

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FDME1034CZT

Complementary PowerTrench[®] MOSFET N-channel: 20 V, 3.8 A, 66 m Ω P-channel: -20 V, -2.6 A, 142 m Ω

Features

Q1: N-Channel

- Max r_{DS(on)} = 66 mΩ at V_{GS} = 4.5 V, I_D = 3.4 A
- Max $r_{DS(on)}$ = 86 m Ω at V_{GS} = 2.5 V, I_D = 2.9 A
- Max $r_{DS(on)} = 113 \text{ m}\Omega$ at $V_{GS} = 1.8 \text{ V}$, $I_D = 2.5 \text{ A}$
- Max r_{DS(on)} = 160 mΩ at V_{GS} = 1.5 V, I_D = 2.1 A

Q2: P-Channel

- Max r_{DS(on)} = 142 mΩ at V_{GS} = -4.5 V, I_D = -2.3 A
- Max $r_{DS(on)}$ = 213 mΩ at V_{GS} = -2.5 V, I_D = -1.8 A Max $r_{DS(on)}$ = 331 mΩ at V_{GS} = -1.8 V, I_D = -1.5 A
- Max $r_{DS(on)}$ = 530 m Ω at V_{GS} = -1.5 V, I_D = -1.2 A
- Low profile: 0.55 mm maximum in the new package MicroFET 1.6x1.6 Thin
- Free from halogenated compounds and antimony oxides
- HBM ESD protection level > 1600 V (Note 3)
- RoHS Compliant

General Description

This device is designed specifically as a single package solution for a DC/DC 'Switching' MOSFET in cellular handset and other ultra-portable applications. It features an independent N-Channel & P-Channel MOSFET with low on-state resistance for minimum conduction losses. The gate charge of each MOSFET is also minimized to allow high frequency switching directly from the controlling device.

The MicroFET 1.6x1.6 Thin package offers exceptional thermal performance for it's physical size and is well suited to switching and linear mode applications.

Applications

- DC-DC Conversion
- Level Shifted Load Switch

MicroFET 1.6x1.6 Thin

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Paramet		Q1	Q2	Units			
V _{DS}	Drain to Source Voltage			20	-20	V		
V _{GS}	Gate to Source Voltage			±8	±8	V		
I _D	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	3.8	-2.6	•		
	-Pulsed			6	-6	A		
P _D	Power Dissipation for Single Operation $T_A = 25 \text{ °C}$ (Note 1a)		1.4		w			
	Power Dissipation for Single Operation $T_A = 25 \text{ °C}$ (Note 1b			().6	vv		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 t	o +150	°C		

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1a)	90	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1b)	195	C/W

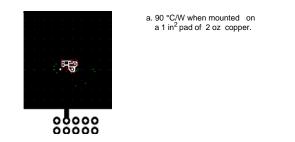
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
5T	FDME1034CZT	MicroFET 1.6x1.6 Thin	7 "	8 mm	5000 units

