[dMikroElektronika

SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD . .

— [e T r— o PHR b ATV gt Fm o bt vt i 44 B L e o e o s LSS
= a
o '

.V\Ac\\m\v\Q & &"\V\A?le,

Develop your applications quickly and easily with the world's
most intuitive mikroC PRO for AVR Microcontrollers.

Highly sophisticated IDE provides the power you need with
the simplicity of a Windows based point-and-click
environment.

With useful implemented tools, many practical code
examples, broad set of built-in routines, and a
comprehensive Help, mikroC PRO for AVR makes a fast and
reliable tool, which can satisfy needs of experienced
engineers and beginners alike.

mikroC PRO for AVR

December 2008. Reader’s note |

DISCLAIMER:

mikroC PRO for AVR and this manual are owned by mikroElektronika and are protected
by copyright law and international copyright treaty. Therefore, you should treat this manual
like any other copyrighted material (e.g., a book). The manual and the compiler may not be
copied, partially or as a whole without the written consent from the mikroEelktronika. The
PDF-edition of the manual can be printed for private or local use, but not for distribution.
Modifying the manual or the compiler is strictly prohibited.

HIGH RISK ACTIVITIES:

The mikroC PRO for AVR compiler is not fault-tolerant and is not designed, manufactured
or intended for use or resale as on-line control equipment in hazardous environments requir-
ing fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons systems,
in which the failure of the Software could lead directly to death, personal injury, or severe
physical or environmental damage ("High Risk Activities"). mikroElektronika and its suppliers
specifically disclaim any express or implied warranty of fitness for High Risk Activities.

LICENSE AGREEMENT:

By using the mikroC PRO for AVR compiler, you agree to the terms of this agreement.
Only one person may use licensed version of mikroC PRO for AVR compiler at a time.
Copyright © mikroElektronika 2003 - 2008.

This manual covers mikroC PRO for AVR version 1.23 and the related topics. Newer ver-
sions may contain changes without prior notice.

COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100 % error free product. If you would like to report a bug, please contact us at
the address office@mikroe.com. Please include next information in your bug report:

- Your operating system

- Version of mikroC PRO for AVR

- Code sample

- Description of a bug

CONTACT Us:
mikroElektronika

Voice: + 381 (11) 36 28 830
Fax: + 381 (11) 36 28 831
Web: www.mikroe.com
E-mail: office@mikroe.com

Windows is a Registered trademark of Microsoft Corp. All other trade and/or services marks
are the property of the respective owners.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

USER MANUAL

Table of Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

Introduction

mikroC PRO for AVR Environment

mikroC PRO for AVR Specifics

AVR Specifics

mikroC PRO for AVR Language Reference

mikroC PRO for AVR Libraries

Table of Contents mikroC PRO for AVR

CHAPTER 1
Features 2
Whereto Start 3
mikroElektronika Associates License Statement and Limited Warranty 4
IMPORTANT - READ CAREFULLY 4
LIMITED WARRANTY e e 5
HIGH RISKACTIVITIES e 6
GENERAL PROVISIONS e 6
Technical Support 7
How to Register 8
Who Gets the License Key 8
Howto GetLicense Key 8
After Receving the License Key 10
CHAPTER 2
IDE OVEIVIEWottt e e e 12
Main Menu Options 13
File Menu Options 14
EditMenu Options 15
Find Text 17
Replace Text 17
FindInFiles 18
GoToLine ... 18
Regular expressions 19
View Menu Options e 20
Toolbars 21
File Toolbar 21
Edit Toolbar 21
Advanced Edit Toolbar 22
Find/Replace Toolbar 22
Project Toolbar 23
Build Toolbar 23
Debugger 24
Styles Toolbar e 25
Tools Toolbar 25
Project Menu Options i 26

Y MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

Run Menu Options 28
Tools Menu Options 30
Help Menu Options i e e e 31
Keyboard Shortcuts 32
mikroc proforavride 35
IDE OVEIVIEW . . . oo e e 35
Customizing IDE Layout 37
Docking Windows e e 37
Saving Layout 38
AutoHide 39
Advanced Code Editor 40
Advanced Editor Features 40
Code Assistant 41
Code Folding o e 42
Parameter Assistant 43
Code Templates (Auto Complete) 43
AUto Correct 43
Spell Checker e 44
Bookmarks 44
Goto LiNe ... e 44
Comment/Uncomment 44
Code EXplorer e 45
Routine List 46
Project Manager 47
Project Settings Window 49
Library Manager 50
Error Window e 52
StatisSticS o 53
Memory Usage Windows i 53
RAM MemoOryo e 53
Rx Memory Spaceoi e 53
Data Memory Space 54
Special Function Registers 54
General Purpose Registers i 55
ROM Memory e 55
ROM Memory USageo i it e e i e e 55

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD \

Table of Contents mikroC PRO for AVR

ROM Memory Allocation 56
Procedures Windows e 56
Procedures Size Window i 57
Procedures Locations Window 57
HTMLWindow e 58
Macro Editor e 59
Integrated TOOIS 60
USART Terminal e i 60
ASCII Chart 61
EEPROM Editor e e e 62
7 Segment Display Decoder 63
UDP Terminal e e 64
Graphic LCD Bitmap Editor 65
LCD Custom Character, 66
OPtiONS . . .o 67
Code editor 67
TO0IS . 67
Output settings 68
Regular EXpressions 69
Introduction e 69
Simplematches 69
Escape seqUENCES e 69
Characterclasses i 70
Metacharacters 70
Metacharacters - Line separators 71
Metacharacters - Predefined classes 71
Metacharacters - Word boundaries 72
Metacharacters - lterators 72
Metacharacters - Alternatives, 73
Metacharacters - Subexpressions 74
Metacharacters - Backreferences 74
mikroC PRO for AVR Command Line Options 75
tutorials 76
Projects 76
New Project 76
New Project Wizard Stepso 77

Vi MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

Customizing Projects 80
Edit Project 80
Managing Project Group 80
Add/Remove Files from Project 80
Project Level Defines: 82

Source Files e 83
Managing Source Files 83
Creatingnew sourcefile 83
Opening an existingfile 83
Printinganopenfile 84
Savingfile e 84
Saving file under a differentname 84
Closingfile e 84

Clean Project Folder e 85
Clean Project Folder i 85

Compilation 86
Output Files e 86
Assembly View 86

Error Messages 87
Compiler Error Messages i, 87
Compiler Warning Messages i, 90
Linker Error Messages ...t 90

Software Simulator Overview 91
Watch Window 91
Stopwatch Window 93
RAM WINdow 94

Software Simulator Options 95

Creating New Library e 96
Multiple Library Versions i 96

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD VI

Table of Contents mikroC PRO for AVR

CHAPTER 3
NOteS: . 98
ANSI Standard ISsues 98
Divergence fromthe ANI C Standard 98
Predefined Globals and Constants 99
Predefined project level defines 99
Accessing Individual Bits 100
Accessing Individual Bits Of Variables 100
Shit type ... 100
bit type . .. 101
INterrupts ... 102
Function Calls from Interrupt L 102
Linker Directives 104
Directive absolute e 104
Directive Org i 104
Directive orgal 105
Indirect Function Calls 105
Built-in Routines 106
0 106
Hi o 107
Higher ... 107
Highest 107
Delay _Us 108
Delay_ms ... 108
Vdelay_ ms o 108
Delay_CyC ..o 109
Clock kHz 109
Clock MHz e 109
Get_Fosc kHz 110
Code Optimization e 110
Constantfolding 110
Constant propagation 110
Copy propagation 110
Value numbering 110
"Dead code" ellimination 110
Stack allocation 111

VIl MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

Local vars optimization 111
Better code generation and local optimization 111
CHAPTER 4
Types Efficiency 113
Nested Calls Limitations 114
Importantnotes: 114
AVR Memory Organization 115
Program Memory (ROM) e 115
Data Memory 116
Memory Type Specifiers 117
COUE . ot 117
data 117
G 118
o 118
SIr 118
CHAPTER 5
mikroC PRO for AVR language Reference 120
Lexical Elements Overviewttt 122
Whitespace 122
Whitespace in Strings 122
Line Splicing with Backslash (\) 123
ComMmMeENtS e 123
Ccomments 123
CHcommeNnts e 124
Nested comments 124
TOKENS . 125
Token Extraction Example i 125
Constants e 126
Integer Constants 127
Long and Unsigned Suffixes 127
Decimal 127
Hexadecimal 128
Binary 128
Octal ... 128

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD IX

Table of Contents mikroC PRO for AVR

Floating Point Constants i 129
Character Constants 130
Escape SeqUENCES e 130
Disambiguation 131
String Constants 132
Line Continuation with Backslash 132
Enumeration Constants 133
Constant Expressions 135
KeYWOIdS . ..o e 136
Identifiers 137
Case Sensitivity 137
Uniqueness and SCOPEttt e 137
Identifier Examples 137
Punctuators 138
Brackets 138
Parentheses 138
Braces 139
Comma .. e 139
SemICOlON . .. 139
ColoN .. e 140
Asterisk (Pointer Declaration) 140
Equal Sign 140
Pound Sign (Preprocessor Directive) 141
CoNnCePtS ..o 142
ObJECES . . 142
Objects and Declarations 142
Lvalues 143
Rvalues 143
Scope and Visibility 144
S0P . . o 144
Visibility ... 144
Name Spaces 146
Duration 147
Static Duration 147
Local Duration 147
Ty DS o ot 149

X MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

Type Categoriest 149
Fundamental Types 150
Arithmetic Types 150

Integral Types 150

Floating-point Types 151
Enumerations 152

Enumeration Declaration 152

Anonymous Enum Type 153

Enumeration Scope 153
VoId TYPE . .o 154

Void Functions 154

Generic Pointers 154
Derived Types 155
AT Y S . o o 155

Array Declaration 155

Arrays in EXpressions 156

Multi-dimensional Arrays 156
Pointers 158

Pointer Declarations 158

Null Pointers 159
Function Pointers 160

Assign an address to a Function Pointer 160
Pointer Arithmetic 161

Arrays and Pointers 161

Assignment and Comparison 162

Pointer Addition 163

Pointer Subtraction 164
StrUCHUIES . . . o 165

Structure Declaration and Initialization 165

Untagged Structures and Typedefs 166
Working with Structures e 167

AsSSIgNMENt . .. 167

Size of Structure 167

Structuresand Functions 167
Structure Member ACCess 168

Accessing Nested Structures 169

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD Xl

Table of Contents mikroC PRO for AVR

Structure Uniqueness 169
UNIONS .. 170
Union Declaration 170
Sizeof Union 170
Union Member ACCESS 170
Bit Fields 172
Bit Fields Declaration 172
Bit Fields ACCESS 173
Types CONVEISIONSot e e 174
Standard Conversions e 175
Arithmetic Conversions i 175
Indetails: e 175
Pointer Conversions 176
Explicit Types Conversions (Typecasting) 177
Declarations e 178
Declarations and Definitions, 178
Declarations and Declarators 179
LinKage 180
Linkage Rules 180
Internal Linkage Rules 180
External Linkage Rules 180
Storage Classest 181
AULO . . 181
Register 181
Static 182
EXtern 182
Type Qualifiers 183
Qualifierconst 183
Qualifiervolatile 183
Typedef Specifier e 184
asm Declaration 185
Automatic Initialization 186
Functions 187
Function Prototypes 188
Function Definition 188
Functionsreentrancy 189

Xl MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

Function Calls and Argument Conversions 190
Function Calls 190
Argument CoNversionsttt e 191

Operators e 193

Operators Precedence and Associativity 194

Arithmetic Operators 195
Arithmetic Operators Overview 195
Binary Arithmetic Operators 195
Unary Arithmetic Operators i 196

Relational Operators 197
Relational Operators Overview 197
Relational Operators in Expressions 197

Bitwise Operators 198
Bitwise Operators Overviewt .. 198
Logical Operationson BitLevel 198
Bitwise Shift Operators 199
Bitwise vs. Logical 199

Logical Operatorst 200
Logical Operators OVerviewc.ciiiiininnnnennnn. 200
Logical Operations i 200

Logical Expressions and Side Effects 201

Logical vs. Bitwise e 201

Conditional Operator 2 @ 202
Conditional OperatorRules 202

Assignment Operators 203
Simple Assignment Operator 203
Compound Assignment Operators 203
AssignmentRules 204

Sizeof Operator 205
Sizeof Appliedto Expression 205
Sizeof Appliedto Type 205
EXpressions 206

Comma EXPressions e 207
NOte . . 207

Statements 208
Labeled Statements 208

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD Xl

Table of Contents mikroC PRO for AVR

Expression Statements 209
Selection Statements 209
If Statement 210
Nested If statements 210
NOte .. 210
Switch Statement 211
Nested switch 212
Iteration Statements (Loops) 212
While Statement 212
Do Statement e 213
For Statement 214
Jump Statements 215
Break and Continue Statements 215
Break Statement 215
Continue Statement 215
Goto Statement 216
Return Statement 217
Compound Statements (Blocks) 217
PreproCesSSOr . . . 218
Preprocessor Directives 219
Line Continuation with Backslash (\) 219
Macros e 220
Macros with Parameters 221
Undefining Macros 222
File Inclusion 223
Explicit Path 223
NOte .. 223
Preprocessor Operatorst i 224
Operator # 224
Operator #H . . . 224
NOte . . 224
Conditional Compilation 225
Directives #if, #elif, #else, and #endif 225
Directives #ifdef and #ifndef 226

XV MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

CHAPTER 6
Hardware AVR-specific Libraries 228
Standard ANSI C Libraries i 229
Miscellaneous Libraries 229
Library Dependencies 229
ADC Library 231
ADC _Read 231
Library Example 232
HW Connection e e e 233
CANSPI Library 234
External dependecies of CANSPI Library 235
Library Routines 235
CANSPISetOperationMode 236
CANSPIGetOperationMode 236
CANSPIInitialize 237
CANSPISetBaudRate i, 239
CANSPISetMask 240
CANSPISetFilter 241
CANSPIRead 242
CANSPIWTrite e 243
CANSPIConstants 244
CANSPI_OP_MODE e e 244
CANSPI_CONFIG_FLAGS i 244
CANSPI_TX_MSG FLAGS e 245
CANSPI_RX_MSG_FLAGS e 246
CANSPI MASK . .. 246
CANSPI_FILTER e e e 247
Library Example 247
HW Connection 250
Compact Flash Library 251
External dependencies of Compact Flash Library 252
Library Routines 253
G NIt . 254
Cf Detect e 255
Cf Enable e 255
CfDisable e 255

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD XV

Table of Contents mikroC PRO for AVR

Cf Read Init 256
Cf Read Byte 256
Cf Write_Init e 257
Cf Write_ Byte 257
Cf Read _Sector i 258
Cf_Write_Sector 258
Cf Fat Init 259
Cf_Fat_QuickFormat 259
Cf_Fat_ASSign 260
Cf Fat Reset. 261
CfFat Read i 261
Cf_Fat_ Rewrite 262
Cf Fat_ Append 262
Cf Fat Delete i 262
Cf Fat Write e e 263
Cf Fat Set File Date i, 264
Cf Fat Get File Date 265
Cf Fat_ Get File Size i 266
Cf Fat Get Swap File i 267
Library Example 269
HW Connection 274
EEPROM Library e e e 275
Library Routines 275
EEPROM Read e 275
EEPROM_Write e 276
Library Example 277
Flash Memory Library 278
Library Routines 278
FLASH Read Byte i 278
FLASH Read Bytes i 279
FLASH_Read_Word 279
FLASH Read Words i 280
Library Example o 280
Graphic LCD Library e e 282
External dependencies of Graphic LCD Library 282
Library Routines 283

XVI MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

Gled_Init 284
Gled_Set_Side 285
Gled_Set X .o 285
Gled_Set Page ... 286
Gled Read Data i 286
Gled_Write_Data 287
Gled_Fill . . 287
Gled_ Dot .. 288
Gled_Line . ..o 289
Gled_V_Line 289
Gled_H_Line ... 290
Gled_Rectangle 290
Gled BoX ... 291
Gled _Circle e 291
Gled_Set_ Font 292
Gled Write_Char 293
Gled Write_Text 294
Gled_Image 295
Library Example 295
HW Connection e i 298
Keypad Library 299
External dependencies of Keypad Library 299
Library Routines 299
Keypad_Init 300
Keypad _Key Press i 301
Keypad_Key Click 301
Library Example 301
HW Connection e e 304
Led Library . ..o 305
External dependencies of Led Libraryo L. 305
Library Routines 306
Led Init ..o 307
Led _Out ..o 308
Led OUt Cp ..o e e 308
Led_Chr ..o 309
Led Chr Cp ..o 309

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD ~ XVII

Table of Contents mikroC PRO for AVR

Led_ Cmd .. 310
Available Led Commands e 310
Library Example 311
Manchester Code Library 313
External dependencies of Manchester Code Library 314
Library Routines 314
Man_Receive_Init 315
Man_Receive 316
Man_Send_Init. 316
Man_Send 317
Man_Synchro....... 317
Man_Break e 318
Library Example 319
Connection Example 321
Multi Media Card Library e 323
Secure Digital Card 323
External dependecies of MMC Library 323
Library Routines 324
Mmc Init ... 325
Mmc_Read_Sector 325
Mmc_Write_Sector 326
Mmc Read Cid 326
Mmc_Read_Csd 326
Mmc_Fat Init 327
Mmc_Fat_QuickFormat 328
Mmc_Fat_Assign 329
Mmc Fat Reset 330
Mmc_Fat Rewrite 330
Mmc_Fat_Append 330
Mmc Fat Read 331
Mmc_Fat Delete 331
Mmc_Fat Write 331
Mmc _Fat Set File Date L 332
Mmc _Fat Get File Date............ 332
Mmc_Fat Get File Size 333
Mmc Fat Get Swap File 334

