3.3 V / 5 V ECL JK Flip-Flop # Description The MC100EP35 is a higher speed/low voltage version of the EL35 JK flip-flop. The J/K data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The reset pin is asynchronous and is activated with a logic HIGH. The 100 Series contains temperature compensation. #### **Features** - 410 ps Propagation Delay - Maximum Frequency > 3 GHz Typical - PECL Mode Operating Range: - $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$ - NECL Mode Operating Range: - $V_{CC} = 0 \text{ V}$ with $V_{EE} = -3.0 \text{ V}$ to -5.5 V - Open Input Default State - Q Output Will Default LOW with Inputs Open or at V_{EE} - These Devices are Pb-Free, Halogen Free and are RoHS Compliant #### ON Semiconductor® www.onsemi.com SOIC-8 NB **D SUFFIX CASE** 751-07 TSSOP-8 DT SUFFIX CASE 948R-02 #### **MARKING DIAGRAMS*** = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week M = Date Code = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. #### ORDERING INFORMATION See detailed ordering and shipping information on page 6 of this data sheet. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram # **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |-----------------|------------------------| | CLK* | ECL Clock Inputs | | J*, K* | ECL Signal Inputs | | RESET* | ECL Asynchronous Reset | | Q, Q | ECL Data Outputs | | V _{CC} | Positive Supply | | V _{EE} | Negative Supply | ^{*} Pins will default LOW when left open. # **Table 2. TRUTH TABLE** | J | K | RESET | CLK | Qn+1 | |------------------|-----------|-------------|------------------|--------------------| | L
H
H
× | L H L H > | L
L
L | Z
Z
Z
Z | Qn
L
H
Qn | Z = LOW to HIGH Transition **Table 3. ATTRIBUTES** | Characteristics | Value | |--|-----------------------------| | Internal Input Pulldown Resistor | 75 kΩ | | Internal Input Pullup Resistor | N/A | | ESD Protection Human Body Model Machine Model Charged Device Model | > 4 kV
> 200 V
> 2 kV | | Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) | Pb-Free Pkg | | SOIC-8 NB
TSSOP-8 | Level 1
Level 3 | | Flammability Rating Oxygen Index: 28 to 34 | UL-94 V-0 @ 0.125 in | | Transistor Count | 77 Devices | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | ^{1.} For additional information, see Application Note <u>AND8003/D</u>. **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|--|-------------|------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 6 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -6 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $ V_I \leq V_{CC} \\ V_I \geq V_{EE} $ | 6
-6 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-8 NB | 190
130 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-8 NB | 41 to 44 | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-8 | 185
140 | °C/W | | θЈС | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-8 | 41 to 44 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | <2 to 3 sec @ 260°C | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) Table 5. 100EP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1)) | | | -40°C | | 25°C | | 85°C | | | | | | |-----------------|-----------------------------------|-------|------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 30 | 40 | 50 | 30 | 40 | 50 | 30 | 40 | 50 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2075 | | 2420 | 2075 | | 2420 | 2075 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1355 | | 1675 | 1355 | | 1675 | 1355 | | 1675 | mV | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary +0.3 V to -2.2 V. - 2. All loading with 50 Ω to V_{CC} 2.0 V. Table 6. 100EP DC CHARACTERISTICS, PECL ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 1)) | | | -40°C | | | 25°C | | 85°C | | | | | |-----------------|-----------------------------------|-------|------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 30 | 40 | 50 | 30 | 40 | 50 | 30 | 40 | 50 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3775 | | 4120 | 3775 | | 4120 | 3775 | | 4120 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3055 | | 3375 | 3055 | | 3375 | 3055 | | 3375 | mV | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V. - 2. All loading with 50 Ω to V $_{CC}$ 2.0 V. Table 7. 100EP DC CHARACTERISTICS, NECL ($V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 1)) | | | | -40°C | | | 25°C | | | 85°C | | | |-----------------|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 30 | 40 | 50 | 30 | 40 | 50 | 30 | 40 | 50 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1225 | | -880 | -1225 | | -880 | -1225 | | -880 | mV | | V_{IL} | Input LOW Voltage (Single-Ended) | -1945 | | -1625 | -1945 | | -1625 | -1945 | | -1625 | mV | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC}. - 2. All loading with 50 Ω to V_{CC} 2.0 V. Table 8. AC CHARACTERISTICS ($V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 1)) | | | | -40°C 25°C | | | 85°C | | | | | | |--|---|------------|------------|-----|------------|----------|-----|------------|----------|-----|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency
(See Figure 2. F _{max} /JITTER) | | > 3 | | | > 3 | | | > 3 | | GHz | | t _{PLH} ,
t _{PHL} | Propagation Delay to Output Differential R, CLK to Q, Q | 200 | 400 | 480 | 200 | 410 | 490 | 200 | 420 | 575 | ps | | t _{RR} | Reset Recovery | 150 | 80 | | 150 | 90 | | 150 | 100 | | ps | | t _S
t _H | Setup Time
Hold Time | 150
150 | 50
50 | | 150
150 | 50
50 | | 150
150 | 80
80 | | ps | | t _{PW} | Minimum Pulse width RESET | 550 | 400 | | 550 | 400 | | 550 | 400 | | ps | | t _{JITTER} | Cycle-to-Cycle Jitter
(See Figure 2. F _{max} /JITTER) | | 0.2 | < 1 | | 0.2 | < 1 | | 0.2 | < 1 | ps | | t _r
t _f | Output Rise/Fall Times
Q, Q (20% – 80%) | 70 | 120 | 170 | 80 | 130 | 180 | 100 | 150 | 200 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. Figure 2. F_{max}/Jitter Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|------------------------|-----------------------| | MC100EP35DG | SOIC-8 NB
(Pb-Free) | 98 Units / Rail | | MC100EP35DTG | TSSOP-8
(Pb-Free) | 100 Units / Rail | | MC100EP35DTR2G | TSSOP-8
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit **AN1504/D** – Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices # PACKAGE DIMENSIONS SOIC-8 NB CASE 751-07 **ISSUE AK** #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07. - STANDARD IS 751-07. | | MILLIN | IETERS | INC | HES | | |-----|------------|--------|-------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.053 | 0.069 | | | D | 0.33 | 0.51 | 0.013 | 0.020 | | | G | 1.27 | 7 BSC | 0.05 | 0 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | | J | J 0.19 0.2 | | 0.007 | 0.010 | | | K | 0.40 | 1.27 | 0.016 | 0.050 | | | М | 0 ° | 8 ° | 0 ° | 8 ° | | | N | 0.25 | 0.50 | 0.010 | 0.020 | | | S | 5.80 | 6.20 | 0.228 | 0.244 | | # **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS #### TSSOP-8 CASE 948R-02 ISSUE A #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI VIA 5M 4000 - Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 2. CONTROCLING DIMENSION, MILLIAME TETT. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE - (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - 5. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | |-----|-----------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 2.90 | 3.10 | 0.114 | 0.122 | | В | 2.90 | 3.10 | 0.114 | 0.122 | | С | 0.80 1.10 | | 0.031 | 0.043 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.40 | 0.70 | 0.016 | 0.028 | | G | 0.65 | BSC | 0.026 | BSC | | K | 0.25 | 0.40 | 0.010 | 0.016 | | L | 4.90 | BSC | 0.193 | | | M | 0° | 6 ° | 0° | 6° | ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, Buyer shall indemnify #### **PUBLICATION ORDERING INFORMATION** # LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative