High-Voltage Current-Mode PWM Controller

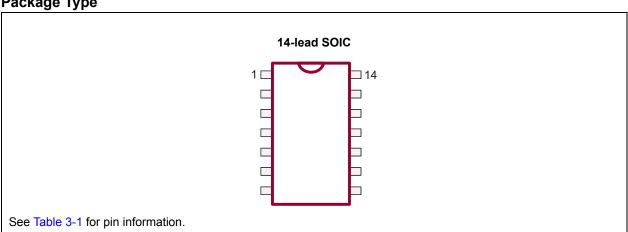
Features

- Input Voltage Range of V_{DD} Regulator
 - HV9110: 10V to 120V
 - HV9112: 9V to 80V
 - HV9113: 10V to 120V
- · Maximum Duty, Feedback Accuracy
 - HV9110: 49%, 1%
 - HV9112: 49%, 2%
 - HV9113: 99%, 1%
- · Current Mode Control
- <1 mA Supply Current
- >1 MHz clock

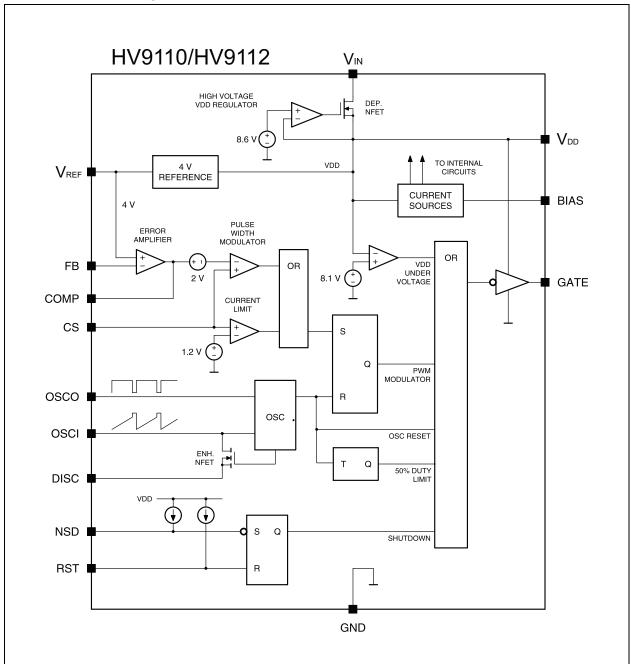
Applications

• DC/DC Power Converters

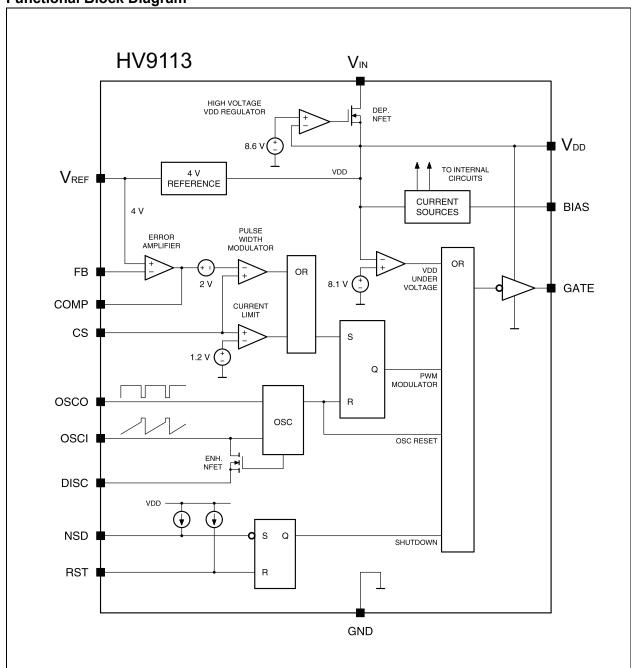
General Description


HV9110/HV9112/HV9113 are Switch-Mode Power Supply (SMPS) controllers suitable for the control of a variety of converter topologies, including the flyback converter and the forward converter.