July 2010

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V$ $I_{D} = -250 \ \mu\text{A}, \ V_{GS} = 0 \ V$	Q1 Q2	20 -20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = -250 \ \mu$ A, referenced to 25 °C	Q1 Q2		16 -12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 V, V_{GS} = 0 V$ $V_{DS} = -16 V, V_{GS} = 0 V$	Q1 Q2			1 -1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$	All			±10	μΑ
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$ $V_{GS} = V_{DS}, I_D = -250 \ \mu A$	Q1 Q2	0.4 -0.4	0.7 -0.6	1.0 -1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C	Q1 Q2		-3 2		mV/°C
		V _{GS} = 4.5 V, I _D = 3.4 A			55	66	- mΩ
		$V_{GS} = 2.5 \text{ V}, \ \text{I}_{D} = 2.9 \text{ A}$			68	86	
		$V_{GS} = 1.8 \text{ V}, I_D = 2.5 \text{ A}$	Q1		85	113	
	Drain to Source On Resistance	$V_{GS} = 1.5 \text{ V}, I_D = 2.1 \text{ A}$			106	160	
r _{DS(on)}		V _{GS} = 4.5 V, I _D = 3.4 A, T _J =125°C			76	112	
		$V_{GS} = -4.5 \text{ V}, I_D = -2.3 \text{ A}$			95	142	
		$V_{GS} = -2.5 \text{ V}, I_D = -1.8 \text{ A}$			120	213	
		$V_{GS} = -1.8 \text{ V}, I_D = -1.5 \text{ A}$	Q2		150	331	
		$\begin{split} V_{GS} &= -1.5 \text{ V}, \ I_D &= -1.2 \text{ A} \\ V_{GS} &= -4.5 \text{ V}, \ I_D &= -2.3 \text{ A}, \\ T_J &= 125 \text{ °C} \end{split}$			190 128	530 190	
9fs	Forward Transconductance	$V_{DS} = 4.5 V, I_D = 3.4 A$ $V_{DS} = -4.5 V, I_D = -2.3 A$	Q1 Q2		9 7		S
Dvnamic	Characteristics						
C _{iss}	Input Capacitance		Q1		225	300	pF
		Q1 V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	Q2 Q1		305 40	405 55	
C _{oss}	Output Capacitance	Q2	Q2		55	75	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	Q1 Q2		25 50	40 75	pF
Switching	Characteristics	· · · · · · · · · · · · · · · · · · ·				1	-1
t _{d(on)}	Turn-On Delay Time	~	Q1 Q2		4.5 4.7	10 10	
t _r	Rise Time	Q1 $V_{DD} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ A},$	Q1 Q2		2.0 4.8	10 10 10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5 V, R_{GEN} = 6 \Omega$ Q2 $V_{DD} = -10 V, I_D = -1 A,$	Q1 Q2		15 33	27 53	- 115
t _f	Fall Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	Q1 Q2		1.7 16	10 29	
Qg	Total Gate Charge	Q1	Q1 Q2		3 5.5	4.2 7.7	
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = 10 \text{ V}, \ \text{I}_{D} = 3.4 \text{ A}, \ V_{GS} = 4.5 \text{ V}$ Q2	Q2 Q1 Q2		0.4 0.6	1.1	nC
Q _{gd}	Gate to Drain "Miller" Charge	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -2.3 \text{ A}, V_{GS} = -4.5 \text{ V}$	Q2 Q1		0.6		-