XVIIl MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

Library Example 335
HW Connection 346
OneWire Library e 347
External dependencies of OneWire Library 347
Library Routines e 348
Ow_Reset 348
Ow _Read e 349
OW Write . ..o 349
Library Example 350
HW Connection 352
Port Expander Library e 353
External dependencies of Port Expander Library 353
Library Routines 353
Expander_Init 354
Expander_Read Byte 355
Expander Write Byte 355
Expander_Read _PortA 356
Expander Read PortB 356
Expander Read PortAB 357
Expander_Write_PortA 358
Expander Write_ PortB 359
Expander Write PortAB 360
Expander_Set_DirectionPortA 361
Expander_Set DirectionPortB 361
Expander_Set DirectionPortAB 362
Expander_Set_PullUpsPortA 362
Expander_Set PullUpsPortB 363
Expander_Set PullUpsPortAB i .. 363
Library Example 364
HW Connection 365
PS/2 Library 366
External dependencies of PS/2 Library 366
Library Routines 366
Ps2 Config 366
Ps2_Key Read 366
Ps2_Config 367

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD XIX

Table of Contents mikroC PRO for AVR

Ps2 Key Read 368
Special Function Keys 369
Library Example 370
HW Connection 371
PWM Library 372
Library Routines 372
Predefined constants used in PWM library 372
PWM_INit ..o e 374
PWM_Set Duty e 376
PWM_Start e 376
PWM _StOp . . o 376
PWM1 Init ... 377
PWM1_Set Duty e 379
PWM1_Start e 379
PWMT T StOp . .o 379
Library Example 380
HW Connection e 381
PWM 16 bit Library 382
Library Routines 382
Predefined constants used in PWM-16bit library 382
PWM16bit_Init 384
PWM16bit_Change Duty 386
PWM16bit_Start 387
PWM16bit_Stop 387
Library Example 388
HW Connection e 389
RS-485 Library 390
External dependencies of RS-485 Library 390
Library Routines 391
RS485Master Init 391
RS485Master Receive i 392
RS485Master_ Send 393
RS485Slave_Init 394
RS485Slave Receive e 395
RS485Slave_Send 396
Library Example 396

XX MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

HW Connection 400
Message format and CRC calculations 401
Software | C Library 402
External dependecies of Soft_I12C Library 402
Library Routines e 403
Soft_12C _Init e 403
Soft_12C_Start 404
Soft 12C Read 404
Soft_12C_Write 405
SOft_12C_Stopo 405
Soft 12C Break e 406
Library Example 407
Software SPI Library 410
External dependencies of Software SPI Library 410
Library Routines 411
Soft_SPLInit 411
Soft SPIL.Read e 412
Soft SPI_Write 412
Library Example 413
Software UART Library 415
External dependencies of Software UART Library 415
Library Routines 415
Soft UART_Init 416
Soft UART_Read i 417
Soft. UART_Write e 418
Soft UART_Breakot 419
Library Example 420
Sound Library e 421
External dependencies of Sound Library 421
Library Routines 421
Sound Init e 422
Sound_Play 422
Library Example o 423
HW Connection e 425
SPILibrary 426
Library Routines 426

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD XXI

Table of Contents mikroC PRO for AVR

SPI Init . e 426
SPIM_Init Advanced 427
SPIM_Read 428
SPI _Writeo 428
Library Example e 429
HW Connection e e 430
SPI Ethernet Library 431
External dependencies of SPI Ethernet Library 432
Library Routines 433
SPI_Ethernet_Init. 434
SPI_Ethernet Enable 436
SPI_Ethernet Disable 437
SPI_Ethernet_ doPacket, 438
SPI_Ethernet_ putByte 439
SPI_Ethernet_putBytes 439
SPI_Ethernet_putConstBytes 440
SPI_Ethernet_putString 440
SPI_Ethernet_putConstString 441
SPI_Ethernet_getByte 441
SPI_Ethernet_getBytes 442
SPI_Ethernet UserTCP 443
SPI_Ethernet_ UserUDP 444
Library Example 444
HW Connection 452
SPI GraphicLed Library 453
External dependencies of SPI Graphic Lcd Library 453
Library Routines 453
SPILGled_Init 454
SPI Glcd Set Side 455
SPlL_Gled_Set Page 455
SPI_Glcd_Set_ X ... e 456
SPI_ Gled Read Data i 456
SPI_Gled Write Data 457
SPIL_Gled_Fill 457
SPIL Gled Dot 458
SPILGlcd_Line 458

XXII' MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

Table of Contents

SPIL Gled_V_Line 459
SPIL_Glcd_H_Line 459
SPlI Gled Rectangle 460
SPILGlcd BOX ..ot 460
SPlL Gled Circle 461
SPI_Gled_Set_Font 462
SPI_Glecd_Write_Char i 463
SPlI Gled Write_ Text e 464
SPI_Gled_Image 465
Library Example 465
HW Connection e e 468
SPlLcd Library e 469
External dependencies of SPI Led Library 469
Library Routines 469
SPIl_Led_Config . ..o oo 470
SPIL Led_ Out .. 471
SPILLcd Out_ Cp ..o 471
SPl Led Chr .o 472
SPlLLcd Chr Cp .o oo 472
SPl Led Cmd ... e 473
Available Led Commands 473

Library Example 474
HW Connection e i 475
SPI Lcd8 (8-bit interface) Library 476
External dependencies of SPI Led Library 476
Library Routines 476
SPl Led8 Configo 477
SPILLcd8 Out ... 478
SPIL Lcd8 Out Cp ..o 478
SPI Lcd8 Chr .. 479
SPILcd8 Chr_Cp ..ot 479
SPILLcd8 Cmd ... e 480
Available Led Commands e 480
Library Example 481
HW Connection 482
SPIT6963C GraphicLecd Library 483

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

XX

Table of Contents mikroC PRO for AVR

External dependencies of SPI T6963C Graphic Lcd Library 483
Library Routines 484
SPI_TB963C_Configot e 485
SPI_T6963C WriteData 487
SPI_T6963C WriteCommando.... 487
SPI_TB963C _SetPtr 487
SPI_T6963C WaitReady 488
SPI_TB963C_Fill 488
SPITB963C Dot 488
SPI_T6963C _Write_ Char 489
SPI_T6963C_Write_Text i 490
SPITB963C Line 491
SPI_T6963C _Rectangle 491
SPI_TB963C_BOXttt 492
SPI_TB963C Circle e e 492
SPIL_T6963C _Imagec.uiiii e, 493
SPI_TB963C_Spriteo 493
SPI_T6963C_Set_Cursor, 494
SPI_T6963C_ClearBit i 494
SPI_T6963C SetBit............. 495
SPI_T6963C NegBit i 495
SPI_T6963C DisplayGrPanel 496
SPI_T6963C_DisplayTxtPanel 496
SPI_T6963C_SetGrPanel 496
SPI_T6963C_SetTxtPanel, 497
SPI_T6963C PanelFill 497
SPI_T6963C_GrFill e 497
SPI_T6963C_TxtFill 498
SPI_T6963C_Cursor_Height 498
SPI_T6963C_Graphics i 498
SPI_TB963C_Text 499
SPI_TB963C _CUIrSOr ..\ o ittt e e e 499
SPI_T6963C_Cursor Blink 500
Library Example e 500
HW Connection 505
T6963C Graphic LCD Library i 506

XXIV' MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

Table of Contents

External dependencies of T6963C Graphic LCD Library 507
Library Routines 508
TBO63C _INit . ..o 509
T6963C WriteData e 510
T6963C WriteCommand i, 511
TB963C SetPtr 511
T6963C_WaitReady 511
TBO63C _Fill ... 512
TBO63C Dot ... 512
T6963C Write_Char e 513
T6963C_Write_Text 514
TBO63C Linet 515
T6963C _Rectangle 515
TBO63C _BOX .. vttt 516
TBI63C Circle 516
T6963C Image e 517
TBO63C _Spriteo 517
T6963C_Set Cursor e 518
T6963C ClearBit 518
TB963C SetBit 519
TE963C NegBit 519
T6963C DisplayGrPanel 520
T6963C_DisplayTxtPanel 520
T6963C_SetGrPanel 521
T6963C_SetTxtPanel 521
T6963C PanelFill 522
TEO63C _GrFill ... 522
TBO63C_TxtFill ... 522
T6963C_Cursor_Height 523
T6963C _Graphicso 523
TBO63C _TexXt ..ot 523
TBO63C _CUIMSOr . . .ttt e e e 524
T6963C Cursor Blink 524
Library Example e 525
HW Connection 529
TWILibrary 530

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

XXV

Table of Contents mikroC PRO for AVR

Library Routines 530
TWIEINit L 530
TWI BUSY .. 531
TWI Start 531
TWI_Read 531
TWILWrite ... 532
TWI S Op . . oo 532
TWI Status 532
TWI_CIOSE . . .o 532
Library Example 533
HW Connection e e 533
UART Library 534
Library Routines 534
UARTX NIt . 535
UARTx_Init_Advanced i, 536
UARTx Data_ Ready i 537
UARTX_Read e 537
UARTx_Read_Text i 538
UARTX_WIIte . . .o 539
UARTx_Write_Text e 539
Library Example 540
HW Connection e e 541
ANSI C Ctype Library 542
Library Functions 542
ISAINUM .. 542
isalpha 542
ISCNErl L 542
ISAIgit . .o 543
ISgrapPN 543
ISlOWer . 543
SPUNCE . .. 543
IS PACE . . . i it e 543
SUPPEE .« ottt 543
ISXAIgit . . 543
OUPPEr . . . 544
tolower ... 544

XXVI] MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

ANSI C Math Library 545
Library Functions e 545
AC0S .+ttt 546
ASIN L 546
atan .. 546
atan2 .. 546
o7 Y| 546
o7 1= 546
COSN . 547
eval_poly ... 547
1= o 547
fabs .. 547
floor .. 547
XD o o 547
[deXp . 547
o T 548
10GT10 . 548
MOdf . . 548
POW .ottt 548
SIN L e e 548
SINN 548
SOM . o 548
AN . e 549
tanh 549

ANSIC Stdlib Library 550
Library Functions 550
ADS L 550
atof . . 550
Aol . .. e 551
atol .. 551
AV 551
iV . 551
UIdIV . 552
labDS . 552
0 = 552
0] R 552

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD XXVII

Table of Contents mikroC PRO for AVR

FANA . . 552
SrANd .. 552
XEOI L 553
Div Structures 553
ANSI C String Library 554
Library Functions 554
MeEMChr . .. 555
7= 02 o7 0 1 555
7= 017) 555
MEMMOVEttt et e et e e e e e e e e et 555
MeMSel . .. 555
streat ... 556
StrChr L 556
S M .. 556
SI DY . o 556
Strlen .. 556
Strncat 557
SINCPY - oo 557
SHSPN . . 557
SHNCMD . 557
SHrStr . e 558
S CSPN . .o e 558
StrPbrK . .o 558
Strrchr . . 558
Button Library 559
External dependecies of Button Library 559
Library Routines 559
Button . .. 560
Conversions Library 561
Library Routines 561
ByteToStr ... 562
ShortToStr e 562
WordToStr 563
INtTOStr .. 563
LongToStr ..o 564
LongWordToStr 564

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR Table of Contents

FloatToStr 565
Dec2BCd 566
Bcd2DeC16 e 566
Dec2Bcd16 567
Sprint Library 568
Functions 568
SPriNtf L L 568
SPriNtl . .. 571
SPIINtT . . 571
Library Example 572
Time Library 573
Library Routines 573
Time_dateToEpoch 573
Time_epochToDate 574
Time_dateDiff 575
Library Example 576
Trigonometry Library 577
Library Routines 577
SINES .. 577
COSE3 . . . 578

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD ~ XXIX

Table of Contents mikroC PRO for AVR

XXX MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

Introduction to
mikroC PRO for AVR

The mikroC PRO for AVR is a powerful, feature-rich development tool for AVR micro-
controllers. It is designed to provide the programmer with the easiest possible solu-
tion to developing applications for embedded systems, without compromising per-
formance or control.

CHAPTER 1

. .
Introduction mikroC PRO for AVR
T WAseC PRO Sor AV - C \Pragram Fder\MA soeied romi 8\ rol. PO foe AVIL Clmiper oo ey
Bl [dn Yew Prowct Ben Joch biep
Jd- M RS S hA KRR, PRPR I SIS AR BOAEK c M
v @i D D AR o e el e S e () [08ce X0 R - u
W Code Caghorer -] tede [-] ot Ve
Uik ohar 1 Sl v - B>
o Funciens 3 st B W AsA
* - Gweld maisi) b Salnct vanaiie b bot E
* « Led_Init ()1 Sach b wanabie by smtly rane 5
LI | Led_Cnd (LC_CLEAR) »
. Led_Cnd (LCD_CURSOR_OFT) & Py — b 4
- LD _Oue (1,4, tat3) ¢ R Vo asren
. LED_Out L1, 4, extd) 5 ' oazs -
- Seday_me (1000} 3 [:: s ;:”:
Led Cod (1)] ¥ 040053
3t m Y 0004
- & m o o
. LED_Out (3, 4, tatd) s ™ £ Ou00ta
. dalay_me (1000) 2 " Y ow0ns?
m Y o008
— . 1*0 1 o
A ot Setey] ! 0] v w00
. while (s < 00 U] o Ou008A
° & - Led_Cnd (LCD_SHITT_RICHT):
1R deley me (10015
o e I
-O0mie | T |,
. whide (i) |
Vb 90000000 MMy & 1.0
. whLle (L <« 0
Led_Cwd (LCD_SHIPT_LEFT) POm OORPD Crdew SO0
. . deley me ()00) 1 | esgores
L eesee————————— G e e
daley _me(1000)2 // 1 secomt deley Code Avsistamt - © vy e oy P caertrond s sl PRO bor M hied ¢
[t n)hncon Debey_us (regred bng Tme I) -~ w C o o s Uity ord o b ol 1RO b AR LBt s
) wnite () /7 tatiess deop . o el
P) S v)
o
o
LD _os
wgred O b 1[4 7)
T
e
T Mevnages regat G tel
=] - Zl wregred S RO
S o g e
re [r—— Pssage st el
°] s ave M $OG PATEGAN 43 < OHIIIIIN ol N Wrogam ~wie wgred O Re
eyt s vessiot
e S RS ~
P ——— Compied ’m" M7 PRO for AVt

mikroC PRO for AVR IDE

Features

mikroC PRO for AVR allows you to quickly develop and deploy complex applica-
tions:

- Write your C source code using the built-in Code Editor (Code and Parameter Assis-
tants, Code Folding, Syntax Highlighting, Auto Correct, Code Templates, and more.)

- Use included mikroC PRO for AVR libraries to dramatically speed up the devel-
opment: data acquisition, memory, displays, conversions, communication etc.

- Monitor your program structure, variables, and functions in the Code Explorer.

- Generate commented, human-readable assembly, and standard HEX compatible
with all programmers.

- Inspect program flow and debug executable logic with the integrated Software
Simulator.

2 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
mikroC PRO for AVR Introduction

- Get detailed reports and graphs: RAM and ROM map, code statistics, assembly
listing, calling tree, and more.

- mikroC PRO for AVR provides plenty of examples to expand, develop, and use as
building bricks in your projects. Copy them entirely if you deem fit — that’'s why
we included them with the compiler.

Where to Start

- In case that you're a beginner in programming AVR microcontrollers, read care-
fully the AVR Specifics chapter. It might give you some useful pointers on AVR
constraints, code portability, and good programming practices.

- If you are experienced in C programming, you will probably want to consult
mikroC PRO for AVR Specifics first. For language issues, you can always refer to
the comprehensive Language Reference. A complete list of included libraries is
available at mikroC PRO for AVR Libraries.

- If you are not very experienced in C programming, don’t panic! mikroC PRO for
AVR provides plenty of examples making it easy for you to go quickly. We suggest
that you first consult Projects and Source Files, and then start browsing the exam-
ples that you're the most interested in.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
Introduction mikroC PRO for AVR

MIKROELEKTRONIKA ASSOCIATES LICENSE STATEMENT AND
LIMITED WARRANTY

IMPORTANT - READ CAREFULLY

This license statement and limited warranty constitute a legal agreement (“License
Agreement”) between you (either as an individual or a single entity) and mikroElek-
tronika (“mikroElektronika Associates”) for software product (“Software”) identified
above, including any software, media, and accompanying on-line or printed docu-
mentation.

BY INSTALLING, COPYING, OR OTHERWISE USING SOFTWARE, YOU AGREE
TO BE BOUND BY ALL TERMS AND CONDITIONS OF THE LICENSE
AGREEMENT.

Upon your acceptance of the terms and conditions of the License Agreement,
mikroElektronika Associates grants you the right to use Software in a way provided
below.

This Software is owned by mikroElektronika Associates and is protected by copy-
right law and international copyright treaty. Therefore, you must treat this Software
like any other copyright material (e.g., a book).

You may transfer Software and documentation on a permanent basis provided. You
retain no copies and the recipient agrees to the terms of the License Agreement.
Except as provided in the License Agreement, you may not transfer, rent, lease,
lend, copy, modify, translate, sublicense, time-share or electronically transmit or
receive Software, media or documentation. You acknowledge that Software in the
source code form remains a confidential trade secret of mikroElektronika Associates
and therefore you agree not to modify Software or attempt to reverse engineer,
decompile, or disassemble it, except and only to the extent that such activity is
expressly permitted by applicable law notwithstanding this limitation.

