

DMP1022UFDE

12V P-CHANNEL ENHANCEMENT MODE MOSFET

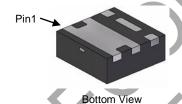
Product Summary

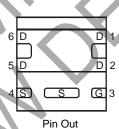
BV _{DSS}	R _{DS(ON)} Max	I _D Max T _A = +25°C
	16mΩ @ V _{GS} = -4.5V	-9.1A
-12V	21.5mΩ @ V _{GS} = -2.5V	-7.9A
	26mΩ @ V _{GS} = -1.8V	-7.0A
	$32m\Omega$ @ $V_{GS} = -1.5V$	-6.3A

Description

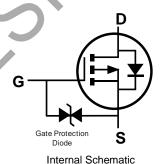
This MOSFET is designed specifically for use in battery management applications.

Features


- 0.6mm Profile Ideal For Low Profile Applications
- PCB Footprint of 4mm²
- Low Gate Threshold Voltage
- Fast Switching Speed
- ESD Protected to 3KV
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- An Automotive-Compliant Part is Available Under Separate Datasheet (DMP1022UFDEQ)


Mechanical Data

- Case: U-DFN2020-6 (Type E)
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish NiPdAu over Copper Leadframe. Solderable per MIL-STD-202, Method 208 (4)
- Weight: 0.0065 grams (Approximate)



Bottom View

Ordering Information (Note 4)

Part Number	Marking	Reel Size (inches)	Quantity Per Reel
DMP1022UFDE-7	P4	7	3.000

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.</p>
 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

P4 = Product Type Marking Code YM = Date Code Marking Y = Year (ex: E = 2017)M = Month (ex: 9 = September)

Date Code Key

Year	2011	~	2015	2016	2017	2018	2019	2020	2021	2022	2023
Code	Υ	~	С	D	Е	F	G	Н	I	J	K
Month	Jan	Feb	Mar	Apr	May	Jun ,	Jul Aι	ıg Sep	Oct	Nov	Dec

DMP1022UFDE

Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit		
Drain-Source Voltage	V _{DSS}	-12	V		
Gate-Source Voltage	V _{GSS}	±8	V		
Continuous Dusin Compant (Nata C) \	Steady State	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	-9.1 -7.2	А
Continuous Drain Current (Note 6) V _{GS} = -4.5V	t<5s	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	-11.2 -9.0	А
Pulsed Drain Current (10µs Pulse, Duty Cycle = 1%)	I _{DM}	-90	Α		
Continuous Source-Drain Diode Current	$T_A = +25$ °C $T_C = +25$ °C	Is	-2.5 -7.1	А	
Pulsed Source-Drain Diode Current (10µs Pulse, Du	I _{SM}	-50	А		

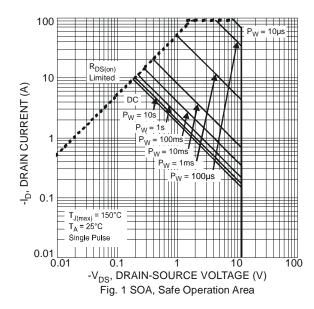
Thermal Characteristics

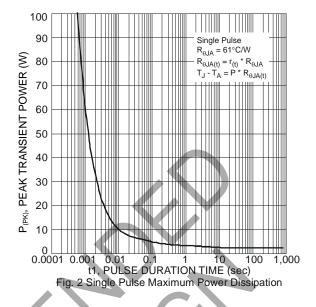
Characteristic		Symbol	Value	Unit
Total Power Dissipation (Note 5)	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	PD	0.66	W
Thermal Resistance, Junction to Ambient (Note 5)	Steady State t<5s	ReJA	189 123	°C/W
Total Power Dissipation (Note 6)	$T_A = +25$ °C $T_A = +70$ °C	P _D	2.03 1.3	W
Thermal Resistance, Junction to Ambient (Note 6)	Steady State t<5s	R _θ JA	61 40	°C/W
Thermal Resistance, Junction to Case (Note 6)	Steady State	$R_{\theta JC}$	9.3	
Operating and Storage Temperature Range		T _{J,} T _{STG}	-55 to +150	°C