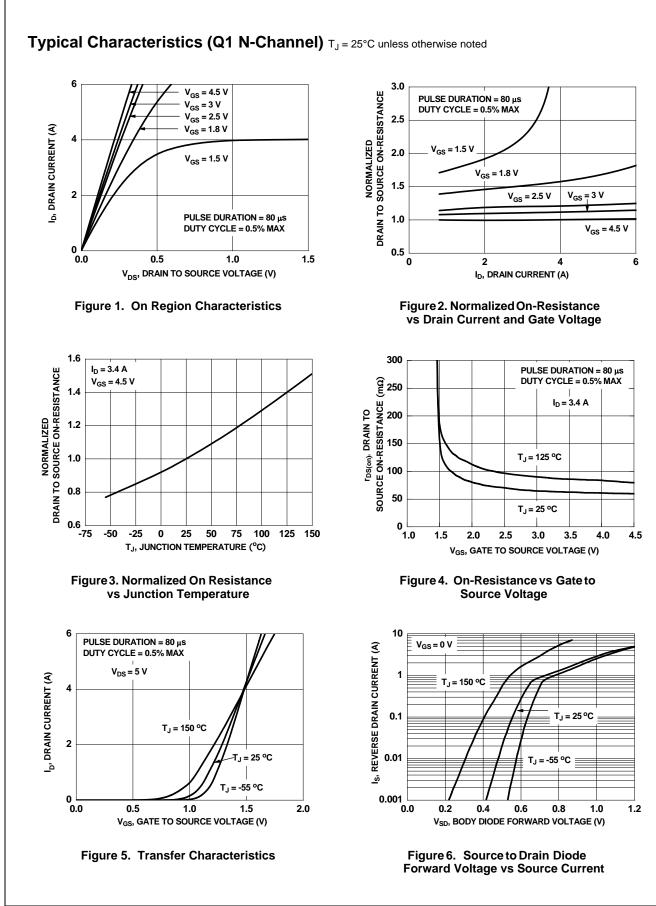
2

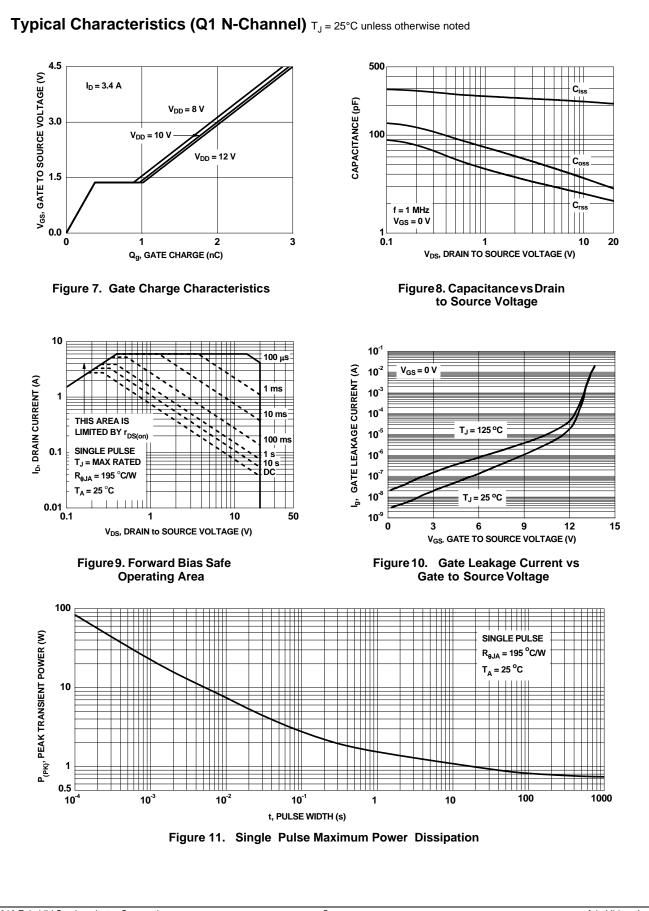

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-So	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$ \begin{array}{ll} V_{GS} = 0 \ V, \ I_S = 0.9 \ A & (Note \ 2) \\ V_{GS} = 0 \ V, \ I_S = -0.9 \ A & (Note \ 2) \end{array} $	Q1 Q2		0.7 -0.8	1.2 -1.2	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 3.4 A, di/dt = 100 A/µS	Q1 Q2		8.5 16	17 29	ns
Q _{rr}	Reverse Recovery Time	Q2 I _F = -2.3 A, di/dt = 100 A/µs	Q1 Q2		1.4 4.4	10 10	nC

Notes: 1. R_{0,D4} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

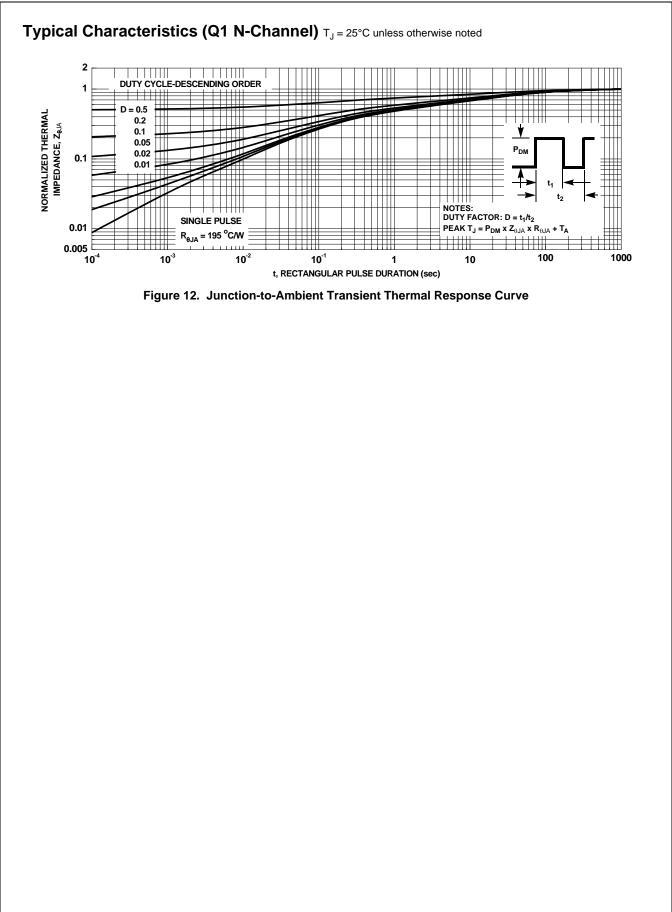
.

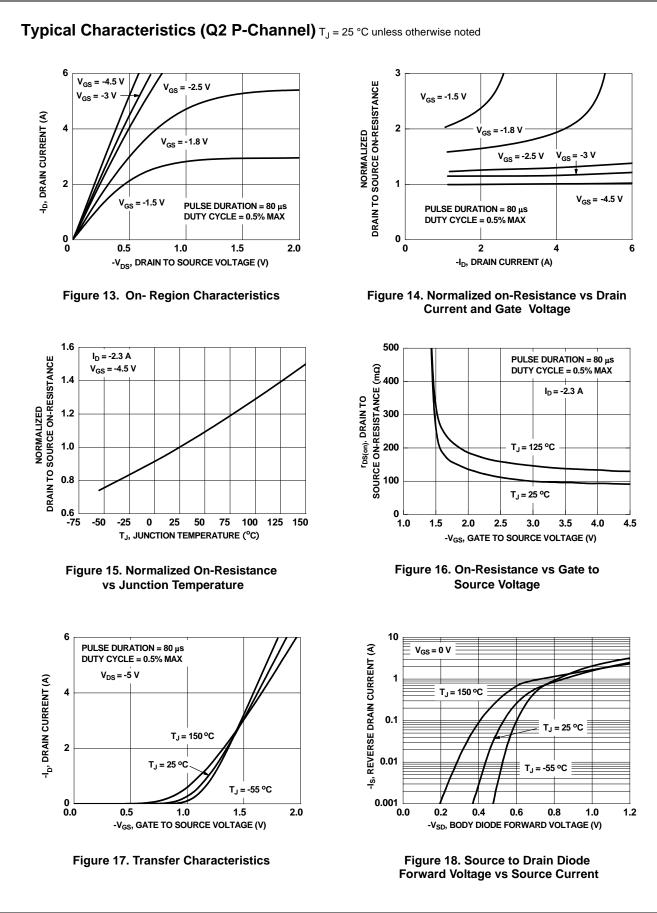
00000

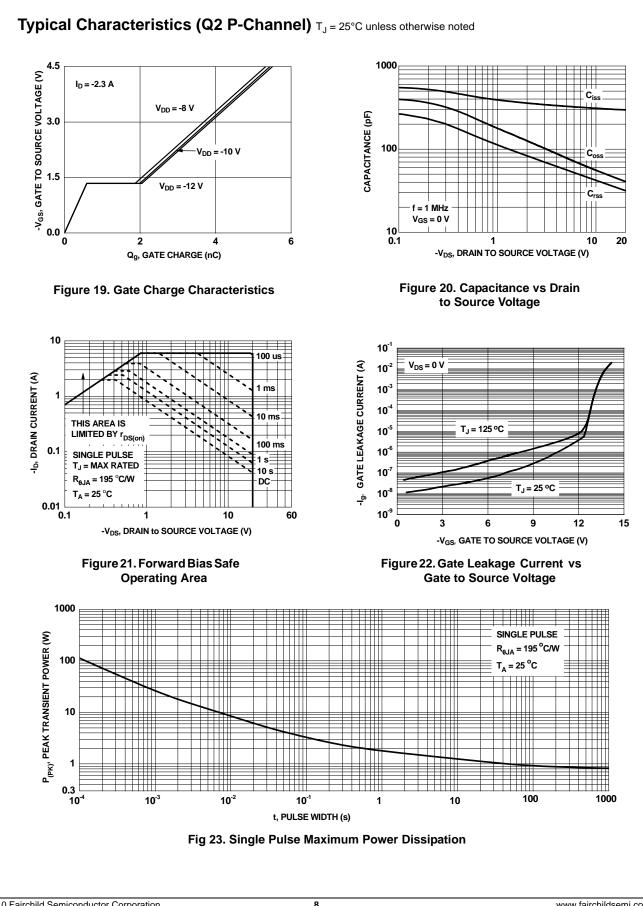

b. 195 °C/W when mounted on a minimum pad of 2 oz copper.