If you have purchased an upgrade version of Software, it constitutes a single prod-
uct with the mikroElektronika Associates software that you upgraded. You may use
the upgrade version of Software only in accordance with the License Agreement.

4 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
mikroC PRO for AVR Introduction

LIMITED WARRANTY

Respectfully excepting the Redistributables, which are provided “as is”, without war-
ranty of any kind, mikroElektronika Associates warrants that Software, once updat-
ed and properly used, will perform substantially in accordance with the accompany-
ing documentation, and Software media will be free from defects in materials and
workmanship, for a period of ninety (90) days from the date of receipt. Any implied
warranties on Software are limited to ninety (90) days.

mikroElektronika Associates’ and its suppliers’ entire liability and your exclusive
remedy shall be, at mikroElektronika Associates’ option, either (a) return of the price
paid, or (b) repair or replacement of Software that does not meet mikroElektronika
Associates’ Limited Warranty and which is returned to mikroElektronika Associates
with a copy of your receipt. DO NOT RETURN ANY PRODUCT UNTIL YOU HAVE
CALLED MIKROELEKTRONIKA ASSOCIATES FIRST AND OBTAINED ARETURN
AUTHORIZATION NUMBER. This Limited Warranty is void if failure of Software has
resulted from an accident, abuse, or misapplication. Any replacement of Software
will be warranted for the rest of the original warranty period or thirty (30) days,
whichever is longer.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
MIKROELEKTRONIKA ASSOCIATES AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESSED OR IMPLIED,
INCLUDED, BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT, WITH REGARD TO SOFTWARE, AND THE PROVISION
OF OR FAILURE TO PROVIDE SUPPORT SERVICES.

IN NO EVENT SHALL MIKROELEKTRONIKA ASSOCIATES OR ITS SUPPLIERS
BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF BUSINESS PROFITS AND BUSINESS INFORMATION, BUSINESS
INTERRUPTION, ORANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE
OF OR INABILITY TO USE SOFTWARE PRODUCT OR THE PROVISION OF OR
FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF MIKROELEKTRONIKA
ASSOCIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
IN ANY CASE, MIKROELEKTRONIKA ASSOCIATES’ ENTIRE LIABILITY UNDER
ANY PROVISION OF THIS LICENSE AGREEMENT SHALL BE LIMITED TO THE
AMOUNT ACTUALLY PAID BY YOU FOR SOFTWARE PRODUCT PROVIDED,
HOWEVER, IF YOU HAVE ENTERED INTO A MIKROELEKTRONIKA ASSOCIATES
SUPPORT SERVICES AGREEMENT, MIKROELEKTRONIKA ASSOCIATES’
ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY
THE TERMS OF THAT AGREEMENT.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 5

CHAPTER 1
Introduction mikroC PRO for AVR

HIGH RISK ACTIVITIES

Software is not fault-tolerant and is not designed, manufactured or intended for use
or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of Software could lead directly to death, personal injury,
or severe physical or environmental damage (“High Risk Activities”). mikroElektron-
ika Associates and its suppliers specifically disclaim any expressed or implied war-
ranty of fitness for High Risk Activities.

GENERAL PROVISIONS

This statement may only be modified in writing signed by you and an authorised offi-
cer of mikroElektronika Associates. If any provision of this statement is found void
or unenforceable, the remainder will remain valid and enforceable according to its
terms. If any remedy provided is determined to have failed for its essential purpose,
all limitations of liability and exclusions of damages set forth in the Limited Warran-
ty shall remain in effect.

This statement gives you specific legal rights; you may have others, which vary, from
country to country. mikroElektronika Associates reserves all rights not specifically
granted in this statement.

mikroElektronika
Visegradska 1A,
11000 Belgrade,
Europe.

Phone: + 381 11 36 28 830
Fax: +381 11 36 28 831
Web: www.mikroe.com
E-mail: office@mikroe.com

6 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
mikroC PRO for AVR Introduction

TECHNICAL SUPPORT

In case you encounter any problem, you are welcome to our support forums at
www.mikroe.com/forum/. Here, you may also find helpful information, hardware tips,
and practical code snippets. Your comments and suggestions on future develop-
ment of the mikroC PRO for AVR are always appreciated — feel free to drop a note
or two on our Wishlist.

In our Knowledge Base www.mikroe.com/en/kb/ you can find the answers to Fre-
quently Asked Questions and solutions to known problems. If you can not find the
solution to your problem in Knowledge Base then report it to Support Desk
www.mikroe.com/en/support/. In this way, we can record and track down bugs more
efficiently, which is in our mutual interest. We respond to every bug report and ques-
tion in a suitable manner, ever improving our technical support.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

7

CHAPTER 1
Introduction mikroC PRO for AVR

HOW TO REGISTER

The latest version of the mikroC PRO for AVR is always available for downloading
from our website. It is a fully functional software libraries, examples, and compre-
hensive help included.

The only limitation of the free version is that it cannot generate hex output over 2
KB. Although it might sound restrictive, this margin allows you to develop practical,
working applications with no thinking of demo limit. If you intend to develop really
complex projects in the mikroC PRO for AVR, then you should consider the possi-
bility of purchasing the license key.

Who Gets the License Key
Buyers of the mikroC PRO for AVR are entitled to the license key. After you have
completed the payment procedure, you have an option of registering your mikroC

PRO. In this way you can generate hex output without any limitations.

How to Get License Key

After you have completed the payment procedure, start the program. Select Help » How
) | Fill out

to Register from the drop-down menu or click the How To Register Icon

the registration form (figure below), select your distributor, and click the Send button.

8 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
mikroC PRO for AVR Introduction

[™

[4 How To Register (o] @ =4

Step 1. Fill in the form below. Please, make sure you fill in all required fields.
Step 2. Make sure that you provided a valid email address in the "EMAIL" edit box. This email will be used for

sending you the activation key.

Step 3. Make sure you select a correct distributor which will make the registration process faster. If your
distributor is not on the list then select "Other" and type in distributor's email address in the box below.

Step 4. Press the SEND button to send key request. A default email client will open with ready-to-send message.
Note: If email client does not open, you may copy text of the message and paste it manually into a new email
message before sending it to your distributor's email.

[W Marko Jovanovic
[W Enter your address
[W Enter invoice number if available
I—W marko@mikroe.com
[ﬁnﬁ marko@mikroe.com
COMPANY Enter company name
PRODUCTID | 515C-557269-6F6D72-684F

Iom"j mikroElektronika key@mikroe.com v

* Required fields

I have made the payment and I wish to request activation key for mikroC PRO for AYR

Name:
Marko Jovanovic

Address:
Invoice number:
Company:

E-Mail:
marko@mikroe.com

Product key:
515C-557269-6F6D72-684F

Distributor:

2y Copyto [£4] SEND Cancel
i oYL

This will start your e-mail client with message ready for sending. Review the infor-
mation you have entered, and add the comment if you deem it necessary. Please,
do not modify the subject line.

Upon receiving and verifying your request, we will send the license key to the e-mail
address you specified in the form.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 9

CHAPTER 1
Introduction mikroC PRO for AVR

After Receving the License Key

The license key comes as a small autoextracting file — just start it anywhere on your
computer in order to activate your copy of compiler and remove the demo limit. You
do not need to restart your computer or install any additional components. Also,
there is no need to run the mikroC PRO for AVR at the time of activation.

Notes:

- The license key is valid until you format your hard disk. In case you need to format
the hard disk, you should request a new activation key.

- Please keep the activation program in a safe place. Every time you upgrade the
compiler you should start this program again in order to reactivate the license.

10 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR USER MANUAL

CHAPTER 2

mikroC PRO for
AVR Environment

The mikroC PRO for AVR is an user-friendly and intuitive environment:

11

CHAPTER 2
Environment mikroC PRO for AVR

IDE OVERVIEW

The mikroC PRO for AVR is an user-friendly and intuitive environment:

T TkreC PRO Sor AV - CAPvagrarm FAer\MA et womik Vima o PR for AVINL CAmCpes =1Z
Ee [dn Yew Projct Bun Joch fep
2 RS S DANRE, PDRPRBBIES AR S OAEX g R
Mo @ Sk 3 9 D AR g e w8 de () (0Me X0 R -l 0
N Code Cgiorer T \ede [T —" B0 | 3 werdh vekes
LI < ehar 0 ALY e A7 0P Bt IR B
- o 4
Lod_Teit ()1 Sawch ke varabie by sesenbly nave E
s] Led_Cnd (LCD_CLEAR) & >
Led_Cnd (LCD_CURSOR_OPT) 2 7 Pevghonss frmess i
&
1D_0ue (3, ¢, tx83) 1 e - s
LED_Out 11, 1, eand) 5 -t
)

delny_me (1009) 3
Led_Cod (1)1

Inchodes B w —-
. . LED_Oue (1,4, txtd) s
. e eiay) -l 1000) 3

— — 1e0s
S q i
B = N O whe(s < 0t
- X - Lod_Cwd (LCD_SHITT_RIGKT): i
deley we (1001

£l
e ananu e |

Peice
= .) e
-0 o~
g while(l) | et
Vi 000 MMy | & . 1.0 cree
s .0 nLle (L <)0 .
X - Led_Cwd (LCD_SHIPT LEUPT)S
deley me ()00} » :.
Galay me(1000)1 // 1 mecowt deley § e
e A i
|1 wnarecys Eatless leop g T T
1y v v D
rasgmd urd
C0_04
X
v ~
0 R
- - i
” =il
] . v
< e =) vets ~
u Messae e [
A e MF SOG PATGALS L3 < 011111 0l NT Wrogmm
- ey
m et — . ‘*7 — m b bu PO for ALt

- The Code Editor features adjustable Syntax Highlighting, Code Folding, Code
Assistant, Parameters Assistant, Auto Correct for common typos and Code Tem-
plates (Auto Complete).

- The Code Explorer (with Keyboard shortcut browser and Quick Help browser) is at
your disposal for easier project management.

- The Project Manager alows multiple project management

- General project settings can be made in the Project Settings window

- Library manager enables simple handling libraries being used in a project

- The Error Window displays all errors detected during compiling and linking.

- The source-level Software Simulator lets you debug executable logic step-by-step
by watching the program flow.

- The New Project Wizard is a fast, reliable, and easy way to create a project.

- Help files are syntax and context sensitive.

12 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

- Like in any modern Windows application, you may customize the layout of mikroC
PRO for AVR to suit your needs best.

- Spell checker underlines identifiers which are unknown to the project. In this way
it helps the programmer to spot potential problems early, much before the project
is compiled.

Spell checker can be disabled by choosing the option in the Preferences dialog (F12).

MAIN MENU OPTIONS
Available Main Menu options are:

- File

- Edit

- View

- Project
- Run

- Tools

- Help

Related topics: Keyboard shortcuts

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 13

CHAPTER 2
Environment mikroC PRO for AVR

FILE MENU OPTIONS

The File menu is the main entry point for manipulation with the source files.

L] NewUnit Ctr+N
& oOpen Ctrl+0
Recent Files »
H save Ctrl+S
Fﬁ Save As...
i. Close Ctrl+F4
é& Print.. Ctr+P
B Exit Alt+X
File Description
Q Mew Unit Ctrl+N |Open a new editor window.
L% Open Ctrl+O | Open source file for editing or image file for viewing.
Recent Files » | Reopen recently used file.
Save i_tr|[4+S |Save changes for active editor.

Save the active source file with the different name

(T D

Save as... or change the file type.
Close Alt+F4 | Close active source file.
@ Print... Ctrl+P | Print Preview.
B Exi Alt+% | Exit IDE.

Related topics: Keyboard shortcuts, File Toolbar, Managing Source Files

14 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

EDIT MENU OPTIONS

43 Undo Ctri+Z

¢ Redo Shift+Ctrl+2

ool Cut Chr+X

E2) Copy Ctri+C

7 Paste Chrl+y

< Delete

Select All Ctrl+a

2 Find... Ctrl+F

& Find Next F3

92 FindPrevious Shift+F3

)R Replace... Ctrl+R

|d) FindInFiles... Al+F3

%] Goto Line... Ctr+G

Advanced 4
Edit Description

@ Undo Ctrl4+Z |Undo last change.
> Redo Shift+Ctrl+Z |Redo last change.
é% Cuk Ckrl4+ |Cut selected text to clipboard.
E@ Copy Ctrl4+C |Copy selected text to clipboard.
ﬂi" Paste Ctrl+Y |Paste text from clipboard.
X Delete Delete selected text.

Select All Ctrl+a |Select all text in active editor.
)) Eind,,, Ctrl4+F |Find text in active editor.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 15

CHAPTER 2
Environment

mikroC PRO for AVR

)8 Find Next F3 |Find next occurence of text in active editor.
3) Find Previous Shift+F3 |Find previous occurence of text in active editor.
)R Replace... Ctrl4+R |Replace text in active editor.
Find In Files. .. AlE+F3 Elier)\: ftreo>::l igecsl::;zn;coﬁiclje;in all opened files, or in
4:] Goto Line... Ctrl+G |Goto to the desired line in active editor.
Advanced » |Advanced Code Editor options
Advanced>> Description
[Gomment__SniteCuls. | onL s o e s com
()_Uncomment_ stttk |oreemert eleedcoce o e e o
3_.'7 Indent Shift+Ctrl+I |Indent selected code.
=¢ Qutdent Shift+Ctrl+l |Outdent selected code.
g Lowercase Ctrl+alt+L |Changes selected text case to lowercase.
.ﬂ Uppercase Ctrl+alt+U | Changes selected text case to uppercase.
QE Titlecase Ctrl+alt+T |Changes selected text case to titlercase.

16

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment

Find Text

Dialog box for searching the document for the specified text. The search is per-
formed in the direction specified. If the string is not found a message is displayed.

Search for: [vJ
[options—— “Direction————
i "‘ v A-‘:"_A Y : K= .;-'r‘. - . "':*' i Ry 1 -~
F
& (@
r‘
™ OK Cancel

Replace Text

Dialog box for searching for a text string in file and replacing it with another text string.

mikroElektronika

E E E

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 17

CHAPTER 2
Environment mikroC PRO for AVR

Find In Files
Dialog box for searching for a text string in current file, all opened files, or in files on a disk.

The string to search for is specified in the Text to find field. If Search in directories
option is selected, The files to search are specified in the Files mask and Path fields.

Text to find: [QllAg==E A4 v
Options Where
" Case sensitive) Current file
) all opened files
Iy 105 etiole weords | @ search in directories

S amhdquel:o options-

C:\Program files\ u

- nclude subdir

Go To Line

Dialog box that allows the user to specify the line number at which the cursor should
be positioned.

Cancel

18 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Regular expressions

By checking this box, you will be able to advance your search, through Regular
expressions.

| Search for: ‘ init .

Related topics: Keyboard shortcuts, Edit Toolbar, Advanced Edit Toolbar

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 19

CHAPTER 2
Environment mikroC PRO for AVR

VIEW MENU OPTIONS

Toolbars 4

Debug Windows 4

E:I Routines List
Project Settings
Code Explorer
Project Manager Ctrl+F11

Library Manager

Bookmarks
Messages
Macro Editor
@ Windows
View Description
Toolbars » | Show/Hide toolbars.
Debug Windows Show/Hide debug windows.
EI Routines List Show/Hide Routine List in active editor.
Project Settings Show/Hide Project Settings window.
‘EE Code Explorer Show/Hide Code Explorer window.

Project Manager Shift+ Ctrl+F11 |Show/Hide Project Manager window.

Library Manager Show/Hide Library Manager window.
Bookmarks Show/Hide Bookmarks window.
Messages Show/Hide Error Messages window.
Macro Editor Show/Hide Macro Editor window.

@ Windows Show Window List window.

20 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment

TOOLBARS

File Toolbar
0 E-06 M4 &

File Toolbar is a standard toolbar with following options:

Icon Description

Lj Opens a new editor window.

3 v |Open source file for editing or image file for viewing.

9 Save changes for active window.

@ Save changes in all opened windows.

?‘_I Close current editor.

S Close all editors.

oo Print Preview.

Edit Toolbar

& =

Edit Toolbar is a standard toolbar with following options:

Icon Description

Undo last change.

Redo last change.

Cut selected text to clipboard.

<D [P

Copy selected text to clipboard.

fi 0

Paste text from clipboard.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 21

CHAPTER 2
Environment mikroC PRO for AVR

Advanced Edit Toolbar
. E h HEs Bae ;
A oy | 2] |28 ¢ | [0

Advanced Edit Toolbar comes with following options:

Icon Description

£ Comment selected code or put single line comment if there is no selection

{} Uncomment selected code or remove single line comment if there is no selection.

@ Select text from starting delimiter to ending delimiter.

Go to ending delimiter.

‘>_—’] Go to line.

oe Indent selected code lines.

Outdent selected code lines.

=¢
WL Generate HTML code suitable for publishing current source code on the web.

Find/Replace Toolbar

PRI R B

Find/Replace Toolbar is a standard toolbar with following options:

Icon Description

)) Find text in current editor.

)3 Find next occurence.

53 Find previous occurence.

)R Replace text.
Find text in files.

22 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Project Toolbar

A Eim e S L X Y 0 e Y B

Project Toolbar comes with following options:

Icon Description

Ql Open new project wizard. wizard.

%v Open Project.

3 Save Project.

Add existing project to project group.

Remove existing project from project group.

Add File To Project.

Remove File From Project.

BER

Close current project.

Build Toolbar

1 Il [NN e

Build Toolbar comes with following options:

Icon Description

45, Build current project.

& Build all opened projects.

Build and program active project.

&? Start programmer and load current HEX file.

A Open assembly code in editor.

m View statistics for current project.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 23

CHAPTER 2
Environment

mikroC PRO for AVR

Debugger

3

Debugger Toolbar comes with following options:

iy
un'

N By | 20 @y 00 0l | @ [

Icon Description

L-;:?} Start Software Simulator.