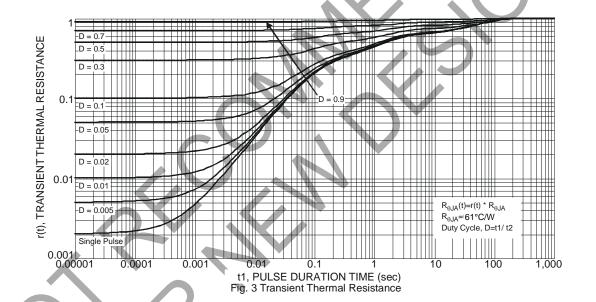
Notes:

5. Device mounted on FR-4 PC board, with minimum recommended pad layout, single sided.6. Device mounted on FR-4 substrate PC board, 2oz copper, with thermal vias to bottom layer 1-inch square copper plate.

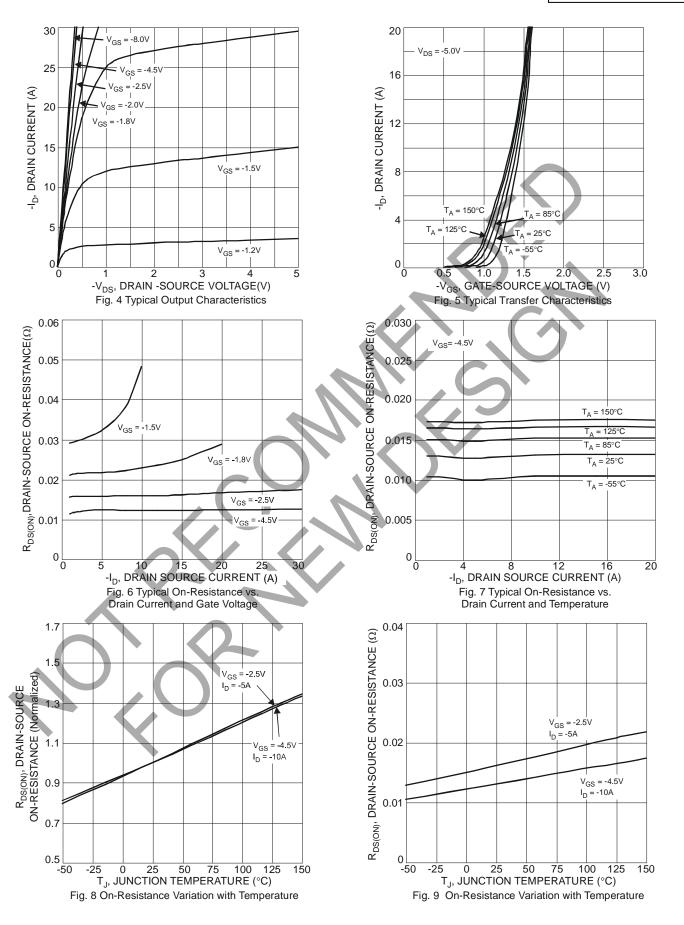
DMP1022UFDE


Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)