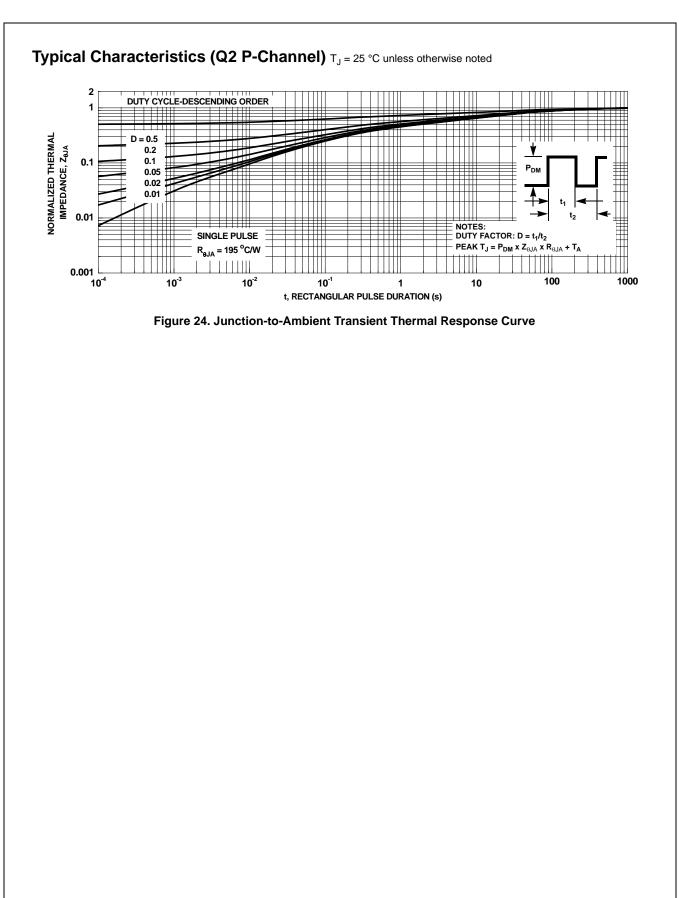


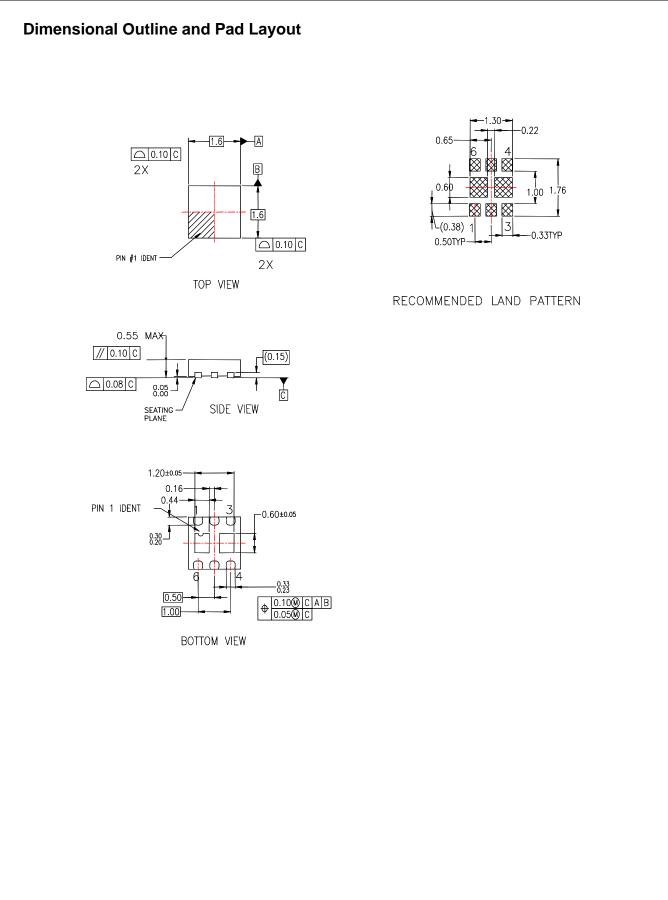
2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

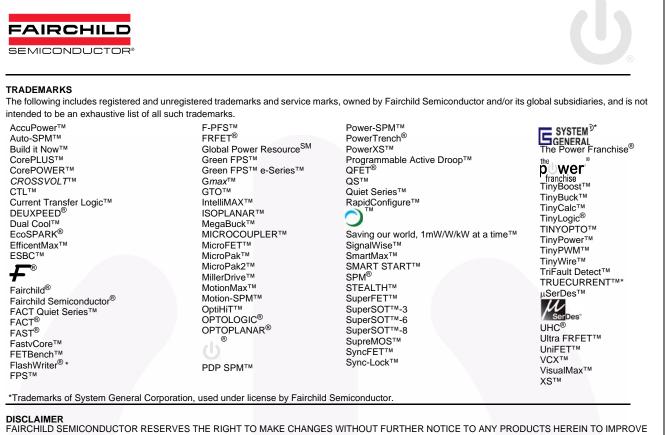

3. The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied.






FDME1034CZT Complementary PowerTrench[®] MOSFET




6

RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Semiconductor. The datasheet is for reference information only.

FDME1034CZT Complementary PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FDME1034CZT</u>