_{DD} = 38V$
Q_{rr}	Reverse Recovery Charge		31	47	nC	di/dt = 100A/µs③
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.197mH, $R_G = 25\Omega$, $I_{AS} = 32$ A, $V_{GS} = 10$ V. Part not recommended for use above this value.
- \oplus C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- © Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- © This value determined from sample failure population. starting $T_J = 25^{\circ}C$, L = 0.197 mH, $R_G = 25\Omega$, $I_{AS} = 32A$, $V_{GS} = 10V$.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

R_θ is measured at T_J approximately 90°C

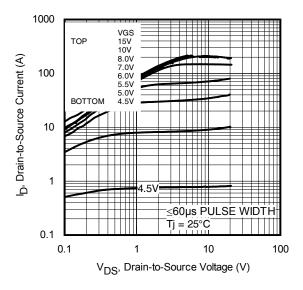


Fig. 1 Typical Output Characteristics

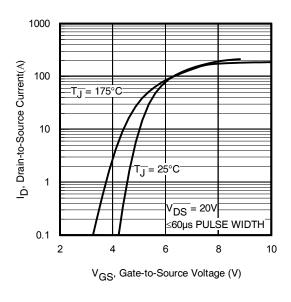


Fig. 3 Typical Transfer Characteristics

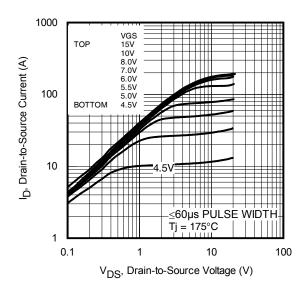
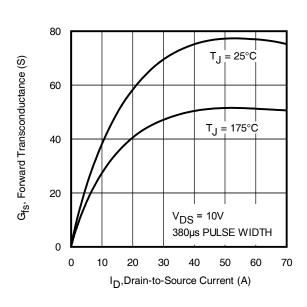
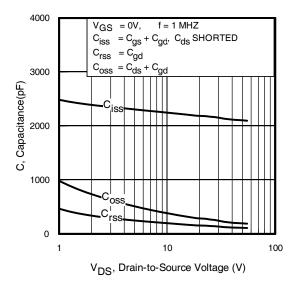




Fig. 2 Typical Output Characteristics

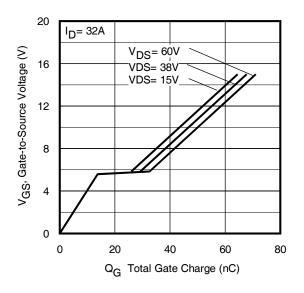


Fig. 4 Typical Forward Trans conductance Vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

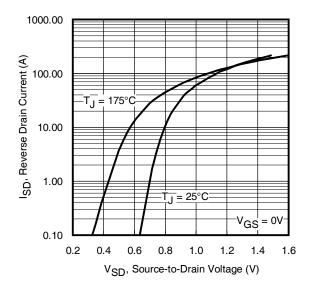


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

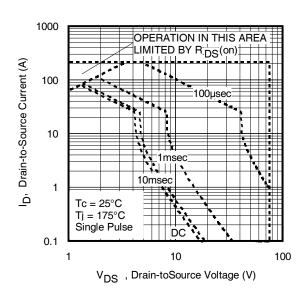
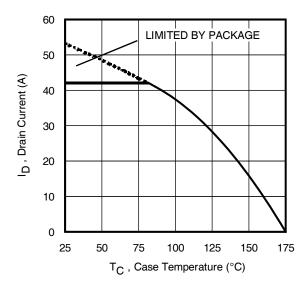
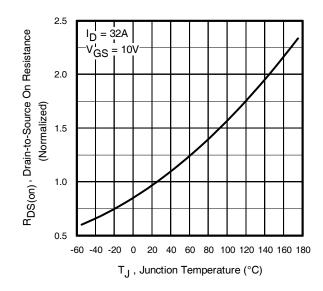




Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Normalized On-Resistance Vs. Temperature

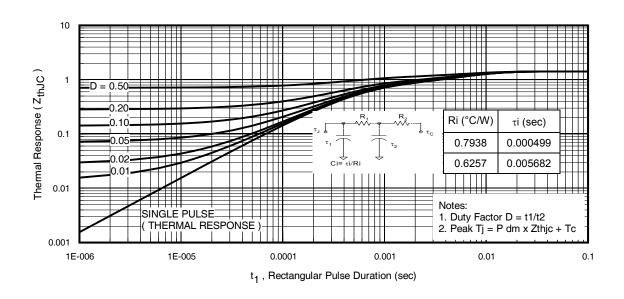


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

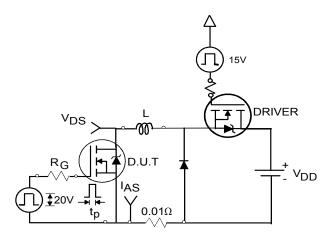


Fig 12a. Unclamped Inductive Test Circuit

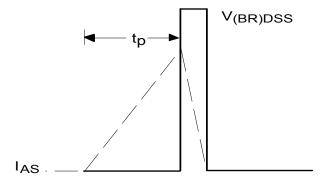


Fig 12b. Unclamped Inductive Waveforms

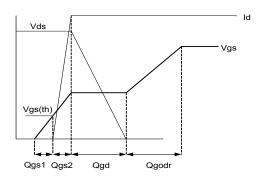


Fig 13a. Gate Charge Waveform

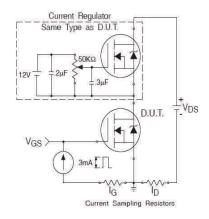
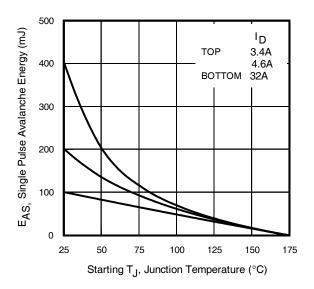



Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature

2015-11-19

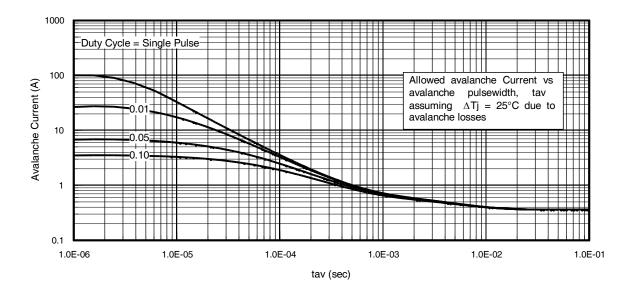
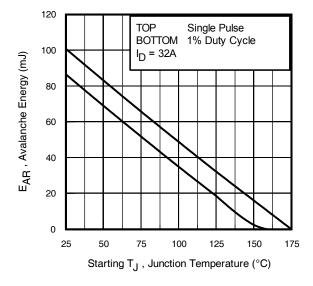



Fig 15. Typical Avalanche Current Vs. Pulse width

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16:

(For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T / \; Z_{thJC} \\ I_{av} &= 2 \Delta T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

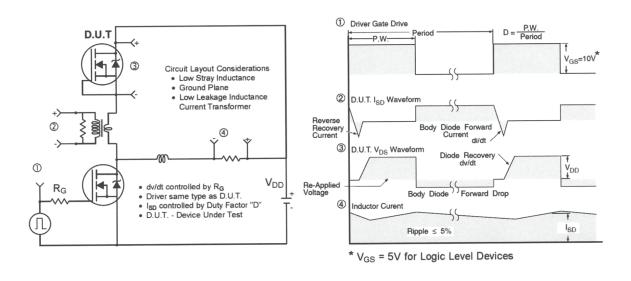


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

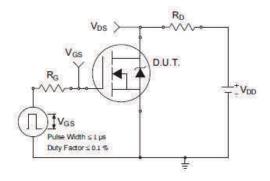
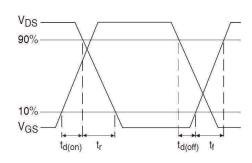
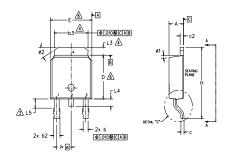
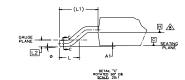
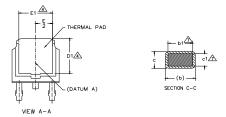


Fig 18a. Switching Time Test Circuit


Fig 18b. Switching Time Waveforms



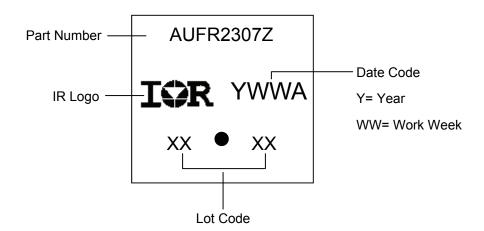
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- Limension D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- ⚠- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- ♠ DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y M B O C C C C C C C C C C C C C C C C C C	_						
B O L MINLIMETERS INCHES T E S E S E S E S E S E S E S E S E S E		DIMENSIONS					
A 2.18 2.39 .086 .094 A1 - 0.13005 b 0.64 0.89 .025 .035 b1 0.65 0.79 .025 .031 7 b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6 D1 5.21205 - 4 E 6.35 6.73 .250 .265 6 E1 4.32170 - 4 E 6.35 6.73 .250 .265 E1 4.32170 - 4 E 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4102040 L5 1.14 1.52 .045 .060 3 Ø 0° 10° 0° 10° Ø1 0° 15° 0° 15°	В	MILLIM	ETERS	INC	HES	Ť	
A1 — 0.13 — .005 b 0.64 0.89 .025 .035 b1 0.65 0.79 .025 .031 7 b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 7 c2 0.46 0.89 .018 .035 6 D 5.97 6.22 .235 .245 6 D1 5.21 — .205 — 4 E 6.35 6.73 .250 .265 6 E1 4.32 — .170 — 4 e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.108 REF .020 BSC L2 0.51 BSC .020 BSC		MIN.	MAX.	MIN.	MAX.	E S	
b 0.64 0.89 .025 .035 b1 0.65 0.79 .025 .031 7 b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6 D1 5.21 - .205 - 4 E 6.35 6.73 .250 .265 6 E1 4.32 - .170 - 4 e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.140 1.78 .055 .070 L1 0.51 BSC .020 BSC L3 <td>Α</td> <td>2.18</td> <td>2.39</td> <td>.086</td> <td>.094</td> <td></td>	Α	2.18	2.39	.086	.094		
b1 0.65 0.79 .025 .031 7 b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 7 c2 0.46 0.89 .018 .035 6 0 0 0.35 6 0 1 0 0 0 0 0 0 0 0 <t< td=""><td>A1</td><td>-</td><td>0.13</td><td>-</td><td>.005</td><td></td></t<>	A1	-	0.13	-	.005		
b2 0.76 1.14 0.30 0.45 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 7 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 6 D 5.97 6.22 .235 .245 6 D1 5.21 - .205 - 4 E 6.35 6.73 .250 .265 6 E1 4.32 - .170 - 4 e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4	b	0.64	0.89	.025	.035		
b3	ь1	0.65	0.79	.025	.031	7	
c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 7 D 5.97 6.22 .235 .245 6 D1 5.21 - .205 - 4 E 6.35 6.73 .250 .265 6 E1 4.32 - .170 - 4 e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02 - .040 L5 1.14 1.52 .045 .060 3	b2	0.76	1.14	.030	.045		
c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 8 D 5.97 6.22 .235 .245 6 D1 5.21 - .205 - 4 E 6.35 .250 .265 6 E1 4.32 - .170 - 4 e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02 - .040 L5 1.14 1.52 .045 .060 3 Ø 0° 10° 0° 10° 10° Ø	b3	4.95	5.46	.195	.215	4	
c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6 D1 5.21 - .205 - 4 E 6.35 6.73 .250 .265 6 E1 4.32 - .170 - 4 e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02 - .040 L5 1.14 1.52 .045 .060 3 Ø 0° 10° 0° 10° Ø 0° 15° 0° 15°	С	0.46	0.61	.018	.024		
D 5.97 6.22 .235 .245 6	c1	0.41	0.56	.016	.022	7	
D1	c2	0.46	0.89	.018	.035		
E 6.35 6.73 .250 .265 6 E1 4.32170 - 4 e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02040 L5 1.14 1.52 .045 .060 3 Ø 0' 10' 0' 10' Ø1 0' 15' 0' 15'	D	5.97	6.22	.235	.245	6	
E1 4.32 - .170 - 4 e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02 - .040 L5 1.14 1.52 .045 .060 3 Ø 0° 10° 0° 10° Ø1 0° 15° 0° 15°	D1	5.21	-	.205	-	4	
e 2.29 BSC .090 BSC H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02 - .040 L5 1.14 1.52 .045 .060 3 Ø 0° 10° 0° 10° 0° 15° Ø1 0° 15° 0° 15° 0° 15°	Ε	6.35	6.73	.250	.265	6	
H 9.40 10.41 .370 .410 L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02040 L5 1.14 1.52 .045 .060 3 Ø 0° 10° 0° 10° Ø1 0° 15° 0° 15°	E1	4.32	-	.170	-	4	
L 1.40 1.78 .055 .070 L1 2.74 BSC .108 REF. L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02040 L5 1.14 1.52 .045 .060 3 Ø 0' 10' 0' 10' Ø1 0' 15' 0' 15'	е	2.29	BSC	.090 BSC			
L1	Н	9.40	10.41	.370	.410		
L2 0.51 BSC .020 BSC L3 0.89 1.27 .035 .050 4 L4 - 1.02 - .040 .040 .045 .060 3 Ø 0° 10° 0° 10° 10° 9 15°	L	1.40	1.78	.055	.070		
L3 0.89 1.27 .035 .050 4 L4 - 1.02040 L5 1.14 1.52 .045 .060 3 Ø 0' 10' 0' 10' Ø1 0' 15' 0' 15'	L1	2.74	BSC	.108	REF.		
L4 - 1.02 - .040 L5 1.14 1.52 .045 .060 3 Ø 0° 10° 0° 10° Ø1 0° 15° 0° 15°	L2	0.51	BSC	.020	BSC		
L5 1.14 1.52 .045 .060 3 ø 0° 10° 0° 10° ø1 0° 15° 0° 15°	L3	0.89	1.27	.035	.050	4	
ø 0° 10° 0° 10° ø 0° 15° 0° 15°	L4	-	1.02	-	.040		
ø1 0° 15° 0° 15°	L5	1.14	1.52	.045	.060	3	
	ø	0.	10°	0,	10°		
ø2 25° 35° 25° 35°	ø1	0,	15*	0,	15*		
	ø2	25*	35°	25*	35*		