OFF CHARACTERISTICS (Note 7) Drain-Source Beakdown Voltage BV _{DSS} -12 — — V V _{QS} = 0V, I _D = -250µA Zero Gate Voltage Drain Current (T _J = +25°C) I _{DSS} — — -20 nA V _{DS} = -12V, V _{SS} = 0V Zero Gate Voltage Drain Current (T _J = +55°C) (Note 8) I _{DSS} — — -2 µA V _{QS} = -12V, V _{QS} = 0V Zero Gate Voltage Drain Current (T _J = +55°C) (Note 8) I _{DSS} — — -2 µA V _{QS} = ±5V, V _{DS} = 0V ON CHARACTERISTICS (Note 7) Gate Threshold Voltage V _{QS} (TH) — -0.8 V V _{QS} = ±5V, V _{DS} = 0V ON CHARACTERISTICS (Note 7) Gate Threshold Voltage V _{QS} = -1.9 — -50µA On-State Drain Current I _{D(ON)} -10 — — A V _{QS} = ±6.9V, V _{QS} = ±50µA On-State Drain Current I _{D(ON)} -10 — — A V _{QS} = ±4.5V, V _{QS} = ±60µA On-State Drain Current I _{D(ON)} -10 — — A V _{QS} = ±4.5V, V _{QS} = ±6.9V, V _{QS} = ±4.5V, V _{QS} = ±4.5V, V _{QS} = ±4.5V, V _{QS} = ±4.5V, V _{QS} = ±6.5V, V _Q	Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
Zero Gate Voltage Drain Current (T _J = +25°C) I _{DSS}								
Zero Gate Voltage Drain Current (T _J = +55°C) (Note 8) loss	Drain-Source Breakdown Voltage	BV _{DSS}	-12	_	_	V	$V_{GS} = 0V, I_D = -250\mu A$	
Gate-Source Leakage	Zero Gate Voltage Drain Current (T _J = +25°C)	I _{DSS}	_	_	-200	nA	$V_{DS} = -12V, V_{GS} = 0V$	
Gate-Source Leakage	Zero Gate Voltage Drain Current (T _J = +55°C) (Note 8)	I _{DSS}	_	_	-2	μΑ	V _{DS} = -12V, V _{GS} = 0V	
ON CHARACTERISTICS (Note 7) Gate Threshold Voltage		I _{GSS}	-	_	±2	μA		
V _{SS(TH)} /Σπρετατινε Coefficient Δ V _{SS(TH)} /ΔΤ _J — 2.5 — mV/°C Ip = -250µA On-State Drain Current I _{D(ON)} -10 — — A V _{SS} = -4.5V, V _{DS} < -5A	, , , , , , , , , , , , , , , , , , , ,							
On-State Drain Current I _{D(ON)} -10 — — A V _{GS} = -4.5V, V _{DS} < -5A Static Drain-Source On-Resistance R _{DS(ON)} — 20 26 mQ V _{GS} = -1.8V, I _D = -8.2A Static Drain-Source On-Resistance IY _{Is} — 20 26 mQ V _{GS} = -1.8V, I _D = -7.2A Forward Transfer Admittance IY _{Is} — 12 — 80 160 V _{GS} = -1.8V, I _D = -1A Forward Voltage V _{SD} — — -0.8 1.2 V V _{GS} = -1.2V, I _D = -1A DYNAMIC CHARACTERISTICS (Note 8) Input Capacitance C _{C88} — 2.953 — Dytput Capacitance C _{C88} — 2.953 — Reverse Transfer Capacitance C _{C88} — 2.953 — Reverse Transfer Capacitance R _G — 8.6 18 Ω V _{DS} = 4V, V _{GS} = 0V, I _S = 0V, I _S = 8A Total Gate Charge Q _G — 25.3 38 Ω Ω V _{DS} = 4V, V _{GS} = 0V, I _S = -4V, I _D = -10A Total Gate Charge	Gate Threshold Voltage	V _{GS(TH)}	-0.35	_	-0.8	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	
On-State Drain Current I _{D(ON)} -10 — — A V _{GS} = -4.5V, V _{DS} < -5A Static Drain-Source On-Resistance R _{DS(ON)} — 20 26 mQ V _{GS} = -1.8V, I _D = -8.2A Static Drain-Source On-Resistance IY _{Is} — 20 26 mQ V _{GS} = -1.8V, I _D = -7.2A Forward Transfer Admittance IY _{Is} — 12 — 80 160 V _{GS} = -1.8V, I _D = -1A Forward Voltage V _{SD} — — -0.8 1.2 V V _{GS} = -1.2V, I _D = -1A DYNAMIC CHARACTERISTICS (Note 8) Input Capacitance C _{C88} — 2.953 — Dytput Capacitance C _{C88} — 2.953 — Reverse Transfer Capacitance C _{C88} — 2.953 — Reverse Transfer Capacitance R _G — 8.6 18 Ω V _{DS} = 4V, V _{GS} = 0V, I _S = 0V, I _S = 8A Total Gate Charge Q _G — 25.3 38 Ω Ω V _{DS} = 4V, V _{GS} = 0V, I _S = -4V, I _D = -10A Total Gate Charge	V _{GS(TH)} Temperature Coefficient	$\Delta V_{GS(TH)}/\Delta T_J$		2.5	_	mV/°C	$I_D = -250 \mu A$	
Static Drain-Source On-Resistance RDS(ON)	On-State Drain Current	I _{D(ON)}	-10	_	_			