The V_{DD} regulator supports an input voltage as high as 80V or 120V.


HV9110/HV9112/HV9113 controllers include all essentials for a power converter design, such as a bandgap reference, an error amplifier, a ramp generator, a highspeed PWM comparator, and a gate driver. A shutdown latch provides on/off control.

The HV9110 and HV9113 feature an input voltage range of 10V to 120V, and the HV9112 has an input voltage range of 9V to 80V. The HV9110 and HV9112 have a maximum duty of 49%, while the HV9113 has a maximum duty of 99%.


Package Type

Functional Block Diagram

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS[†]

Input Voltage, V _{IN}	
HV9110/HV9113	120V
HV9112	
Device Supply Voltage, V _{DD}	15.5V
Logic Input Voltage Range	
Linear Input Voltage Range	–0.3V to V _{DD} + 0.3V
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	–55°C to +125°C
Power Dissipation: 14-lead SOIC	750 mW

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: V_{DD} = 10V, V_{IN} = 48V, V_{DISC} = 0V, R_{BIAS} = 390 k Ω , R_{OSC} = 330 k Ω , T_A = 25°C unless otherwise noted.									
Parame	eters	Sym.	Min.	Тур.	Max.	Units	Conditions		
REFERENCE									
Output Voltage	HV9110/13	V_{REF}	3.92	4	4.08	V	R _L = 10 MΩ		
	HV9112		3.88	4	4.12				
	HV9110/13		3.82	4	4.16		$R_L = 10 \text{ M}\Omega,$ $T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C}$		
Output Impedance		Z _{OUT}	15	30	45	kΩ	(Note 1)		
Short Circuit Current		I _{SHORT}		125	250	μΑ	V _{REF} = GND		
Change in V _{REF} with T	ΔV_{REF}	_	0.25	_	mV/°C	T _A = -55°C to +125°C (Note 1)			
OSCILLATOR									
Oscillator Frequency		f _{MAX}	1	3	_	MHz	$R_{OSC} = 0\Omega$		
Initial Accuracy		fosc	80	100	120	kHz	R_{OSC} = 330 k Ω (Note)		
			160	200	240		R_{OSC} = 150 k Ω (Note)		
V _{DD} Regulation		_	_	_	15	%	9.5V < V _{DD} < 13.5V		
Temperature Coeffici	ent		1	170	_	ppm/°C	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ (Note 1)		
PWM				•	•				
Maximum Duty	HV9110/HV9112	D _{MAX}	49	49.4	49.6	%	(Note 1)		
Cycle	HV9113		95	97	99				
Dead Time	HV9113	D _{MIN}		225	_	ns	HV9113 only (Note 1)		
Minimum Duty Cycle	•			_	0	%			
Pulse Width where Pulse drops out				80	125	ns	(Note 1)		
CURRENT LIMIT									
Maximum Input Signa	al	V_{LIM}	1	1.2	1.4	V	V _{FB} = 0V		
Delay to Output		t _D	_	80	120	ns	V _{CS} = 1.5V, V _{COMP} ≤ 2V (Note 1)		

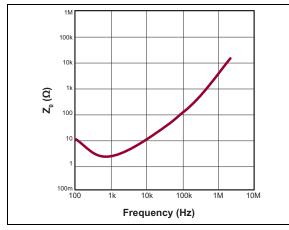
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specification	ns: V _{DD} = 10V, V _{IN} =	48V, V _{DISC}	= 0V, R _{BIAS} :	= 390 kΩ,	R _{OSC} = 330) kΩ, T _A = 2	25°C unless otherwise noted.
Parame	eters	Sym.	Min.	Тур.	Max.	Units	Conditions
ERROR AMPLIFIER			<u> </u>			·	-
Feedback Voltage	HV9110/13	V _{FB}	3.96	4	4.04	V	V _{FB} shorted to COMP
	HV9112	1 '5	3.92	4	4.08		1.0
Input Bias Current	<u> </u>	I _{IN}	_	25	500	nA	V _{FB} = 4V
Input Offset Voltage		V _{OS}	Nulle	ed during	trim	_	1.5
Open-loop Voltage Ga	ain	A _{VOL}	60	80	_	dB	(Note 1)
Unity Gain Bandwidth		GB	1	1.3	_	MHz	(Note 1)
Output Source Currer	nt	I _{SOURCE}	-1.4	-2	_	mA	V _{FB} = 3.4V
Output Sink Current		I _{SINK}	0.12	0.15	_	mA	V _{FB} = 4.5V
HIGH-VOLTAGE REC	GULATOR AND S		<u> </u>			l	
Input Voltage	HV9110/13	V _{IN}	_	_	120	V	I_{IN} < 10 μ A; V_{CC} > 9.4V
	HV9112	1	_	_	80		
Input Leakage Curren	nt	I _{IN}	_	_	10	μA	V _{DD} > 9.4V
Regulator Turn-off Th	reshold Voltage	V _{TH}	8	8.7	9.4	V	I _{IN} = 10 μA
Undervoltage Lockout	t	V _{LOCK}	7	8.1	8.9	V	
SUPPLY			<u> </u>		I	I	l
Supply Current		I _{DD}	_	0.75	1	mA	C _L < 75 pF
Quiescent Supply Cui	rrent	IQ	_	0.55	_	mA	V _{NSD} = 0V
Nominal Bias Current		I _{BIAS}	_	20	_	μA	
Operating Range		V _{DD}	9	_	13.5	V	
SHUTDOWN LOGIC			<u> </u>		I	I	l
Shutdown Delay		t _{SD}	_	50	100	ns	C _L = 500 pF, V _{CS} = 0V (Note 1)
NSD Pulse Width		t _{SW}	50	_	_	ns	(Note 1)
RST Pulse Width		t _{RW}	50	_	_	ns	(Note 1)
Latching Pulse Width		t_{LW}	25	_	_	ns	V_{NSD} , $V_{RST} = 0V(Note 1)$
Input Low Voltage		V_{IL}	_	_	2	V	
Input High Voltage		V_{IH}	7	_	_	V	
Input Current, Input H	ligh Voltage	I _{IH}	_	1	5	μΑ	$V_{IN} = V_{DD}$
Input Current, Input Lo	ow Voltage	I _{IL}	_	-25	-35	μΑ	V _{IN} = 0V
OUTPUT							
Output High Voltage	HV9110/13		V _{DD} -0.25	_	_	V	I _{OUT} = 10 mA
	HV9112	V _{OH}	V _{DD} -0.3	_	_		
	HV9110/13		V _{DD} -0.3	_	_		I _{OUT} = 10 mA, T _A = -55°C to 125°C
Output Low Voltage	All	V _{OL}	_	_	0.2	V	I _{OUT} = -10 mA
	HV9110/13		_	_	0.3		$I_{OUT} = -10 \text{ mA},$ $T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$
Output Resistance	Pull up	R _{OUT}	_	15	25	Ω	I _{OUT} = ±10 mA
	Pull down	1	_	8	20	1	
	Pull up	1	_	20	30	Ω	I _{OUT} = ±10 mA,
	Pull down	1	_	10	30	1	$T_A = -55^{\circ}C$ to 125°C
				1	-	1	
Rise Time		t_R	_	30	75	ns	C _L = 500 pF (Note 1)

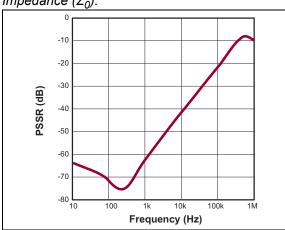
Note 1: Design guidance only; Not 100% tested in production. 2: Stray capacitance on OSC input pin must be ≤5 pF.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions				
TEMPERATURE RANGES										
Operating Temperature	_	-55	_	125	°C					
Storage Temperature	_	-65	_	150	°C					
PACKAGE THERMAL RESISTANCE										
14-lead SOIC	θ_{ja}	_	83	_	°C/W					


1.1 Truth Table

TRUTH TABLE


SHUTDOWN	RESET	OUTPUT
Н	Н	Normal operation
Н	$H \rightarrow L$	Normal operation, no change
L	Н	Off, not latched
L	L	Off, latched
$L \rightarrow H$	L	Off, latched, no change

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Error Amplifier Output Impedance (Z_0) .

FIGURE 2-2: PSRR –Error Amplifier and Reference.

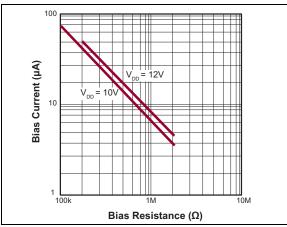
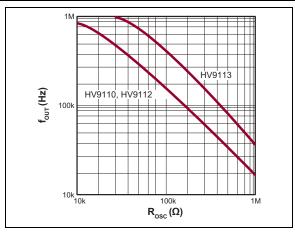



FIGURE 2-3: Bias Current vs. Bias Resistance.

FIGURE 2-4: Output Switching Frequency vs. Oscillator Resistance.

FIGURE 2-5: Error Amplifier Open-loop Gain/Phase.

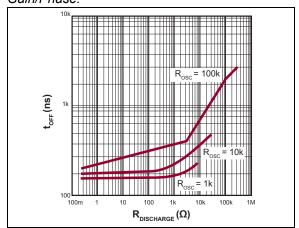


FIGURE 2-6: R_{DISCHARGE} vs. t_{OFF} (HV9113 only).

3.0 PIN DESCRIPTION

Table 3-1 shows the pin description for HV9110/HV9112/HV9113. The locations of the pins are listed in Features.

TABLE 3-1: PIN DESCRIPTION

Pin Number	HV9110/HV9112/HV9113 Pin Name	Description
1	BIAS	Internal bias, current set
2	V _{IN}	High-voltage V _{DD} regulator input
3	CS	Current sense input
4	GATE	Gate drive output
5	GND	Ground
6	V_{DD}	High-voltage V _{DD} regulator output
7	OSCO	Oscillator output
8	OSCI	Oscillator input
9	DISC	Oscillator discharge, current set
10	V_{REF}	4V reference output Reference voltage level can be overridden by an externally applied voltage source.
11	NSD	Active low input to set shutdown latch
12	RST	Active high input to reset shutdown latch
13	COMP	Error amplifier output
14	FB	Feedback voltage input

4.0 TEST CIRCUITS

The test circuits for characterizing error amplifier output impedance, Z_{OUT} , and error amplifier, power supply rejection ratio, PSRR, are shown in Figure 4-1 and Figure 4-2.

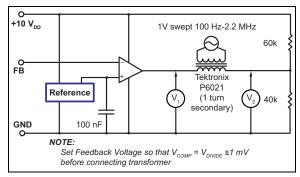


FIGURE 4-1: Error Amp Z_{OUT}.

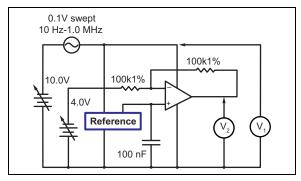


FIGURE 4-2: PSRR.

5.0 DETAILED DESCRIPTION

5.1 High-Voltage Regulator

The high-voltage regulator included in HV9110/HV9112/HV9113 consists of a high-voltage N-channel Depletion-mode DMOS transistor driven by an error amplifier, providing a current path between the V_{IN} terminal and the V_{DD} terminal. The maximum current, about 20 mA, occurs when V_{DD} = 0, with current reducing as V_{DD} rises. This path shuts off when V_{DD} rises to somewhere between 8V and 9.4V. So, if V_{DD} is held at 10V or 12V by an external source, no current other than leakage is drawn through the high voltage transistor. This minimizes dissipation within the high-voltage regulator.

Use an external capacitor between V_{DD} and GND. This capacitor should have good high-frequency characteristics. Ceramic caps work well.

The device uses a compound resistor divider to monitor V_{DD} for both the undervoltage lockout circuit and the shutoff circuit of the high-voltage FET. Setting the undervoltage sense point about 0.6V lower on the string than the FET shutoff point guarantees that the undervoltage lockout releases before the FET shuts off.

5.2 Bias Circuit

HV9110/HV9112/HV9113 require an external bias resistor, connected between the Bias pin and GND, to set currents in a series of current mirrors used by the analog sections of the chip. The nominal external bias current requirement is 15 μA to 20 μA, which can be set by a 390 kΩ to 510 kΩ resistor if V_{DD} = 10V, or a 510 kΩ to 680 kΩ resistor if V_{DD} = 12V. A precision resistor is not required, $\pm 5\%$ meets device requirements.

5.3 Clock Oscillator

The clock oscillator of the HV9110/HV9112/HV9113 consists of a ring of CMOS inverters, timing capacitors, and a capacitor-discharge FET. A single external resistor between the OSCI and OSCO sets the oscillator frequency. (See Figure 2-4.)

The HV9110 and HV9112 include a frequency-dividing flip-flop that allows the part to operate with a 50% duty limit. Accordingly, the effective switching frequency of the power converter is half the oscillator frequency. (See Figure 2-4.)

An internal discharge FET resets the oscillator ramp at the end of the oscillator cycle. The discharge FET is externally connected to GND, by way of a resistor. The resistor programs the oscillator dead time at the end of the oscillator period. The oscillator turns off during shutdown to reduce supply current by about 150 μ A.

5.4 Reference

The reference of the HV9110/HV9112/HV9113 consists of a band-gap reference, followed by a buffer amplifier, which scales the voltage up to 4V. The scaling resistors of the buffer amplifier are trimmed during manufacture so that the output of the error amplifier, when connected in a gain of –1 configuration, is as close to 4V as possible. This nulls out the input offset of the error amplifier. As a consequence, even though the observed reference voltage of a specific part may not be exactly 4V, the feedback voltage required for proper regulation will be 4V.

An approximately 50 k Ω resistor is located internally between the output of the reference buffer amplifier and the circuitry it feeds—reference output pin and non-inverting input to the error amplifier. This allows overriding the internal reference with a low impedance voltage source \leq 6V. Using an external reference reinstates the input offset voltage of the error amplifier. Overriding the reference should seldom be necessary.

The reference of the HV9110/HV9112/HV9113 is a high-impedance node, and usually there will be significant electrical noise nearby. Therefore, a bypass capacitor between the reference pin and GND is strongly recommended. The reference buffer amplifier is compensated to be stable with a capacitive load of 0.01 μF to 0.1 μF .

5.5 Error Amplifier

The error amplifier on HV9110/HV9112/HV9113 is a low-power, differential-input, operational amplifier. A PMOS input stage is used, so the common mode range includes ground and the input impedance is high.

5.6 Current Sense Comparators

The HV9110/HV9112/HV9113 use a dual-comparator system with independent comparators for modulation and current limiting. This provides the designer greater latitude in compensation design, as there are no clamps, except ESD protection, on the compensation pin.

5.7 Remote Shutdown

The NSD and RST pins control the shutdown latch. These pins have internal current-source pull-ups so they can be driven from open drain logic. When not used they should be left open or connected to $V_{\rm DD}$.

5.8 Output Buffer

The output buffer of HV9110/HV9112/HV9113 is of standard CMOS construction P-channel pull-up and N-channel pull-down. Thus, the body-drain diodes of the output stage can be used for spike clipping. External Schottky diode clamping of the output is not required.

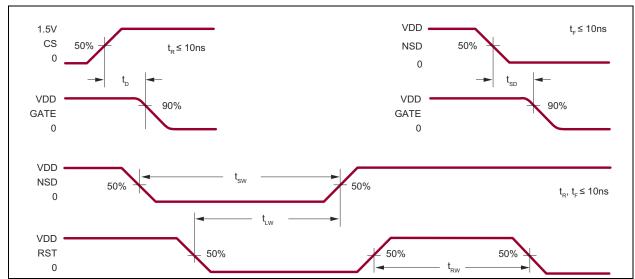
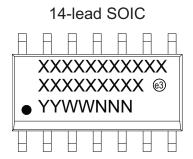
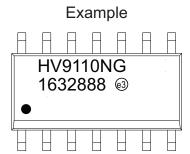




FIGURE 5-1: Shutdown Timing Waveforms.

6.0 PACKAGING INFORMATION

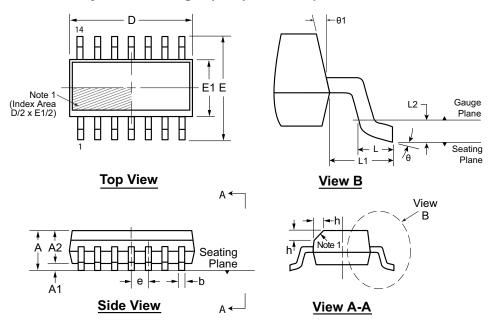
6.1 Package Marking Information

Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

e3 Pb-free JEDEC® designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

14-Lead SOIC (Narrow Body) Package Outline (NG)

8.65x3.90mm body, 1.75mm height (max), 1.27mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

1. This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	E	E1	е	h	L	L1	L2	θ	θ1
	MIN	1.35*	0.10	1.25	0.31	8.55*	5.80*	3.80*		0.25	0.40			0 °	5°
Dimension (mm)	NOM	-	-	-	-	8.65	6.00	3.90	1.27 BSC	-	-	1.04 REF	0.25 BSC	-	-
()	MAX	1.75	0.25	1.65*	0.51	8.75*	6.20*	4.00*		0.50	1.27		230	8°	15°

JEDEC Registration MS-012, Variation AB, Issue E, Sept. 2005.

Drawings are not to scale.

^{*} This dimension is not specified in the JEDEC drawing.

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2016)

- Merged Supertex Doc #s DSFP-HV9110, DSFP-HV9112 and DSFP-DSFP-HV9113 to Microchip DS20005505A.
- Revised Electrical Characteristics to accommodate the merged products.
- Updated pin names to reflect new naming convention.
- Significant text changes to **Detailed Description**.
- · Minor text changes throughout.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	XX - X - X Package Environmental Media Options Type	Examples: a) HV9110NG-G:	High-voltage Current-mode PWM Controller 10V to 120V Input Volt- age Range, 49% Duty Cycle, 14-lead SOIC Package, 53/Tube
Device:	HV9110 = High-voltage Current-mode PWM Controller, 10V to 120V Input Voltage Range, 49% Duty Cycle HV9112 = High-voltage Current-mode PWM Controller, 9V to 80V Input Voltage Range, 49% Duty Cycle HV9113 = High-voltage Current-mode PWM Controller, 10V to 120V Input Voltage Range, 99% Duty Cycle	b) HV9112NG-G: c) HV9113NG-G:	PWM Controller, 9V to 80V Input Voltage Range, 49% Duty Cycle,14-lead SOIC Package, 53/Tube
Package:	NG = 14-lead SOIC		
Environmental	G = Lead (Pb)-free/RoHS-compliant Package		
Media Type:	(blank) = 53/Tube for an NG package		

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

DS20005505AInformation contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTA-TIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0736-2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393
China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

HV9112NG-G HV9113NG-G HV9113NG-G M905