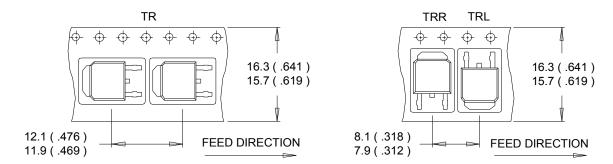
LEAD ASSIGNMENTS


HEXFET

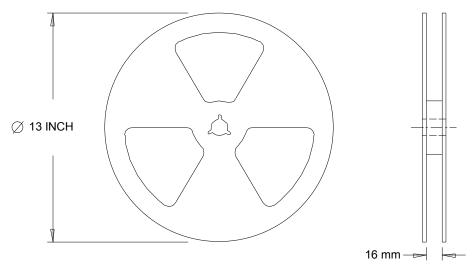
- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN

IGBT & CoPAK

- 1.- GATE
- 2.- COLLECTOR
- 3.- EMITTER
- 4. COLLECTOR


D-Pak (TO-252AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/



D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

	don imormation						
		Automotive					
			(per AEC-Q101)				
Qualification Level Comments: This part number(s) passed Automotive qualification. Industrial and Consumer qualification level is granted by extension of Automotive level.							
Moisture	Sensitivity Level	D-Pak MSL1					
	Machine Madel	Class M4 (+/- 425V) [†]					
	Machine Model	AEC-Q101-002					
E0D	Livers on Dody Model		Class H1B (+/- 1000V) [†]				
ESD	ESD Human Body Model		AEC-Q101-001				
	Characad Davisa Madal		Class C5 (+/- 1125V) [†]				
	Charged Device Model		AEC-Q101-005				
RoHS Co	mpliant		Yes				

† Highest passing voltage.

Revision History

Date	Comments			
11/10/2015	Updated datasheet with corporate template			
11/19/2015	Corrected ordering table on page 1.			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

AUIRFR2307Z AUIRFR2307ZTR AUIRFR2307ZTRL AUIRFR2307ZTRR