Static Drain-Source On-Resistance RDS(ON)		, ,		12	16		$V_{GS} = -4.5V$, $I_D = -8.2A$	
Static Drain-Source On-Resistance RDS(ON)				15	21.5		$V_{GS} = -2.5V, I_D = -7.2A$	
23 32 V _{GS} = -1.5V, I _D = -1A V _{GS} = -1.2V, I _D = -8A V _{DS} = -8A V _{DS} = -4V, I _D = -8A V _{DS} = -4V, V _{DS} = 0V, I _D = -10A V _{DS} = -4V, V _{DS} = 0V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, V _{DS} = -4V, I _D = -10A V _{DS} = -4V, I _D = -1	Static Drain-Source On-Resistance	R _{DS(ON)}	_	20	26	mΩ		
Solution Forward Transfer Admittance IYfs		-(-,		23	32			
Forward Transfer Admittance Y _{Is}				80	160			
Diode Forward Voltage	Forward Transfer Admittance	Y _{fs}	_	12		S		
DYNAMIC CHARACTERISTICS (Note 8) Input Capacitance	Diode Forward Voltage	V _{SD}	_	-0.8	-1.2	V		
Output Capacitance Coss — 756 <td>DYNAMIC CHARACTERISTICS (Note 8)</td> <td></td> <td></td> <td>7/2</td> <td></td> <td></td> <td></td>	DYNAMIC CHARACTERISTICS (Note 8)			7/2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{iss}		2,953	_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance		-<	756	\	pF		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}	4	678	_		1 = 1.0WHZ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	Rα	+//	8.6	18	Ω	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Qq	-	28.4	42.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge		1-7	25.3	38			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q _{qs}	-	2.3		nC		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge		<u> </u>	7.2	/ / - \		ID = -10A	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		. –	20	30			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Rise Time		-/	28	42	1	$V_{DS} = -4V$, $V_{GS} = -4.5V$,	
Turn-Off Fall Time	Turn-Off Delay Time	t _{D(OFF)}	_	117	176	ns	$R_G = 1\Omega$, $R_L = 0.4\Omega$, $I_D = -9.8A$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Fall Time		_	93	139	1		
Continuous Source-Drain Diode Current (Note 6) Is $ -2.5$ $ -7.1$ Pulse Diode Forward Current (Note 8) Body Diode Reverse Recovery Time (Note 8) Reverse Recovery Fall Time Reverse Recovery Rise Time TA = +25°C TC = +25°C TC = +25°C To = +25°C TC = +25°C To = +	BODY DIODE CHARACTERISTICS							
Continuous Source-Drain Diode Current (Note 6) Is	Diode Forward Voltage	V _{SD}	14	-0.8	-1.2	V	$V_{GS} = 0V, I_{S} = -9.8A$	
Pulse Diode Forward Current (Note 8) I_{SM} — — -50 I_{C} = +25°C — Body Diode Reverse Recovery Time (Note 8) I_{RR} — 28 56 Reverse Recovery Fall Time I_{A} — 10 — ns Reverse Recovery Rise Time I_{B} — 18 — I_{C} = +25°C — I_{C} =	Continuous Course Proje Diede Current (Note C)		1 = 1	_	-2.5		T _A = +25°C	
Body Diode Reverse Recovery Time (Note 8) t_{RR} — 28 56 Reverse Recovery Fall Time t_A — 10 — ns Reverse Recovery Rise Time t_B — 18 — t_{RR} No. 18 = -9.8A, dl/dt = 100A/ μ s	Continuous Source-Drain Diode Current (Note 6)	ls	_	_	-7.1	Α	T _C = +25°C	
Body Diode Reverse Recovery Time (Note 8) t_{RR} — 28 56 Reverse Recovery Fall Time t_A — 10 — ns Reverse Recovery Rise Time t_B — 18 — t_{RR} Note and the second representation of	Pulse Diode Forward Current (Note 8)	I _{SM}	_	_	-50	1	_	
Reverse Recovery Fall Time t_A — 10 — ns Reverse Recovery Rise Time t_B — 18 — t_B Is = -9.8A, dl/dt = 100A/ μ s	Body Diode Reverse Recovery Time (Note 8)		_	28	56			
Reverse Recovery Rise Time t _B — 18 — Is = -9.8A, dl/dt = 100A/µs			_	10	_	ns		
	Reverse Recovery Rise Time		_	18	_	1	Is = -9.8A, dl/dt = 100A/µs	
	Body Diode Reverse Recovery Charge (Note 8)	Q _{RR}	_	13	26	nC		


Notes:

- Short duration pulse test used to minimize self-heating effect.
 Guaranteed by design. Not subject to production testing.



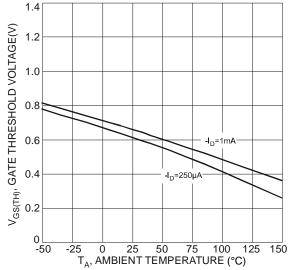
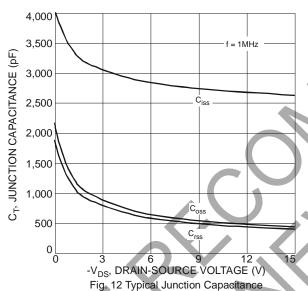
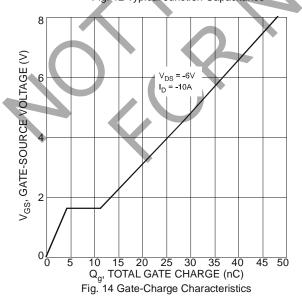
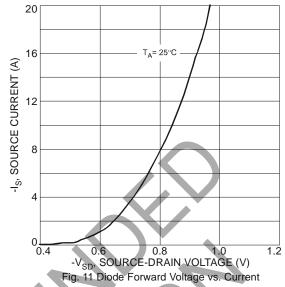





Fig. 10 Gate Threshold Variation vs. Ambient Temperature

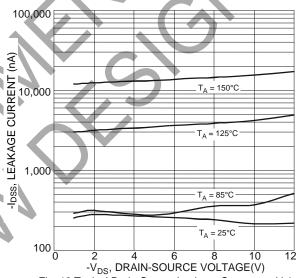
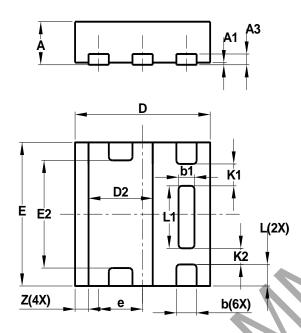


Fig. 13 Typical Drain-Source Leakage Current vs. Voltage

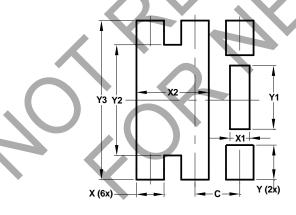


DMP1022UFDE

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

U-DFN2020-6 (Type E)



U-DFN2020-6								
(Type E)								
Dim	Min	Min Max Typ						
Α	0.57	0.63	0.60					
A1	0	0.05	0.03					
A3	-	d	0.15					
b	0.25	0.35	0.30					
b1	0.185	0.285	0.235					
ם	1.95	2.05	2.00					
D2	0.85	1.05	0.95					
E	1.95	2.05	2.00					
E2	1.40	1.60	1.50					
e		- (0.65					
L	0.25	0.35	0.30					
L1	0.82	0.92	0.87					
K1	- /	- /	0.305					
K2			0.225					
Z		-	0.20					
All Dimensions in mm								

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

U-DFN2020-6 (Type E)

Dimensions	Value (in mm)
С	0.650
Х	0.400
X1	0.285
X2	1.050
Υ	0.500
Y1	0.920
Y2	1.600
Y3	2.300

DMP1022UFDE

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated:

DMP1022UFDE-7