E‘jj Run/Pause debugger.

"_::?3 Stop debugger.
o0

Step into.

&y Step over.

(319 Step out.

o Run to cursor.

Toggle breakpoint.

Toggle breakpoints.

View watch window

C@ Clear breakpoints.
&d

View stopwatch window

24 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment

Styles Toolbar

| Dffice 2003 Blue ™
Office 2003 Blue -~

Office 2003 Silver '
Office 2003 Olive

Office XP

Chocolate

Arctic

Silverfox r

Soft sand hd |

{11}

Styles toolbar allows you to easily customize your workspace.

Tools Toolbar

8] 4 [F)

Tools Toolbar comes with following default options:

Icon Description

Bl |Run USART Terminal

| | EEPROM

ASCII Chart

@' Seven segment decoder tool.

The Tools toolbar can easily be customized by adding new tools in Options(F12)
window.

Related topics: Keyboard shortcuts, Integrated Tools, Debugger Windows

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 25

CHAPTER 2
Environment mikroC PRO for AVR

PROJECT MENU OPTIONS

Build Ctrl+F9
Build All Projects Shift+F9
Build + Program Ctrl+F11

e

Edit Search Paths...

Clean Project Folder...

Add File To Project...

Remove File From Project

New Project... Shift+Ctrl+N
Open Project... Shift+Ctrl+0O

Open Project Group...

Close Project Group

(B 088 W o6 0P 0 b [

Save Project &s...

Recent Projects 4

Close Project

I

26 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 2
Environment

Yiew Assembly

Project Description
4 Build Ctrl+F9 |Build active project.
2 Build Al Shift+F9 [Build all projects.
% Build + Program Ctrl4+F11 |Build and program active project.
Al

View Assembly.

Edit Search Paths...

Edit search paths.

Clean Project Folder...

Clean Project Folder

Add File To Project...

Add file to project.

Remove File From Project

Remove file from project.

New Project...

Open New Project Wizard

Qpen Project,.. Shift+Ctrl+O | Open existing project.
Save Projeckt Save current project.
Open Project Group. ., Open project group.

O EREEEE

Close Project Group

Close project group.

%

|
*

Save Project As...

Save active project file with the different name.

Recent Projects

Open recently used project.

0

Close Project

Close active project.

Related topics: Keyboard shortcuts, Project Toolbar, Creating New Project, Project

Manager, Project Settings

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 27

CHAPTER 2
Environment

mikroC PRO for AVR

RUN MENU OPTIONS

@2 HM e & 2 D2 [

| Start Debugger F9
Stop Debugger Ctrl+F2
Pause Debugger Fé
Step Into F7
Step Over F8
Step Out Ctrl+F8
Jump To Interrupt F2
Toggle Breakpoint FS
Breakpoints Shift+F4
Clear Breakpoints Shift+Ctrl+F5
Watch Window Shift+F5
View Stopwatch
Disassembly mode Alt+D

28 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment
Run Description
L;—Z} Start Debugager F9 |Start Software Simulator.
E—-E; Stop Debugger Ctrl4+F2 |Stop debugger.
=}, Pause Debugger F& |Pause Debugger.
20 Step Into F7 |Step Into.
@, Step Over F& |Step Over.

Step Out Ctrl+F8 |Step Out.

Jump To Interrupt F2 | Jump to interrupt in current project.

Togale Breakpoint FS |Toggle Breakpoint.

Clear Breakpoints Shift+Ctrl4+FS |Clear Breakpoints.

Watch Window Shift+FS |Show/Hide Watch Window

O
Show/Hide Breakpoints Shift+F4 [Breakpoints.
B
&d"

Yiew Stopwatch Show/Hide Stopwatch Window

Disassembly mode Ctrl4+D | Toggle between C source and disassembly.

Related topics: Keyboard shortcuts, Debug Toolbar

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 29

CHAPTER 2
Environment

mikroC PRO for AVR

TOOLS MENU OPTIONS

&

mE Programmer Fi1

Bl USART Terminal Ctrl+T
EEPROM Editor

Ascii Chart

Seven Segment Convertor
Export Code To HTML

LCD Custom Character

S 3) S

‘4 GLCD Bitmap Editor
UDP Terminal

Options F12

=

Tools

Description

mE Programmer F11

4

Run mikroElektronika Programmer

Bl USART Terminal Chrl+T

Run USART Terminal

i |

EEPROM Editor

Run EEPROM Editor

Ascii Chart

Run ASCII Chart

Sewven Segment Converkor

Run 7 Segment Display Decoder

El |[E]

Generate HTML code suitable for publishing

Export Code To HTML source code on the web.

LCD Custom Character Generate your own custom LCD characters
@ GLCD Bitmap Editor Generate bitmap pictures for GLCD

UDP Terminal UDP communication terminal.
g Options Fi2 |Open Options window

Related topics: Keyboard shortcuts, Tools Toolbar

30

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

HELP MENU OPTIONS

@ Help F1

Check For Updates
mikroElektronika Support Forums
mikroElektronika Web Page

-~ How To Register

About
Help Description
@ Help Tpen Help File,
Quick Help.
iCheck For Updates Check if new compiler version is available.

Open mikroElektronika Support Forums in a
default browser.

Open mikroElektronika Web Page in a default

mikroElektronika Support Forums

mikroElektronika Web Page browser.
-~ How To Register Information on how to register.
About Open About window.

Related topics: Keyboard shortcuts

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 31

CHAPTER 2
Environment

mikroC PRO for AVR

KEYBOARD SHORTCUTS

Below is a complete list of keyboard shortcuts available in mikroC PRO for AVR IDE.
You can also view keyboard shortcuts in the Code Explorer window, tab Keyboard.

IDE Shortcuts
F1 Help
Ctrl+N New Unit
Ctri+O Open
Ctrl+Shift+O Open Project
Ctrl+Shift+N Open New Project
CtrI+K Close Project
CtrlI+F9 Compile
Shift+F9 Compile All
Ctrl+F11 Compile and Program
Shift+F4 View breakpoints
Ctrl+Shift+F5 Clear breakpoints
F11 Start AVRFlash Programmer
F12 Preferences

Basic Editor Shortcuts

F3 Find, Find Next
Shift+F3 Find Previous
Alt+F3 Grep Search, Find in Files
Ctrl+A Grep Search, Find in Files
CtrlI+C Copy
Ctrl+F Find
Ctri+R Replace
Ctrl+P Print
Ctrl+S Save unit
Ctrl+Shift+S Save All
Ctrl+V Paste

32 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment

Ctrl+X Cut
Ctrl+Y Delete entire line
Ctrl+z Undo
Ctrl+Shift+Z Redo

Advanced Editor Shortcuts
Ctrl+Space Code Assistant
CtrlI+Shift+Space |Parameters Assistant
Ctrl+D Find declaration
Ctrl+E Incremental Search
Ctrl+L Routine List
Ctrl+G Goto line
Ctrl+J Insert Code Template
Ctrl+Shift+. Comment Code
Ctrl+Shift+, Uncomment Code
Ctrl+number Goto bookmark

Ctrl+Shift+tnumber |Set bookmark

Ctrl+Shift+l Indent selection

Ctrl+Shift+U Unindent selection

TAB Indent selection

Shift+TAB Unindent selection

Alt+Select Select columns

Ctri+Alt+Select Select columns

Ctrl+Alt+L Convert selection to lowercase
Ctrl+Alt+U Convert selection to uppercase
Ctri+Alt+T Convert to Titlecase

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 33

CHAPTER 2

Environment mikroC PRO for AVR

Software Simulator Shortcuts

F2 Jump To Interrupt

F4 Run to Cursor

F5 Toggle Breakpoint

F6 Run/Pause Debugger

F7 Step into

F8 Step over

F9 Debug

Ctrl+F2 Reset

Ctrl+F5 Add to Watch List

CtrlI+F8 Step out

Alt+D Dissasembly view

Shift+F5 Open Watch Window

34 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

MIKROC PRO FOR AVR IDE

IDE Overview

The mikroC PRO for AVR is an user-friendly and intuitive environment:

TT et RO for AVE - C\Program Fie1\MA roeiek rord s\ vk roC PRO for AVINLC mcp e Py |
Bie [Yow Dot Ben Tock Hep
Jado b MK G A NRR PP SNIE S AR B OAEN 0 - BiE
N St 0 N e e e el] S e (5 Once 2000 A -l 0
15 Code Liphorar o (r 3 s Watch Vahoms =
2 | x e LIS "2
< ehar i 344 i
. $ai B oAb MM
* - Oveld main()t et varsble bom ket 2
: " .=
* w Lod_Init()s Sewch ka vaabin by acsently rame
s Lod_Cae (LCD_CLEAR) [FY
. Lod_Cwd (LCD_CURSOR_OFT) 1 7 Pevghenahs Frease g
S ——— =l 5
- LCD_Oue (3,4, exe3) 2 Vv Vo Adyes
B - LCD_Out (3,4, %xt4) 2 Owcn2t -
. = o (58] oy -
ey - Selay_ma(1000)3 t:: ¥ ::
[. Led Cmd (1) @ : 0:!1)\:
1o Y Onna
e 1w m W v P
S LCD_Out (1,4, ext2) 1 " v w00t
. delay_ms (1000) 1 ® L posss
— m o7 powist
18 hd 1=0
A rowct Settron 3 1 1 O] v oatony
. while (s < 40 e o i
= Plevce. -
= . - Led_Cwd (LCD_SKIFT_RIGNT) { i
| ————
B . >
QO ., »”
while(l) ¢ St
Vb 90000000 Mz | » Py, b
8 while (s <)1 230
e Lod_Cwd (LCD_SNIFT_LEFT) 3 ond PCm uOOOFD Cychem 265062600
. . Gelay ma(100) 2 %3 I besgorts L
8 s ——— | ——— | "
3 o o
q Saiay_pe(1090)> ({3 nacend delay, Code Asustant “ CProg o Py Mbscmletrord s mbe ol PRO for AVE LORLOS ¢
(bt) function - Deley _us funsigred long Time Jn_ua) ~ © CProg an PiesMirceiebtronk aymbeos PO for M8 LoALCS ¢
) whide(i): // Indless looy] funcee “""l;.i‘w’w"w"-,hﬂa
E ')
yed ot
uo_oe
wo_ps.
LD o6
Lo oy
e
Lo RS
F ,wmo-mum
» weyed hw Lt 2{10)
« wwgred A XS] o
“ wrwgred char et &(0)
Sves recped o
wnsgred dw MY
wagyed dw R2
Uriiped o
° 1 M D06 PATMIGALS L3 C O1LIITIIA 4010 A°CProgam wyed hwr Re
oS ey 0w
e o e, v
180 35 bt ¢ Compded CAProgrimdei\WAbraciakrond simiroC PRO for AR cdc E— |

- The Code Editor features adjustable Syntax Highlighting, Code Folding, Code
Assistant, Parameters Assistant, Auto Correct for common typos and Code Tem-
plates (Auto Complete).

- The Code Explorer (with Keyboard shortcut browser and Quick Help browser) is at
your disposal for easier project management.

- The Project Manager alows multiple project management.

- General project settings can be made in the Project Settings window.

- Library manager enables simple handling libraries being used in a project.

- The Error Window displays all errors detected during compiling and linking.

- The source-level Software Simulator lets you debug executable logic step-by-step
by watching the program flow.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 35

CHAPTER 2
Environment mikroC PRO for AVR

- The New Project Wizard is a fast, reliable, and easy way to create a project.
- Help files are syntax and context sensitive.
- Like in any modern Windows application, you may customize the layout of mikroC

PRO for AVR to suit your needs best.
- Spell checker underlines identifiers which are unknown to the project. In this way
it helps the programmer to spot potential problems early, much before the project

is compiled.
Spell checker can be disabled by choosing the option in the Preferences dialog (F12).

36 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

CUSTOMIZING IDE LAYOUT

Docking Windows

You can increase the viewing and editing space for code, depending on how you
arrange the windows in the IDE.

Step 1: Click the window you want to dock, to give it focus.

Step 2: Drag the tool window from its current location. A guide diamond appears.
The four arrows of the diamond point towards the four edges of the IDE.

“.{C7) Other Files

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 37

CHAPTER 2
Environment mikroC PRO for AVR

Step 3: Move the pointer over the corresponding portion of the guide diamond. An
outline of the window appears in the designated area.

=
[T

Step 4: To dock the window in the position indicated, release the mouse button.

Tip: To move a dockable window without snapping it into place, press CTRL while
dragging it.

Saving Layout

Once you have a window layout that you like, you can save the layout by typing the
name for the layout and pressing the Save Layout Icon .

To set the layout select the desired layout from the Iayo drop-down list and click
the Set Layout Icon E‘ .

To remove the layout from the drop-down list, select the desired layout from the list

and click the Delete Layout Icon .

é

<Default Layout>
Code Layout
Debug Layout

38 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 2
Environment

Auto Hide

Auto Hide enables you to see more of your code at one time by minimizing tool win-
dows along the edges of the IDE when not in use.

-Click the window you want to keep visible to give it focus.
-Click the Pushpin Icon @on the title bar of the window.

Lo lle-)

_5} Project Manager %@
iy | 28 s |yl e

4 [FirstProject.mcpav
4) Sources
31 SecondProject.c

() Header Files
) Binaries
) Project level defines
) Image Files
) Output Files
) Other Files

Lo llep- s

= [E] Project Mana

oaal
111

4| 4 {3 FirstPro

CTTTTTT TR TR TP Ty bT 4 ._J iojurl
gl <

{[) Heac

() Binar

I Proje

) Imag}

IR) Outp
llllllllllllll.‘.llI‘Il’ _J Othe

N <
< <

1abeuey a(04d

~

ERINNINEEEN NN

Iwﬁeuew paloid [i7])

When an auto-hidden window loses focus, it automatically slides back to its tab on
the edge of the IDE. While a window is auto-hidden, its name and icon are visible
on a tab at the edge of the IDE. To display an auto-hidden window, move your point-
er over the tab. The window slides back into view and is ready for use.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

39

CHAPTER 2
Environment mikroC PRO for AVR

ADVANCED CODE EDITOR

The Code Editor is advanced text editor fashioned to satisfy needs of professionals.
General code editing is the same as working with any standard text-editor, including
familiar Copy, Paste and Undo actions, common for Windows environment.

Advanced Editor Features

- Adjustable Syntax Highlighting

- Code Assistant

- Code Folding

- Parameter Assistant

- Code Templates (Auto Complete)
- Auto Correct for common typos

- Spell Checker

- Bookmarks and Goto Line

- Comment / Uncomment

You can configure the Syntax Highlighting, Code Templates and Auto Correct from
the Editor Settings dialog. To access the Settings, click Tools » Options from the

drop-down menu, click the Show Options Icon a_f‘ or press F12 key.

40 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment
Editor Settings
Editor Settings Projack Flos
L4 ¥ Restore Last Opened Project " Restore All Opened Files
Editor Colors V Save Breakpoints V Save Bookmarks
u, ~If Opened File Is E: lly Modified
l[." Prompt for action © Reload file, but do not prompt) Ignore externally made changes
Auto Correct
Auto Save
kS Q—o;nplele ¥ Enable Auto Save Timeout Interval: 3 minutes
% ighighter
?;yle ™ Highlight begin..end pairs
¥ Highlight brackets
Spelling
il ¥ checkspeling
—Cgmm;,‘.;
9'. ll.l
© It (single line)
Advanced Editor Options
jOpenoptionsdidog
Code Folding
¥ Enable code folding
Show Ident Guides
" Tools
Output
0K Apply Cancel

Code Assistant

If you type the first few letters of a word and then press Citrl+Space, all valid identi-
fiers matching the letters you have typed will be prompted in a floating panel (see
the image below). Now you can keep typing to narrow the choice, or you can select
one from the list using the keyboard arrows and Enter.

variable

variable sfr
variable sfr
vanable sfr

unsigned char SP

unsigned char SPDR
unsigned char SPSR
unsigned char SPCR

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 41

CHAPTER 2
Environment mikroC PRO for AVR

Code Folding

Code folding is IDE feature which allows users to selectively hide and display sec-
tions of a source file. In this way it is easier to manage large regions of code within
one window, while still viewing only those subsections of the code that are relevant
during a particular editing session.

While typing, the code folding symbols (|- and |+) appear automatically. Use the
folding symbols to hide/unhide the code subsections.

Dgoid main() {

PORTA = O:
PORTB = 0
Led Init():

LCD_Out(1,1,txt[0]):
LCD_Out({2,1,txt[1]):
delay ms (1000) ;

Led Crad (1)

LCD Out(1,1,txt[1]):
LCD_Out(2,4,txt[2]):
delay ms (500) ;

}

void main() { [:]
If you place a mouse cursor over the tooltip box, the collapsed text will be shown in
a tooltip style box.

void main[]{| ;})
void maini() { .

PORTA 0

PORTE s

Led Initi);
LCD_Out(l,1,txc[0]):
LCD_Out (2,1,txt[1]);
delay_ms (1000} ;

Led Cmd (1)

LCD_Out(1,1,txt[1]);
LCD_Out (2,4,txt[2]):
delay ms (500) ;

42 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Parameter Assistant
The Parameter Assistant will be automatically invoked when you open parenthesis
“(” or press Shift+Ctrl+Space. If the name of a valid function precedes the parenthe-

sis, then the expected parameters will be displayed in a floating panel. As you type
the actual parameter, the next expected parameter will become bold.

channel : char
ADC_Rea

Code Templates (Auto Complete)

You can insert the Code Template by typing the name of the template (for instance,
whiles), then press Citri+J and the Code Editor will automatically generate a code.

You can add your own templates to the list. Select Tools » Options from the drop-down

ga menu, or click the Show Options Icon

and then select the Auto Complete Tab.

Here you can enter the appropriate keyword, description and code of your template.

Autocomplete macros can retreive system and project information:

- $DATES - current system date

- $TIMES - current system time

- $DEVICE% - device(MCU) name as specified in project settings
- $DEVICE CLOCKS% - clock as specified in project settings

- $COMPILERS% - current compiler version

These macros can be used in template code, see template ptemplate provided with
mikroC PRO for AVR installation.

Auto Correct

The Auto Correct feature corrects common typing mistakes. To access the list of rec-

5 ognized typos, select Tools > Options from the drop-down

menu, or click the Show Options Icon and then select the

Auto Correct Tab. You can also add your own preferences to the list.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 43

CHAPTER 2
Environment mikroC PRO for AVR

Also, the Code Editor has a feature to comment or uncomment the selected code

by simple click of a mouse, using the Comment Icon | {,,} | and Uncomment Icon

{..} | from the Code Toolbar.

Spell Checker

The Spell Checker underlines unknown objects in the code, so they can be easily
noticed and corrected before compiling your project.

Select Tools » Options from the drop-down menu, or click the Show Options Icon
a-r and then select the Spell Checker Tab.

Bookmarks

Bookmarks make navigation through a large code easier. To set a bookmark, use
Ctri+Shifttnumber. To jump to a bookmark, use Ctrl+number.

Goto Line

The Goto Line option makes navigation through a large code easier. Use the short-
cut Ctrl+G to activate this option.

Comment / Uncomment

Also, the Code Editor has a feature to comment or uncomment the selected code

by simple click of a mouse, using the Comment Icon | { !} |and Uncomment Icon

i 1 | from the Code Toolbar.

I
LS

44 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

CODE EXPLORER

The Code Explorer gives clear view of each item declared inside the source code.
You can jump to a declaration of any item by right clicking it. Also, besides the list of
defined and declared objects, code explorer displays message about first error and
it's location in code.

Code Explorer
-l

4 Functions
@ main
Globals
TypeDef
Tags
Includes

Following options are available in the Code Explorer:

Icon Description

'Eg‘} Expand/Collapse all nodes in tree.

2 |Locate declaration in code.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 45

CHAPTER 2

Environment mikroC PRO for AVR

ROUTINE LIST

Routine list diplays list of routines, and enables filtering routines by name. Routine
list window can be accessed by pressing Ctri+L.

You can jump to a desired routine by double clicking on it.

c

R P P Ty [T N T PP O e P (T oy~ (P
S | = i : % ae) [oscembne o) b
F IR | ot Manaom

| EQE }

8 Code Caphoe 57 L seamamatc
¥ i i
3

3 thrary Maraoer
230 |fe)@]fs]

46 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

PROJECT MANAGER

Project Manager is IDE feature which allows users to manage multiple projects.
Several projects which together make project group may be open at the same time.
Only one of them may be active at the moment.

Setting project in active mode is performed by double click on the desired project
in the Project Manager.

Project Manager]

7| [| 5B 1 3 iy |3 | X | 9 | S0
2 151, LedBlinking.mcpay
4] Sources
E] Ledslinking.c
() Header Files
I} Binaries
{7 Project level defines
|7 Image Files
4| Output Files
Z=| LedsBlinking.hex
LedBlinking, asm
LedBlinking.Ist
| Other Files

Following options are available in the Project Manager:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 47

CHAPTER 2
Environment

mikroC PRO for AVR

Description

Icon
% Save project Group.

@ Open project group.

= ' '
b Close the active project.

EE Close project group.

j Add project to the project group.
=1
J

Remove project from the project group.

c:f Add file to the active project.

Lb’f Remove selected file from the project.
%

Build the active project.

Q% Run mikroElektronika's Flash programmer.

For details about adding and removing files from project see Add/Remove Files from

Project.

Related topics: Project Settings, Project Menu Options, File Menu Options, Project

Toolbar, Build Toolbar, Add/Remove Files from Project

48

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

PROJECT SETTINGS WINDOW

Following options are available in the Project Settings Window:

- Device - select the appropriate device from the device drop-down list.
- Oscillator - enter the oscillator frequency value.

—————
B

EaDevice

Name: | ATMEGA16 v|

Value: | 10.000000| MHz

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 49

CHAPTER 2
Environment mikroC PRO for AVR

LIBRARY MANAGER

. o Library Manager enables simple handling
GiD Lbeary Manager * B libraries being used in a project. Library Manag-
1% 1% NI E) er window lists all libraries (extencion .mcl)
] ADC which are instgntly stgred iq the compiler Uses
. [@] Button folder. The de_swable library is added to thg proj-
[can SPT ect by selecting check box next to the library

- [7] Compact Flash FAT16 hame.
> [] Compact Flash In order to have all library functions accessible,
%Eo:yv::'ons simply press the button Check All d and all
> [V] GLcD libraries will be selected. In case none library is
[7] GLCD Fonts
- [] Keypad 4x4 —
- [@]Lco "] and all libraries will be cleared from the
[7]LCD Constants
> [C] MMC
> [MMC FAT16 Only the selected libraries will be linked.
- [T] One Wire
> [] Port Expander
[T Ps2
[T pwm
[C1rs485
b [Software 12C
- [V] Software SPI
» [] Software UART
> [Sound
[spr
- [C] 5P1 GLCD
» [T sPILCD
b [sP1LCD8
b [sPI T6963
- [V] Sprintf
- [7] Sprinti
> [] sprintl
[T stdiib
- [] string
- [7] 76963
- [V] Time
> [] Trigonometry
- [C] Tw
- [V] USART

needed in a project, press the button Clear All

project.

50 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment

Icon Description

Refresh Library by scanning files in "Uses" folder.Useful when new
libraries are added by copying files to "Uses" folder.

Rebuild all available libraries. Useful when library sources are avail-
able and need refreshing.

Include all available libraries in current project.

No libraries from the list will be included in current project.

Lo 0] || @@

Restore library to the state just before last project saving.

Related topics: mikroC PRO for AVR Libraries, Creating New Library

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 51

CHAPTER 2
Environment mikroC PRO for AVR

ERROR WINDOW

In case that errors were encountered during compiling, the compiler will report them
and won'’t generate a hex file. The Error Window will be prompted at the bottom of
the main window by default.

The Error Window is located under message tab, and displays location and type of
errors the compiler has encountered. The compiler also reports warnings, but these
do not affect the output; only errors can interefere with the generation of hex.

Messages
- [v] Errors Warnings Hints
Line Message No. Message Text Unit
0 1 mikrocAVR .exe -MSF -DBG -pATMEGA16 -ES -C -O11111114 -fo10-...
0 125 All files Preprocessed in 31 ms
0 121 Compilation Started Led.c
21 399 ; expected, but 'PORTB' found Led.c
22 399 ; exp but "void' found Ledic
37 408 while , but * found Led.c
38 402 (' expected, but " found Led.c
315 Invalid e Led.c
403 Y ex , bt Fou Led.c
38 399 i Led.c
38 421 Led.c
0 102 Finished (with errors): 18 Sep 2008, 15:25:30 Led.meproj
1 Insert Compiled ‘C:\Program Files\Mikroelektronika\mikroC for AVR PRO\Lcd.c

Double click the message line in the Error Window to highlight the line where the
error was encountered.

Related topics: Error Messages

52 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment

STATISTICS

After successful compilation, you can review statistics of your code. Click the Statis-
tics Icon | L.

Memory Usage Windows

Provides overview of RAM and ROM usage in the form of histogram.

RAM Memory
Rx Memory Space

Displays Rx memory space usage in form of histogram.

| |-Dota 16 Free RxData RAM
- -sm 16 Used RxData RAM

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 53

CHAPTER 2
Environment mikroC PRO for AVR

Data Memory Space

Displays Data memory space usage in form of histogram.

Special Function Registers

Summarizes all Special Function Registers and their addresses.

Special function registers (SFR)

5
I
H

n
-

n
~N

=]
w

D
=

gsasﬁggzﬁggazggs

g

54 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

General Purpose Registers

Summarizes all General Purpose Registers and their addresses. Also displays sym-
bolic names of variables and their addresses.

General purpose registers (GPR)

spifontw (__Lib_SPIGled_spifontw)

4-Procedwes 064 spifort(_Lib_SPIGled_spifontH)
- Size 05 |spfontDel_(spioniDel)
" Locations 067 SpiLRA_Pu_ (SpiLRd_PY)
—HIML Inaccessble color (FARG_SPI_Gled_H_Line+3)

Inaccessble loc (SPI_Gled H_Line_loc_LO)
Inaccessble |y_pos (FARG_SPI_Gled_H_Line+2)
Ir b x_stat (FARG_SPI_Gled_H_Line+0)
Inaccessble % end (FARG_SPI_Glcd_H_Line+1)
Inaccessble | data_out (FARG_SPI1_Reads0)
Inaccessble | color (FARG_SPI_Gled_V_Line+3)
Insccessble loc(SPL_Gled_V_Line_loc_L0)
Inaccessble % _pos (FARG_SPI_Gled_V._Line+2)
Inaccessble y_stat (FARG_SPI_Glcd_V._Line+0)
Inaccessibl v-end (FARG_SPI_Glcd_V_Line+1)
str1_SPI_Gled

ROM Memory Usage
Displays ROM memory usage in form of histogram.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 55

CHAPTER 2
Environment mikroC PRO for AVR

ROM Memory Allocation

Displays ROM memory allocation.

Statistics &)

4- Memory Usage 0x0000 0x0C942A -
4 RAM 0x0004 0x0C9400
RxData 0x0008 0x0C9400
Data 0x000C 0x0C9400
SFR 0x0010 0x0C3400
GPR 0x0014 0x0C9400
cxois e

9 2 4 X!

ROM Allocation 0x0020 0x0C9400
4 Procedures 0x0024 0x0C9400
Size 0x0028 0x0C9400
Locations 0x002C 0x0C9400
HTML 0x0030 0x0C9400

0x0034 0x0C9400
0x0038 0x0C9400
0x003C 0x0C9400
0x0040 0x0C9400
0x0044 0x0C9400
0x0048 0x0C9400
0x004C 0x0C9400
0x0050 0x0C9400
Ox1SF2 O0x22ES
Ox15F4 Ox1BEZ
Ox15F6 Ox00EOQ
Ox15F8 Ox0A9S
Ox1SFA OxFlF?7
Ox1SFC Ox1AS9S

< »

Procedures Windows

Provides overview procedures locations and sizes.

56 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Procedures Size Window

Displays size of each procedure.

Procedures Locations Window

Displays how functions are distributed in microcontroller’'s memory.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 57

CHAPTER 2
Environment mikroC PRO for AVR

HTML Window

Display statistics in default web browser.

Statistics
4 Memory Usage I N
4 RAM You can generate statistics in HTML format too. It is suitable for printing and for documenting your
RxData project.
Data
SFR Press the button bellow to generate HTML statistics and to open them in the default web browser
GPR
« ROM
ROM Allocation
4 Procedures View HTML statistics
Size
Locations
HTML

58 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 2
Environment

MACRO EDITOR

A macro is a series of keystrokes that have been 'recorded' in the order performed.
A macro allows you to 'record’ a series of keystrokes and then 'playback’, or repeat,

the recorded keystrokes.

Macros
2054 ALSANEARS
Name
Macro3
4 | m : ¢
The Macro offers the following commands:
Icon Description

Starts 'recording' keystrokes for later playback.

Stops capturing keystrokesthat was started when the Start Recordig
command was selected.

Allows a macro that has been recorded to be replayed.

New macro.

QT Ky (&

Delete macro.

Related topics: Advanced Code Editor, Code Templates

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

59

CHAPTER 2

Environment

mikroC PRO for AVR

INTEGRATED TOOLS

USART Terminal

The mikroC PRO for AVR includes the USART communication terminal for RS232
communication. You can launch it from the drop-down menu Tools » USART Termi-

nal or by clicking the USART Terminal Icon @ from Tools toolbar.

—Settings ~Communication
Com Port: [COM3 v | Echo
Baud: 9600 v ||| Append: T CR " Send as typing @
Stop Bits: [OneStop.Bit b FILFE " Send as number I .]
Parity: None v | Clear History |
. Receive data as
" Check Pa
" : 4 L [@ ASCII) HEX © DEC
Data bits: [Elght v]
pSommancs Connected to COM3 2
Sent: Echo
Il

60

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

ASCII Chart

The ASCII Chart is a handy tool, particularly useful when working with LCD display.

You can launch it from the drop-down menu Tools > ASCII chart or by clicking the

View ASCII Chart Icon A from Tools toolbar.

Ascii Chart]
0(1|2|3|(4|5|6|7|8|9|(A|B|C|D]|E|F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT | FF [CR SO SI
0 |1 12 |34 |5 |6 |7 |8 |9 [10]|11]|12[13]|14]15
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC| FS | GS RS | US
16 | 17 | 18 [19 | 20 | 21 [22 | 23 | 24 [25 | 26 | 27 [28 | 29 | 30 | 31
o SPC/ | " | # |8 % SO e S
32 | 33 134 |35 1 36 |37 |38 |39 | 490 | 41 | 42 | 43 | 44 | 45 | 46 | 47
glo|1|2[3[|4|s5[6|7]|[8[9]:]|;|[<[=]>]7
48 | 49 | 50 | 51 |52 |53 |54 |55 |56 | 57 |58 |59 |60 |61 |62 |63
4 @ | A|B|C|D|E F |G |H I] K|L | M| N|O
64 | 65 66 | 67 | 68 69 | 70 | 71 |72 |73 | 74 |75 |76 77 | 78 | 79
5 PUEQ RO ST Uu| v |w | X|Y |2 [\ i 8] [Rcasl
80 81 |82 83 | 84 85 | 86 92 93 |94 | 95
6 “la|b|lec|d|e]|f Il |m|n | o
96 | 972 | 98° | 99 |100 | 101 | 102 108 109 | 110 | 111
7 |P|aa|Fr|s t |u|w | } ~ DEL
112 | 113 | 114 | 115 | 116 | 117 | 118 124 | 125 | 126 | 127
8 € » F 0 | sone T e Z
128 | 129 | 130 | 131 | 132 | 133 | 134 140 | 141 | 142 | 143
! ’ “w » o - o b v
9
144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159
A i ¢ £ | x| ¥ |} |8 © « || - |®
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175
B o + 2 3 * TR | . z 1 o » |[Va|Vva |3 | &
176 | 177 | 176 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191
c|A A AlA(A|Z|Cc|E|E|E|E [T [T [T]|T
192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207
D b N O | O |0 |0 |0 X (6] u U U u|vY P B
208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223
£ 4|4|a|8d|a8|8|le|c|e&|6é6|8&|é&]i:. (I I
224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239
F | A|O0O|6|0|6 |0 |+ |= a|la|a|y (b
240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 61

CHAPTER 2
Environment

mikroC PRO for AVR

EEPROM Editor

The EEPROM Editor is used for manipulating MCU's EEPROM memory. You can
launch it from the drop-down menu Tools » EEPROM Editor. When Use this
EEPROM definition is checked compiler will generate Intel hex file
project name.ihex that contains data from EEPROM editor.

When you run mikroElektronika programmer software from mikroC PRO for AVR
IDE - project name.hex file will be loaded automatically while ihex file must be
loaded manually.

8/1
e

Device:

mikroElektronika EEPROM Tool

EEPROM Editor

(53]

EEPROM File

[l use Eeprom in project

EEPROM Size: EEPROM Fill:

[Custom

v] Yalue: Ox FF Eill] [Load l [Save

EEPROM Data

[T FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2222 222222224
[JGN| FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF A2 A2 ARARARARAARS
ii\>O8l FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YYYYYYYYYYYYYVVY
[TE[)| FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FYIYYYIVIIIVIIYY
UZUM FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YYYYYYYYYYYYYYYY
[T)| FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FYYYYYIYYIIIYIYY
[0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

(LX)l FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

[(I0)| FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Gkl FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YYYYYYYYYYYYYYYY -
EEPROM Edit:

Input Format: 5 Edit Yalue:

EEPROM Address:

9 Hex Start Address: Ox FFFF

Float = Size:

" Floa V| AutoInc ") Byte "~ Word @ DWord

) String

62

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

7 Segment Display Decoder

The 7 Segment Display Decoder is a convenient visual panel which returns deci-
mal/hex value for any viable combination you would like to display on 7seg. Click on
the parts of 7 segment image to get the requested value in the edit boxes. You can
launch it from the drop-down menu Tools > 7 Segment Decoderor by clicking the

Seven Segment Icon .F from Tools toolbar.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 63

CHAPTER 2
Environment mikroC PRO for AVR

UDP Terminal

The mikroC PRO for AVR includes the UDP Terminal. You can launch it from the
drop-down menu Tools > UDP Terminal.

F@ UDP Communication Terminal Sl
—Settings e
IP Address: |1 92.168.20.25

Port: |1 0001

-

4Seng:
l mikroElektronika Send

Append: |~ CR [~ Send as typing
[~ LF [~ Send as number

mikroElektronika -

—Receive }

& sl C HEX ¢ DEC |

Clear

64 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Graphic LCD Bitmap Editor

The mikroC PRO for AVR includes the Graphic LCD Bitmap Editor. Output is the
mikroC PRO for AVR compatible code. You can launch it from the drop-down menu
Tools » GLCD Bitmap Editor.

mlkroEIektromka Graphic LCD Bitmap generator (£3)
[KSO108]| 7 6363 | Nokia3110| o _ S
File loaded: truck.bmp

Picture preview 128x64 pix | bw
| LoadBMPPicture |

(Create CODE |

e
[InvertPICTlRE |

GLCD Size | controller

/77
/7 GLCD Picture name: truck.bmp
;; GLCD Model: KS9108 128x64

fm|»

const truck__bnp H o.rray[1024] of hyte < [Cony, CODE o Ck d]
8., 9, 8. 8. 8, 8, 8, 12, 12, 12, 12,
12, 10, :l.. 10 18 10 10 Vs SIS 9.
92, 9. 9. 9. 9. 9. 9. 9. 9. 9.137,137,137,137,137,137?
137.137.137.137.137.137.137. S) R T O P S O S
a. 9, 13,253, 13,195, 6,25%, 8. g. g. g. g. g. g. . ‘
- - - - - - - - - - - - - - - - J
ver: 2.0.1 - 27012005 System status: Win NT like OS

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 65

CHAPTER 2

Environment mikroC PRO for AVR

LCD Custom Character

mikroC PRO for AVR includes the LCD Custom Character. Output is mikroC PRO
for AVR compatible code. You can launch it from the drop-down menu Tools » LCD

Custom Character.

AR s [B B8 0

Y
5x7 5x10 Save... Load... Fill all Clear all Invert

Font — 1 Preview:
" 510 + cursor line

CGRAM address:

Char: IO 3'
Char data row: I0 3'

GENERATE

66 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

OPTIONS

Options menu consists of three tabs: Code Editor, Tools and Output settings
Code editor

The Code Editor is advanced text editor fashioned to satisfy needs of professionals.
Tools

The mikroC PRO for AVR includes the Tools tab, which enables the use of shortcuts

to external programs, like Calculator or Notepad.
You can set up to 10 different shortcuts, by editing ToolO - Tool9.

Tool Name: Tool0

Fle Name: Press button to open file dislog

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 67

CHAPTER 2
Environment

mikroC PRO for AVR

4

271

Output Settings

Output settings

By modifying Output Settings, user can configure the content of the output files.
You can enable or disable, for example, generation of ASM and List file.

Also, user can choose optimization level, and compiler specific settings, which

include case sensitivity, dynamic link for string literals setting (described in mikroC
PRO for AVR specifics).

Build all files as library enables user to use compiled library (*.mcl) on any AVR MCU.

Output Settings

V Generate ASM file
¥ Include HEX opcodes
¥ Include ROM constants
¥ Include ROM Addresses

V Generate list file
¥ Include debug info

V Include source lines in output files

Optimization level:
Four 57
Compiler

V Case sensitive

¥ Dynamic link for string Rerals
¥ Build all files as library

68 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

REGULAR EXPRESSIONS

Introduction

Regular Expressions are a widely-used method of specifying patterns of text to
search for. Special metacharacters allow you to specify, for instance, that a particu-
lar string you are looking for, occurs at the beginning, or end of a line, or contains n
recurrences of a certain character.

Simple matches

Any single character matches itself, unless it is a metacharacter with a special
meaning described below. A series of characters matches that series of characters
in the target string, so the pattern "short" would match "short" in the target string.
You can cause characters that normally function as metacharacters or escape
sequences to be interpreted by preceding them with a backslash "\ ".

For instance, metacharacter "~" matches beginning of string, but "\ ~" matches char-
acter "~", and "\\" matches "\", etc.

Examples :

unsigned matches string 'unsigned’
\ “unsigned matches string ' “unsigned"'

Escape sequences

Characters may be specified using a escape sequences: "\ n" matches a newline,
"\ t" a tab, etc. More generally, \ xnn, where nn is a string of hexadecimal digits,
matches the character whose ASCII value is nn.

If you need wide(Unicode)character code, you can use "\ x{ nnnn} ', where 'nnnn' -
one or more hexadecimal digits.

\ xnn - char with hex code nn

\ x{ nnnn) - char with hex code nnnn (one byte for plain text and two bytes
for Unicode)

\t - tab (HT/TAB), same as \ x09

\n - newline (NL), same as \ x0a

\ r - car.return (CR), same as \ x0d

\ f - form feed (FF), same as \ x0c

\ a - alarm (bell) (BEL), same as \ x07

\ e - escape (ESC) , same as \ x1b

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 69

CHAPTER 2
Environment mikroC PRO for AVR

Examples:

unsigned\ x20int matches 'unsigned int'(note space in the middle)
\ tunsigned matches 'unsigned' (predecessed by tab)

Character classes

You can specify a character class, by enclosing a list of characters in[1, which will
match any of the characters from the list. If the first character after the " " is "+", the
class matches any character not in the list.

Examples:

count[aeiou] r finds strings 'countar', 'counter', etc. but not 'countbr',
'countcr’, etc.

count[“aeiou] r finds strings 'countbr’, 'countcr', etc. but not 'countar’,
'counter’, etc.

Within a list, the "-" character is used to specify a range, so that a-z represents all
characters between "a" and "z", inclusive.

If you want "-" itself to be a member of a class, put it at the start or end of the list,
or escape it with a backslash.
If you want ', you may place it at the start of list or escape it with a backslash.

Examples:

-az] matches 'a', 'z' and '-'
az-] matches 'a', 'z' and '-'
a\-z] matches 'a’, 'z' and '-'
a-z] matches all twenty six small characters from 'a' to 'z’
\n-\x0D] matches any of #10,#11,#12,#13.
\d
1-

-t] matches any digit, '-' or 't".

[
[
[
[
[
[
[1-a] matches any char from "

Metacharacters

Metacharacters are special characters which are the essence of regular expres-
sions.There are different types of metacharacters, described below.

70 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Metacharacters - Line separators

~ - start of line

$ - end of line

\ A - start of text

\ z - end of text

. - any character in line

Examples:

~PORTA - matches string ' porTA ' only if it's at the beginning of line
PORTAS - matches string ' PORTA ' only if it's at the end of line
~PORTAS - matches string ' PORTA ' only if it's the only string in line
PORT. r - matches strings like 'PORT2', 'PORTB', 'PORT1" and so on

The "~" metacharacter by default is only guaranteed to match beginning of the input
string/text, and the "$" metacharacter only at the end. Embedded line separators will
not be matched by "~" or "s".

You may, however, wish to treat a string as a multi-line buffer, such that the will
match after any line separator within the string, and "s" will match before any line
separator.

Regular expressons works with line separators as recommended at

www.unicode.org (http://www.unicode.org/unicode/reports/tr18/):

w,n

Metacharacters - Predefined classes

\w - an alphanumeric character (including " ")
\W - a nonalphanumeric

\ d - a numeric character

\ D - @ hon-numeric

\'s - any space (same as [\t\n\r\f])

\ S - a non space

You may use \w, \d and \s within custom character classes.
Example:

routi\de - matches strings like 'routile’, 'routiée' and so on, but not
'routine', 'routime' and so on.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 71

CHAPTER 2
Environment mikroC PRO for AVR

Metacharacters - Word boundaries

A word boundary ("\b") is a spot between two characters that has a "\w" on one
side of it and a "\ w" on the other side of it (in either order), counting the imaginary
characters off the beginning and end of the string as matching a "\ w".

\b - match a word boundary)
\ B - match a non-(word boundary)

Metacharacters - Iterators

Any item of a regular expression may be followed by another type of metacharac-
ters - iterators. Using this metacharacters,you can specify number of occurences of
previous character, metacharacter or subexpression.

* - zero or more ("greedy"), similar to {0,}

+ - one or more ("greedy"), similar to {1,}

2 - zero or one ("greedy"), similar to {0,1}

{n} -exactly ntimes ("greedy")

{n,} -atleastn times ("greedy")

{n,m - atleastn butnot more than m times ("greedy")
*? - zero or more ("non-greedy"), similar to {0,}?

+2 - one or more ("non-greedy"), similar to {1,}?

2?7 - zero or one ("non-greedy"), similar to {0,1}?

{ n} 2 - exactly n times ("non-greedy")

{n,}?2 - atleast n times ("non-greedy")

{n,m 2 - atleast n but not more than m times ("non-greedy")

So, digits in curly brackets of the form, { n, m} , specify the minimum number of times to
match the item n and the maximum m. The form { n} is equivalent to { n,n} and match-
es exactly n times. The form { n,} matches n or more times. There is no limit to the
size of n or m, but large numbers will chew up more memory and slow down execution.

If a curly bracket occurs in any other context, it is treated as a regular character.
Examples:

count.*r B-matches strings like 'counter', 'countelkjdflkjor' and
'countr'

count.+r - matches strings like 'counter', 'countelkjdflkjor' but not
'countr'

count.? r - matches strings like 'counter', 'countar' and 'countr' but
not 'countelkjor’

72 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

counte{ 2} r - matches string 'counteer"

countel{ 2,} r - matches strings like 'counteer', 'counteeer’,
'counteeer' etc.

counte{ 2, 3} r - matches strings like 'counteer', Or 'counteeer' but not
'counteeeer'

A little explanation about "greediness". "Greedy" takes as many as possible, "non-
greedy" takes as few as possible.

For example, 'b+' and 'b*' applied to string 'abbbbc' return 'bbbb', 'b+? !
returns 'b', 'b*2' returns empty string, 'b{2,3}2"' returns 'bb', 'b{ 2,3} '
returns 'bbb"'.

Metacharacters - Alternatives

You can specify a series of alternatives for a pattern using "|" to separate them, so
that fee|fie| foe will match any of "fee", "fie", or "foe" in the target string (as
would f (e|ilo)e)). The first alternative includes everything from the last pattern
delimiter (" (", " ", or the beginning of the pattern) up to the first"|", and the last
alternative contains everything from the last " | " to the next pattern delimiter. For this
reason, it's common practice to include alternatives in parentheses, to minimize
confusion about where they start and end.

Alternatives are tried from left to right, so the first alternative found for which the
entire expression matches, is the one that is chosen. This means that alternatives
are not necessarily greedy. For example: when matching rou | rout against "rou-
tine", only the "rou" part will match, as that is the first alternative tried, and it suc-
cessfully matches the target string (this might not seem important, but it is important
when you are capturing matched text using parentheses.) Also remember that " |" is
interpreted as a literal within square brackets, so if you write [fee|fie|foe] You're
really only matching [feio|] .

Examples:

rou(tine|te) - matches strings 'routine' Or 'route’.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 73

CHAPTER 2
Environment mikroC PRO for AVR

Metacharacters - Subexpressions

The bracketing construct (...) may also be used for define regular subexpres-
sions. Subexpressions are numbered based on the left to right order of their open-
ing parenthesis. First subexpression has number "1

Examples:

(int){ 8,10} matches strings which contain 8, 9 or 10 instances of the

'int'
routi ([0-9] |a+)e matches 'routile', 'routile' , 'routine',
'routinne', 'routinnne' etc.

Metacharacters - Backreferences

Metacharacters \ 1 through \ 9 are interpreted as backreferences. \ matches previ-
ously matched subexpression #.

Examples:

(.)\ 1+ matches 'aaaa' and 'cc’'.

(.+)\ 1+ matches 'abab' and '123123"

(['"172) (\d+)\ 1 matches "13" (in double quotes), or '4' (in single quotes)
or 77 (without quotes) etc

74 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

MIKROC PRO FOR AVR COMMAND LINE OPTIONS

UsageilnikroCAvr.exe [—<opts> [—<opts>]] [<infile> [—<opts>]] [-
<opts>]]
Infile can be of * .c and » .p1d type.

The following parameters and some more (see manual) are valid:

-p : MCU for which compilation will be done.

-ro : Set oscillator [in MHZz].

-sp : Add directory to the search path list.

-1p : Add directory to the #include search list.

-N : Output files generated to file path specified by filename.
-B : Save compiled binary files (» .mc1) to 'directory'.
-0 : Miscellaneous output options.

-pBG : Generate debug info.

-1 : Check and rebuild new libraries.

-pL : Build all files as libraries.

-y : Dynamic link for string literals.

-C : Turn on case sensitivity.

Example:

mikrocAvr.exe -MSF -DBG -pATMEGAl6 -ES -C -011111114 -fo8 -
N"C:\Lcd\Lcd.mcpav" -SP"C:\Program Files\Mikroelektronika\mikroC PRO
for AVR\Defs\"

-SP"C:\ Program Files\Mikroelektronika\mikroC PRO for
AVR\ Uses\ LTEGAKW\ " -SP"C:\Lcd\" "Led.c" " Lib Math.mcl"
" Lib MathDouble.mcl" " Lib System.mcl" " Lib Delays.mcl"
" Lib LcdConsts.mcl" " Lib Led.mcl"

Parameters used in the example:

-MsF : Short Message Format; used for internal purposes by IDE.
-DBG : Generate debug info.

-pATMEGA16 : MCU pATMEGA16 selected.

-c : Turn on case sensitivity.

-011111114 : Miscellaneous output options.

-fo8 : Set oscillator frequency [in MHZ].

-N"C:\Lcd\ Lcd.mcpav"-SP"C:\ Program Files\Mikroelektronika\
mikroC PRO for AVR\defs\" : Output files generated to file path specif-
ied by filename.

-SP"C:\ Program Files\Mikroelektronika\mikroC PRO for
AVR\defs\" : Add directory to the search path list.

-SP"C:\ Program Files\Mikroelektronika\mikroC PRO for
avR\uses\" : Add directory to the search path list.

-sp"c:\Led\ " : Add directory to the search path list.

Led.c™ " Lib Math.mcl"™ " Lib MathDouble.mcl"
" Lib System.mcl" " Lib Delays.mcl" " Lib LcdConsts.mcl"
" Lib Led.mcl" : Specify input files.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 75

CHAPTER 2
Environment mikroC PRO for AVR

TUTORIALS
Projects

The mikroC PRO for AVR organizes applications into projects, consisting of a sin-
gle project file (extension .mcpav) and one or more source files (extension).
mikroC PRO for AVR IDE allows you to manage multiple projects (see Project
Manager). Source files can be compiled only if they are part of a project.

The project file contains the following information:

- project name and optional description,

- target device,

- device flags (config word),

- device clock,

- list of the project source files with paths,
- header files (*.h),

- binary files (*.mcl),

- image files,

- other files.

Note that the project does not include files in the same way as preprocessor does,
see Add/Remove Files from Project.

New Project

The easiest way to create a project is by means of the New Project Wizard, drop-
down menu Project » New Project or by clicking the New Project Icon||=% | from
Project Toolbar.

76 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

New Project Wizard Steps

Start creating your New project, by clicking Next button:

‘New Project Wizard ==
Welcome to the New Project
Wizard

This wizard helps you:

e Create a new project

¢ Select the device for your project

. o Setup device clock and choose device flags
e Select desired memory model

~ o Add project files

Click Next to continue

| 4 Back , Next & Cancel

Step One - Select the device from the device drop-down list.

New Project Wizard

Step 1/5

Select the device you want to use.

Device Name: [ATMEGA16 9 J

4 Back Next & Cancel

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 77

CHAPTER 2
Environment mikroC PRO for AVR

Step Two - Enter the oscillator frequency value.

New Project Wizard
' Step 2/5

Setup the clock, for example 11.0592 MHz.

Device Cloc]g:l 8.000000 | MHz

4 Back { .ﬁext P | Cancel

Step Three - Specify the location where your project will be saved.

New Project Wizard

Step 3/5
Specify where your project will be saved.

Project File Name:

=
': avr_prolavr.mcpav =3

4 Back Next & Cancel

78 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Step Four - Add project file to the project if they are avaiable at this point. You can
always add project files later using Project Manager.

New Project Wizard
' Step 475

Add project files if they are available at this point.
You can always add project files later using the Project Manager in IDE.

Add File To Project: —
Ic:tavr _pro\C math{C_math.c lammAdda]
File Name
C:\avr_pro\C math\C_math.c
I Remove
Remove All
4 Back Next & Cancel

Step Five - Click Finish button to create your New Project:

New Project Wizard

Step 5/5

You have successfully created a new project. Click Finish to save the changes
and to close the wizard.

O

4 Back l Finish 1 Cancel

Related topics: Project Manager, Project Settings

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 79

CHAPTER 2
Environment mikroC PRO for AVR

CUSTOMIZING PROJECTS
Edit Project

You can change basic project settings in the Project Settings window. You can
change chip, and oscillator frequency. Any change in the Project Setting Window
affects currently active project only, so in case more than one project is open, you
have to ensure that exactly the desired project is set as active one in the Project
Manager.

Managing Project Group
mikroC PRO for AVR IDE provides covenient option which enables several projects

to be open simultaneously. If you have several projects being connected in some
way, you can create a project group.

The project group may be saved by clicking the Save Project Group Icon % from

the Project Manager window. The project group may be reopend by clicking the

Open Project Group Icon L%» . All relevant data about the project group is stored

in the project group file (extension .mpgroup)

Add/Remove Files from Project
The project can contain the following file types:

- source files

- .h header files

- .mc1 binary files

- .pld project level defines files

- image files

- .hex, .asm and .1st files, see output files. These files can not be added
or removed from project.

- other files

80 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Project Manager '
N IR EEERE

4 151, LedBlinking.mcpay
4) Sources
E] Ledslinking.c
I) Header Files
) Binaries
{7) Project level defines
) Image Files
4 /) Output Files
Z=| LedBlinking.hex
Z=| LedBlinking,asm
Z=| LedBlinking.lst
{7 Other Files

The list of relevant source files is stored in the project file (extension .mcpav).

To add source file to the project, click the Add File to Project Icon t*j . Each added

source file must be self-contained, i.e. it must have all necessary definitions after

preprocessing.

To remove file(s) from the project, click the Remove File from Project Icon &j

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 81

CHAPTER 2
Environment mikroC PRO for AVR

Project Level Defines:

Project Level Defines(.p1d) files can also be added to project. Project level define
files enable you to have defines that are visible in all source files in the project. A file
must contain one definition per line in the following form:

<symbol>[=[<value>]]
<symbol (a,b)>[=[<value>]]

Define a macro named symbol. To specify a value, use =<value>. If =<value> is
omitted, 1 is assumed. Do not enter white-space characters immediately before the
"="_ If a white-space character is entered immediately after the "=", the macro is
defined as zero token. This option can be specified repeatedly. Each appearance of
symbol will be replaced by the value before compilation.

There are two predefined project level defines see predefined project level defines

Note: For inclusion of the header files (extension .h), use the preprocessor directive
#include. See File Inclusion for more information.

Related topics: Project Manager, Project Settings

82 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

SOURCE FILES

Source files containing C code should have the extension . The list of source files
relevant to the application is stored in project file with extension .mcpav, along with
other project information. You can compile source files only if they are part of the
project.

Use the preprocessor directive #include to include header files with the extension
.h. Do not rely on the preprocessor to include source files other than headers — see
Add/Remove Files from Project for more information.

Managing Source Files

Creating new source file

To create a new source file, do the following:

1. Select File » New Unit from the drop-down menu, or press Ctrl+N, or click the

New File lcon d from the File Toolbar.

2. A new tab will be opened. This is a new source file. Select File » Save from the

drop-down menu, or press Ctrl+S, or click the Save File Icon Q from the File

Toolbar and name it as you want.

If you use the New Project Wizard, an empty source file, named after the project with
extension , will be created automatically. The mikroC PRO for AVR does not require you
to have a source file named the same as the project, it's just a matter of convenience.

Opening an existing file

1. Select File » Open from the drop-down menu, or press Ctrl+O, or click the Open

File Icon & + | from the File Toolbar. In Open Dialog browse to the location of
the file that you want to open, select it and click the Open button.

2. The selected file is displayed in its own tab. If the selected file is already open, its
current Editor tab will become active.

Printing an open file

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 83

CHAPTER 2
Environment mikroC PRO for AVR

Printing an open file

1. Make sure that the window containing the file that you want to print is the active
window.

2. Select File » Print from the drop-down menu, or press Ctrl+P.

3. In the Print Preview Window, set a desired layout of the document and click the
OK button. The file will be printed on the selected printer.

Saving file

1. Make sure that the window containing the file that you want to save is the active
window.
2. Select File » Save from the drop-down menu, or press Ctrl+S, or click the Save

File Icon 9 from the File Toolbar.

Saving file under a different name

1. Make sure that the window containing the file that you want to save is the active
window.

2. Select File » Save As from the drop-down menu. The New File Name dialog will
be displayed.

3. In the dialog, browse to the folder where you want to save the file.

4. In the File Name field, modify the name of the file you want to save.

5. Click the Save button.

Closing file

1. Make sure that the tab containing the file that you want to close is the active tab.

2. Select File » Close from the drop-down menu, or right click the tab of the file that
you want to close and select Close option from the context menu.

3. If the file has been changed since it was last saved, you will be prompted to save
your changes.

Related topics:File Menu, File Toolbar, Project Manager, Project Settings,

84 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

CLEAN PROJECT FOLDER
Clean Project Folder

This menu gives you option to choose which files from your current project you want
to delete.

Clean Project Folder €3]

Below is the list of all files in the project folder. Files in bold are those
generated by the compiler and they can be easily recreated when the
project is rebuilt,

Select which files you want to remove from the project folder. Please
note that selected files will be permanently deleted from your disk if

srevererr

-[V] SpiEthernet.asm a
«[] spiEthernet.c

-[7] spiEthernet.c.ini

-[7] SpiEthernet.cp

-.|¥| spiEthernet.dbg

-.[V] spiEthernet.dct

-[V] spiEthernet.dlt

-[] spiEthernet.hex

-.[¥] SpiEthernet.Ist

«[] spiEthernet.mcl

-[] spiEthernet.mcpav

--[V] spiEthernet.mcproj_callertable.txt
-[V] spiEthernet.mil

“.[7] spiEthernet.user.dic

Clean Cancel

C:\Program Files\Mikroelektronika\mikroC PRO for AVR\

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 85

CHAPTER 2
Environment mikroC PRO for AVR

COMPILATION

When you have created the project and written the source code, it's time to compile

it. Select Project > Build from the drop-down menu, or click the Build Icon ‘*5_. from

the Project Toolbar. If more more than one project is open you can compile all open

projects by selecting Project » Build All from the drop-down menu, or click the Build

All Icon &\F from the Project Toolbar.

Progress bar will appear to inform you about the status of compiling. If there are
some errors, you will be notified in the Error Window. If no errors are encountered,
the mikroC PRO for AVR will generate output files.

Output Files
Upon successful compilation, the mikroC PRO for AVR will generate output files in

the project folder (folder which contains the project file .mcpav). Output files are
summarized in the table below:

Format Description File Type

Intel HEX Intel style hex records. Use this file to program AVR ex
MCU.

Binar mikro Compiled Library. Binary distribution of appli- nel

y cation that can be included in other projects. '
I Overview of AVR memory allotment: instruction

List File . . .lst

addresses, registers, routines and labels.
; Human readable assembly with symbolic names,

Assembler File L .asm

extracted from the List File.

Assembly View

After compiling the program in the mikroC PRO for AVR, you can click the View

Assembly icon @J or select Project » View Assembly from the drop-down menu

to review the generated assembly code (.asm file) in a new tab window. Assembly

is human-readable with symbolic names.

Related topics:Project Menu, Project Toolbar, Error Window, Project Manager, Pro-
ject Settings

86 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

ERROR MESSAGES

Compiler Error Messages

- Syntax Error: [$s] expected, but[¢s] found

- Array element cannot be function

- Function cannot return array

- Inconsistent storage class

- Inconsistent type

-[3s] tag redefined [%s]

- lllegal typecast [¢s] [$s]

- [%s] is not valid identifier

- Invalid statement

- Constant expression required

- Internal error [%s]

- Too many actual parameters

- Not enough parameters

- Invalid expression

- Identifier expected, but [2s] found

- Operator [¢s] is not applicable to these operands [%s]
- Assigning to non-lvalue [%s]

- Cannot cast[5] to[%s]

- Cannot assign [s] to[%s]

- Lvalue required

- Pointer required

- Argument is out of range

- Undeclared identifier [$s] in expression

- Too many initializers

- Cannot establish this baud rate at[$s1 MHz clock
- Stack overflow

- Invalid operator [$s]

- Expected variable, but constant [2s] found

- Expected constant, but[¢s] found

-[$s] cannot be used outside a loop

- Unknown type [$s]

- Variable [¢s] is redeclared

- Undeclared identifier [%s]

- Output limit has raised 2K words

- [%s] has already been declared [%s]

- Type mismatch: expected [%s], but[¢s] found
- File[%51 not found [%s]

- There is not enough RAM space for all variables
- There is not enough ROM space

- Invalid type in Array

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 87

CHAPTER 2
Environment mikroC PRO for AVR

- Division by zero

- Incompatible types: [3s] [%s]

- Too many characters.

- Assembler instruction [$s] was not found.
- project name must be specified

- Unknown command line Option: [%s]

- File extension missing: [%s]

- Bad FO argument: [%s]

- Preprocessor exited with error code [%s]
- Bad absolute address [%s]

- Recursion or cross-calling of [%s]

- no files specified

- Device parameter missing (for example -PATMEGA...)
- Invalid parameter string

- Project name must be set

- Specifier needed

- [%s] not found %s

- Index out of bounds

- Array dimension must be greater than 0
- Const expression expected

- Integer const expected

- Recursion in definition

- Array corrupted

- Arguments cannot be of void type

- Arguments cannot have explicit memory specificator
- Bad storage class

- Pointer to function required

- Function required

- lllegal pointer conversion to double

- Integer type needed

- Members cannot have memory specifier
- Members cannot be of bit or sbit type

- Too many initializers

- Too many initializers of subaggregate

- Already used [$s]

- lllegal expression with void

- Address must be greater than 0

- Address must be greater than 0

-[%s] Identifier redefined

- User abort

- Exp. must be greater than 0

- Invalid declarator expected '(* or identifier
- typdef name redefined: [$s]

- Declarator error

- Specifer/qualifier list expected

88 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

-[%s] already used

- ILevel can be used only with interrupt service routines
- ; expected, but[2s] found

- Expected "{"

- [%s] Identifier redefined

- '(" expected, but [¢s] found

- ") expected, but[%s] found

- 'case’ out of switch

- "" expected, but[2s] found

- 'default’ label out of switch

- switch expression must evaluate to integral type

- while expected, but[¢s] found

- void func cannot return values

- 'continue' outside of loop

- Unreachable code

- Label redefined

- void type in expression

- Too many chars

- Unresolved type

- Arrays of objects containing zero-size arrays are illegal
- Invalid enumerator

- ILevel can be used only with interrupt service routines
- ILevel value must be integral constant

- ILevel out of range "0..4"

- '} expected [¢s] found

- ") expected, but[%s] found

- 'break’ outside of loop or switch

- Empty char

- Nonexistent field [%s]

- lllegal char representation: [%s]

- Initializer syntax error: multidimensional array missing subscript
- Too many initializers of subaggregate

- At least one Search Path must be specified

- Not enough RAM for call stack

- Demo Limit

- Parameter [3s] must not be of bit or sbit type

- Function must not have return value of bit or sbit type

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

89

CHAPTER 2
Environment mikroC PRO for AVR

Compiler Warning Messages

- Bad or missing fosc parameter. Default value 8MHz used
- Specified search path does not exist: [s]

- Specified include path does not exist: [5]

- Result is not defined in function: [%s]

- Initialization of extern object [%s]

- Suspicious pointer conversion

- Implicit conversion of pointer to int

- Unknown pragma line ignored: [%s]

- Implicit conversion of int to ptr

- Generated baud rate is [%s] bps (error =[%s] percent)
- lllegal file type: [%s]

Linker Error Messages

- Redefinition of [5] already defined in[%s]

- main function is not defined

- System routine is not found for initialization of: [%s]
- Bad agregate definition [%s]

- Unresolved extern [ss]

- Bad function absolute address [%s]

- Not enough RAM [%s]

90 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

SOFTWARE SIMULATOR OVERVIEW

The Source-level Software Simulator is an integral component of the mikroC PRO
for AVR environment. It is designed to simulate operations of the AVR MCUs and
assist the users in debugging C code written for these devices.

After you have successfully compiled your project, you can run the Software Simu-

lator by selecting Run » Start Debugger from the drop-down menu, or by clicking
the Start Debugger Icon L_z} from the Debugger Toolbar. Starting the Software

1y

Simulator makes more options available: Step Into, Step Over, Step Out, Run to

Cursor, etc. Line that is to be executed is color highlighted (blue by default).

Note: The Software Simulator simulates the program flow and execution of instruc-
tion lines, but it cannot fully emulate AVR device behavior, i.e. it doesn’'t update
timers, interrupt flags, etc.

Watch Window

The Software Simulator Watch Window is the main Software Simulator window which
allows you to monitor program items while simulating your program. To show the Watch
Window, select View » Debug Windows > Watch from the drop-down menu.

The Watch Window displays variables and registers of the MCU, along with their
addresses and values.

There are two ways of adding variable/register to the watch list:

- by its real name (variable's name in "C" code). Just select desired vari-
able/register from Select variable from list drop-down menu and click the
Add Button | ®= Add

- by its name ID (assembly variable name). Simply type name ID of the vari-

able/register you want to display into Search the variable by assemby
name box and click the Add Button ‘!' Add

Variables can also be removed from the Watch window, just select the variable that

you want to remove and then click the Remove Button * Remove

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 91

CHAPTER 2
Environment mikroC PRO for AVR

Add All Button | L Add All | adds all variables.

Remove All Button e Remove A||J removes all variables.

You can also expand/collapse complex variables, i.e. struct type variables, strings...

Values are updated as you go through the simulation. Recently changed items are
colored red.

PC= OxD009FB Cycle=560.00

92 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroC PRO for AVR Environment

Double clicking a variable or clicking the Properties Button \'\/ Properties

opens the Edit Value window in which you can assign a new value to the selected
variable/register. Also, you can choose the format of variable/register representation
between decimal, hexadecimal, binary, float or character. All representations except
float are unsigned by default. For signed representation click the check box next to
the Signed label.

An item's value can be also changed by double clicking item's value field and typing
the new value directly.

7 3
[Edit Value: ACD (o[@ |3
01000000 10000011 0001 OO100110 1111
Representation
Dec Hex Q) Bin Float Char
Signed [OK] [Cancel]

Stopwatch Window

The Software Simulator Stopwatch Window is available from the drop-down menu,
View > Debug Windows > Stopwatch.

The Stopwatch Window displays a current count of cycles/time since the last Soft-
ware Simulator action. Stopwatch measures the execution time (number of cycles)
from the moment Software Simulator has started and can be reset at any time. Delta
represents the number of cycles between the lines where Software Simulator action
has started and ended.

Note: The user can change the clock in the Stopwatch Window, which will recalcu-
late values for the latest specified frequency. Changing the clock in the Stopwatch
Window does not affect actual project settings — it only provides a simulation.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 93

CHAPTER 2
Environment mikroC PRO for AVR

RAM Window

The Software Simulator RAM Window is available from the drop-down menu, View
> Debug Windows > RAM.

The RAM Window displays a map of MCU’s RAM, with recently changed items col-
ored red. You can change value of any field by double-clicking it.

09 | oa | o8 [oc | oo | oe | o [ascu | N
00 | 00 | 00 . 00 . 00 [srrmsnnsamansanne ‘ ‘

8|8/8/8/8/ 8(8/8/8/8/8|8/8|8 8|8

(=
.

8888888888888888‘

8|8/8|8(8/8(8|8(8|8/8|8/8|8|8|¢%

—

8/ 8/ 8 8 8 88888/ 8 8 8 8 8|8

8/8/ 8888 8/8/8/8/ 8 8 8 8 8]|%<

8 88 88888 888 8 8 8 8|8

8|8/8|g/88(8|8(8|8|8|8|8|88|%

[~}
&

................

8 8 8 8
8

8

8/8/ 8/ 8/8/8/ 88/ 8/8/8 8 8,8/8]8
8 88 8 88 888888 8 8 8|¢®

8 88888 8 8 8 8 8 8 8
8 88 888888 4988 8 8

8 88 88 8/8 8 8
8

8 88888 88 8 88 8 8 8 8|8
8 88 88888888 88 8 8

HHHHHHHHEEHEH
_8‘8_8_8_8'8.8'8v8-8-8.8-8:8

94 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroC PRO for AVR Environment

SOFTWARE SIMULATOR OPTIONS

. Function | Toolbar
Name Description
Key Icon
Start Debugger |Start Software Simulator. [F9] EI;
Run/Pause R Soft Si lat F6 =t
Debugger un or pause Software Simulator. [F6] E.}J
Stop Debugger Stop Software Simulator. [CtrI+F2] E&]
Toggle breakpoint at the current cursor position.
Toual To view all breakpoints, select Run > View
Bizgkgoints Breakpoints from the drop—down menu. Double [F5] T}
clicking an item in the Breakpoints Window List
locates the breakpoint.
Run to cursor Executg all instructions bgtyveen the current [F4] oT
instruction and cursor position. e
Execute the current C (single or multi—cycle)
instruction, then halt. If the instruction is a rou-
Step Into tine call, enter the routine and halt at the first [F7] 218
instruction following the call.
Execute the current C (single or multi—cycle) o
Step Over instruction, then halt. [F8] 0
Execute all remaining instructions in the current
Step Out routine, return and then halt. [Ctri+F8] (s

Related topics: Run Menu, Debug Toolbar

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

95

CHAPTER 2
Environment mikroC PRO for AVR

CREATING NEW LIBRARY

mikroC PRO for AVR allows you to create your own libraries. In order to create a
library in mikroC PRO for AVR follow the steps bellow:

1. Create a new C source file, see Managing Source Files

2. Save the file in the compiler's Uses folder:
DriveName:\ ProgramFiles\Mikroelektronika\mikroC PRO for

AVR\Uses\ Lib Example

3. Write a code for your library and save it.

4.Add 1ib Example file in some project, see Project Manager. Recompile the project.

5. Compiled file 1ib Example.mcl should appear in
...\mikroC PRO for AVR\Uses\ folder.

6. Open the definition file for the MCU that you want to use. This file is placed in the
compiler's Defs folder:
DriveName:\ Program Files\Mikroelektronika\mikroC PRO for AVR\Defs\
and it is named McU NAME.m1k, for example ATMEGA16.m1k

7.Add the Library Alias and Library Name at the end of the definition file, for
exanuﬂe #pragma SetLib ([Example Library, Lib Example])

8. Add Library to mlk file for each MCU that you want to use with your library.

9. Click Refresh button in Library Manager

10. Example Library should appear in the Library manager window.

Multiple Library Versions

Library Alias represents unique name that is linked to corresponding Library .mc1
file. For example UART library for ATMEGA16 is different from UART library for
ATMEGA128 MCU. Therefore, two different UART Library versions were made, see
m1k files for these two MCUs. Note that these two libraries have the same Library
Alias (UART) in both m1x files. This approach enables you to have identical repre-
sentation of UART library for both MCUs in Library Manager.

Related topics: Library Manager, Project Manager, Managing Source Files

96 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

mikroC PRO for
AVR Specifics

The following topics cover the specifics of mikroC PRO for AVR compiler:

- ANSI Standard Issues

- Predefined Globals and Constants
- Accessing Individual Bits

- Interrupts

- AVR Pointers

- Linker Directives

- Built-in Routines

- Code Optimization

- Memory Type Specifiers

97

CHAPTER 3
Specifics mikroC PRO for AVR

Notes:

- Directive absolute in Rx memory space guarantees only that defined
variable will be overlapped with the given memory address.

- Addresses of all registers are RAM Space addresses. RAM Space is con-
tinuous region of RAM memory including all AVR RAM memory spaces
(RAM space = Rx Space + |0 Space + SRAM Space). When using instruc-
tions dedicated to 10 Space in asm blocks, IO registers should be accessed
by their RAM Space addresses. Refer to AVR memory organization for
details on RAM Space addresses.

- Currently, Boot Loader section of the flash memory is not supported by the
compiler.

- Rx space not used by the compiler may be used for user variables. So, the
size of the available Rx space is not fixed, because it depends on the
memory consumtion of the project itself. Compiler uses not less than 7 Rx
registers.

- Literal strings are stored according to the destination (Flash or RAM). If
stored in RAM, they are linked as a global and always exist by default.
There is an option for storing literal string on the function frame.

- Constants may be stored only in the first 64kb of Flash memory.

- Available RAM memory is divided on static and dynamic link. Static link
grows upwards (from lower to higher addresses). Dynamic link grows
downwards (from higher to lower addresses).

- In case of intensive cross-callings, recursions, etc. it is not guaranteed that
the dynamic link will be enough for the program execution. If this happens,
dynamic link can get out of its boundaries and overwrite static link.

ANSI STANDARD ISSUES
Divergence from the ANSI C Standard

- Tentative declarations are not supported.
C Language Exstensions

mikroC PRO for AVR has additional set of keywords that do not belong to the ANSI
standard C language keywords:

- code
- data
- io

- rx

- at

- sbit
- bit
- sfr

Related topics: Keywords, AVR Specific

98 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroC PRO for AVR Specifics

PREDEFINED GLOBALS AND CONSTANTS

To facilitate programming of AVR compliant MCUs, the mikroC PRO for AVR imple-
ments a number of predefined globals and constants.

All AVR SFR registers and their bits are implicitly declared as global variables.
These identifiers have an external linkage, and are visible in the entire project.
When creating a project, the mikroC PRO for AVR will include an appropriate (*) file
from defs folder, containing declarations of available SFR registers and constants.

For a complete set of predefined globals and constants, look for “Defs” in the mikroC
PRO for AVR installation folder, or probe the Code Assistant for specific letters
(Ctrl+Space in the Code Editor).

Predefined project level defines

There are 2 predefined project level defines for any project you make. These defines
are based on values that you have entered/edited in the current project:

- First one is equal to the name of selected device for the project i.e. if
ATmega16 is selected device, then ATmega16 token will be defined as 1,
so it can be used for conditional compilation.

#ifdef ATmegal6
#endif

- The second one is __ FOSC__ value of frequency (in Khz) for which the
project is built

- Third one is for identifying mikroC PRO for AVR compiler:

#ifdef MIKROC PRO FOR AVR

#endif
- Fourth one is for identifying the build version. For instance, if a desired
build version is 142, user should put this in his code:
#if MIKROC PRO FOR AVR BUILD = 142
fendif

User can define custom project level defines.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 99

CHAPTER 3
Specifics

mikroC PRO for AVR

ACCESSING INDIVIDUAL BITS

The mikroC PRO for AVR allows you to access individual bits of 8-bit variables. It
also supports sbit and bit data types

Accessing Individual Bits Of Variables

If you are familiar with a particular MCU, you can access bits by name:

// Clear bit 0 on PORTA
PORTAO bit = 0;

Also, you can simply use the direct member selector (.) with a variable, followed by
one of identifiers B0, B1, .. , B7 with B7 being the most significant bit:

// Clear bit 0 on PORTA
PORTA.BO = O0;

There is no need of any special declarations. This kind of selective access is an
intrinsic feature of mikroC PRO for AVR and can be used anywhere in the code.
Identifiers B0-B7 are not case sensitive and have a specific namespace. You may
override them with your own members B0-87 within any given structure.

See Predefined Globals and Constants for more information on register/bit names.

Note: If aiming at portability, avoid this style of accessing individual bits, use the bit
fields instead.

sbit type

The mikroC PRO for AVR compiler has sbit data type which provides access to
bit-addressable SFRs. For example:

sbit LEDA at PORTA.BO;
sbit name at sfr-name.B<bit-position>;

The previously declared SFR (sfr-name) is the base address for the sbit. The bit-
position (which must be a number from 0-7) follows the dot symbol ('.") and speci-
fies the bit position to access. For example:

sbit OV at SREG.B2;
sbit CY at SREG.B7;

100 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroC PRO for AVR Specifics

bit type

The mikroC PRO Compiler provides a bit data type that may be used for variable
declarations. It can not be used for argument lists, and function-return values.

bit bf; // bit variable
There are no pointers to bit variables:
bie—tpEri— // invalid
An array of type bit is not valid:
bit—arc—{5 // invalid
Note :
- Bit variables can not be initialized.
- Bit variables can not be members of structures and unions.

- Bit variables do not have addresses, therefore unary operator & (address
of) is not applicable to these variables.

Related topics: Bit fields, Predefined globals and constants

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 101

CHAPTER 3
Specifics mikroC PRO for AVR

INTERRUPTS

AVR derivates acknowledges an interrupt request by executing a hardware gener-
ated CALL to the appropriate servicing routine ISRs. ISRs are organized in IVT. ISR
is defined as a standard function but with the org directive afterwards which con-
nects the function with specific interrupt vector. For example org 0x000B is IVT
address of Timer/Counter 2 Overflow interrupt source of the ATMEGA16.

For more information on interrupts and IVT refer to the specific data sheet.

Function Calls from Interrupt

Calling functions from within the interrupt routine is allowed. The compiler takes care
about the registers being used, both in "interrupt” and in "main” thread, and performs
"smart" context-switching between them two, saving only the registers that have
been used in both threads. It is not recommended to use function call from interrupt.
In case of doing that take care of stack depth.

// Interrupt routine
void Interrupt() org 0x16 {
RS485Master Receive (dat);

}

Most of the MCUs can access interrupt service routines directly, but some can not
reach interrupt service routines if they are allocated on addresses greater than 2K
from the IVT. In this case, compiler automatically creates Goto table, in order to jump
to such interrupt service routines.

These principles can be explained on the picture below :

102 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroC PRO for AVR Specifics

Interrupt Vector Interrupt Vector
Table Table

Goto table

Direct accessing interrupt service routine and accessing interrupt service routine via
Goto table.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 103

CHAPTER 3
Specifics mikroC PRO for AVR

LINKER DIRECTIVES

The mikroC PRO uses an internal algorithm to distribute objects within memory. If
you need to have a variable or routine at specific predefined address, use the link-
er directives absolute and org.

Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the vari-
able is multi-byte, higher bytes will be stored at the consecutive locations.

Directive absolute is appended to declaration of a variable:

short x absolute 0x22;
// Variable x will occupy 1 byte at address 0x22

int y absolute 0x23;
// Variable y will occupy 2 bytes at addresses 0x23 and 0x24

Be careful when using the absolute directive, as you may overlap two variables by
accident. For example:

char i absolute 0x33;
// Variable 1 will occupy 1 byte at address 0x33

long jjjj absolute 0x30;
// Variable will occupy 4 bytes at 0x30, 0x31, 0x32, 0x33; thus,

// changing 1 changes jjJjj highest byte at the same time, and vice
versa

Directive org
Directive org specifies a starting address of a routine in ROM.

Directive org is appended to the function definition. Directives applied to non-defin-
ing declarations will be ignored, with an appropriate warning issued by the linker.

Here is a simple example:

void func (int par) org 0x200 {
// Function will start at address 0x200
nop;

}

It is possible to use org directive with functions that are defined externally (such as
library functions). Simply add org directive to function declaration:

void UART1 Write (char data) org 0x200;

Note: Directive org can be applied to any routin except for interrupt.
Note: See also funcall pragma.

104 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroC PRO for AVR Specifics

Directive orgal

If the user wants to place its routines, constants, etc, above a specified address in
ROM, #pragma orgall directive should be used:

#pragma orgall 0x200
This doesn't apply to IVT, Handler table and Goto table.
Directive funcorg

You can use the #pragma orgall directive to specify the starting address of a rou-
tine in ROM using routine name only:

#pragma funcorg <func name> <starting address>

INDIRECT FUNCTION CALLS

If the linker encounters an indirect function call (by a pointer to function), it
assumes that any of the functions addresses of which were taken anywhere in the
program, can be called at that point. Use the #pragma funcall directive to
instruct the linker which functions can be called indirectly from the current function:

#pragma funcall <func name> <called func>[, <called func>,...]
A corresponding pragma must be placed in the source module where the function
func_name is implemented. This module must also include declarations of all func-

tions listed in the called func list.

These functions will be linked if the function func name is called in the code no mat-
ter whether any of them was called or not.

Note: The #pragma funcall directive can help the linker to optimize function frame
allocation in the compiled stack.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 105

CHAPTER 3
Specifics mikroC PRO for AVR

BUILT-IN ROUTINES
The mikroC PRO for AVR compiler provides a set of useful built-in utility functions.

The 1o, Hi, Higher, Highest routines are implemented as macros. If you want to use these
functions you must include built in.h header file (located in the inlclude folder of the compil-
er) into your project.

The Delay us and Delay ms routines are implemented as “inline”; i.e. code is generated in the
place of a call, so the call doesn’t count against the nested call limit.

The vdelay ms, Delay Cyc and Get Fosc kHz are actual C routines. Their sources can be found
in Delays file located in the uses folder of the compiler.

- Lo

- Hi

- Higher
- Highest

- Delay_us
- Delay_ms
- Vdelay_ms
- Delay_Cyc

- Clock_kHz
- Clock_MHz
- Get_Fosc_kHz

Lo

Prototype |unsigned short Lo (long number);

Returns Lowest 8 bits (byte)of number, bits 7. . 0.

Function returns the lowest byte of number. Function does not interpret bit pat-
terns of number — it merely returns 8 bits as found in register.

Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

d = 0x1AC30F4;

Example tmp = Lo(d); // Equals 0xF4

106

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3

Specifics

mikroC PRO for AVR
Hi
Prototype |unsigned short Hi (long number);
Returns Returns next to the lowest byte of number, bits 8..15.
Function returns next to the lowest byte of number. Function does not interpret
bit patterns of number — it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
E I d = O0x1AC30F4;
xample tmp = Hi(d); // Equals 0x30
Higher
Prototype [unsigned short Higher (long number) ;
Returns Returns next to the highest byte of number, bits 16..23.
Function returns next to the highest byte of number. Function does not interpret
bit patterns of number — it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
E I d = 0x1AC30F4;
xample tmp = Higher(d); // Equals O0xAC
Highest
Prototype unsigned short Highest (long number) ;
Returns Returns the highest byte of number, bits 24..31.
Function returns the highest byte of number. Function does not interpret bit pat-
terns of number — it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
E I d = 0x1AC30F4;
xample tmp = Highest(d); // Equals 0x01

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

107

CHAPTER 3
Specifics mikroC PRO for AVR

Delay_us

Prototype |[void Delay us(const unsigned long time in us);

Returns Nothing.

Creates a software delay in duration of time in us microseconds (a constant).
Range of applicable constants depends on the oscillator frequency.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example Delay us(1000); /* One millisecond pause */

Delay_ms

Prototype void Delay ms(const unsigned long time in ms);

Returns Nothing.

Creates a software delay in duration of time in ms milliseconds (a constant).
Range of applicable constants depends on the oscillator frequency.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example Delay ms(1000); /* One second pause */

Vdelay_ms

Prototype |void Vdelay ms (unsigned time in ms);

Returns Nothing.

Creates a software delay in duration of time in ms milliseconds (a variable).
Generated delay is not as precise as the delay created by Delay_ms.
Description
Note that vdelay ms is library function rather than a built-in routine; it is present-
ed in this topic for the sake of convenience.

Requires Nothing.

pause = 1000;
Example //

Vdelay ms (pause); // ~ one second pause

108 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3

Specifics

mikroC PRO for AVR

Delay_Cyc

Prototype void Delay Cyc(char Cycles div by 10);

Returns Nothing.

Creates a delay based on MCU clock. Delay lasts for 10 times the input param-
eter in MCU cycles.

Description Note that pelay cyc is library function rather than a built-in routine; it is present-
ed in this topic for the sake of convenience. There are limitations for
Cycles_div_by 10 value. Value Cycles_div_by 10 must be between 2 and 257

Requires Nothing.

Example Delay Cyc(10); /* Hundred MCU cycles pause */

Clock_kHz

Prototype [unsigned Clock kHz (void);

Returns Device clock in kHz, rounded to the nearest integer.

Function returns device clock in kHz, rounded to the nearest integer.

Description This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example clk = Clock kHz();

Clock_MHz

Prototype |unsigned short Clock MHz (void);

Returns Device clock in MHz, rounded to the nearest integer.

Function returns device clock in MHz, rounded to the nearest integer.

Description This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example clk = Clock MHz();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

109

CHAPTER 3
Specifics mikroC PRO for AVR

Get_Fosc_kHz

Prototype |unsigned long Get Fosc kHz (void);

Returns Device clock in kHz, rounded to the nearest integer.

Function returns device clock in kHz, rounded to the nearest integer.

Description Note that et Fosc kHz is library function rather than a built-in routine; it is pre-

sented in this topic for the sake of convenience.

Requires Nothing.

Example clk = Get Fosc kHz();

CODE OPTIMIZATION

Optimizer has been added to extend the compiler usability, cut down the amount of code gener-
ated and speed-up its execution. The main features are:

Constant folding

All expressions that can be evaluated in the compile time (i.e. are constant) are being replaced
by their results. (3 + 5 -> 8);

Constant propagation
When a constant value is being assigned to a certain variable, the compiler recognizes this and
replaces the use of the variable by constant in the code that follows, as long as the value of a vari-
able remains unchanged.

Copy propagation

The compiler recognizes that two variables have the same value and eliminates one of them fur-
ther in the code.

Value numbering

The compiler "recognizes"” if two expressions yield the same result and can therefore eliminate
the entire computation for one of them.

"Dead code" ellimination

The code snippets that are not being used elsewhere in the programme do not affect the final
result of the application. They are automatically removed.

110 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroC PRO for AVR Specifics

Stack allocation

Temporary registers ("Stacks") are being used more rationally, allowing VERY com-
plex expressions to be evaluated with a minimum stack consumption.

Local vars optimization

No local variables are being used if their result does not affect some of the global or
volatile variables.

Better code generation and local optimization

Code generation is more consistent and more attention is payed to implement spe-
cific solutions for the code "building bricks" that further reduce output code size.

Related topics: AVR specifics, mikroC PRO for AVR specifics, Memory type speci-
fiers

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 111

CHAPTER 3
Specifics mikroC PRO for AVR

112 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

AVR Specifics

Types Efficiency

First of all, you should know that AVR ALU, which performs arithmetic operations, is opti-
mized for working with bytes. Although mikroC PRO is capable of handling very complex
data types, AVR may choke on them, especially if you are working on some of the older
models. This can dramatically increase the time needed for performing even simple oper-
ations. Universal advice is to use the smallest possible type in every situation. It applies
to all programming in general, and doubly so with microcontrollers. Types efficiency is
determined by the part of RAM memory that is used to store a variable/constant.

113

CHAPTER 4

AVR Specifics mikroC PRO for AVR

Nested Calls Limitations

There are no Nested Calls Limitations, except by RAM size. A Nested call repre-
sents a function call to another function within the function body. With each function
call, the stack increases for the size of the returned address. Number of nested calls
is equel to the capacity of RAM which is left out after allocation of all variables.

Important notes:

- There are many different types of derivates, so it is necessary to be famil-
iar with characteristics and special features of the microcontroller in you
are using.

- Some of the AVR MCUs have hardware multiplier. Due to this, be sure to
pay attention when porting code from one MCU to another, because com
piled code can vary by its size.

- Not all microcontrollers share the same instruction set. It is advisable to
carefully read the instruction set of the desired MCU, before you start writ-
ing your code. Compiler automatically takes care of appropiate instruction
set, and if unapropriate asm instruction is used in in-line assembly, co-
mpiler will report an error.

- Program counter size is MCU dependent. Thus, there are two sets
of libraries :

- MCUs with program counter size larger than 16 bits (flash memo-
ry size larger than 128kb)

- MCUs with program counter size less or equal 16 bits (flash mem-
ory size smaller than 128kb)

- Assembly SPM instruction and its derivates must reside in Boot Loader
section of program memory.

- Part of flash memory can be dedicated to Boot Loader code. For details,
refer to AVR memory organization.

Related topics: mikroC PRO for AVR specifics, AVR memory organization

114 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 4
mikroC PRO for AVR AVR Specifics

AVR MEMORY ORGANIZATION

The AVR microcontroller's memory is divided into Program Memory and Data
Memory. Program Memory (ROM) is used for permanent saving program being exe-
cuted, while Data Memory (RAM) is used for temporarily storing and keeping inter-
mediate results and variables.

Program Memory (ROM)

Program Memory (ROM) is used for permanent saving program (CODE) being exe-
cuted, and it is divided into two sections, Boot Program section and the Application
Program section. The size of these sections is configured by the BOOTSZ fuse.
These two sections can have different level of protection since they have different
sets of Lock bits.

Depending on the settings made in compiler, program memory may also used to
store a constant variables. The AVR executes programs stored in program memory
only. code memory type specifier is used to refer to program memory.

A

Program
Memory

v

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 115

CHAPTER 4
AVR Specifics mikroC PRO for AVR

Data Memory
Data memory consists of :

- Rx space

- 1/0 Memory

- Extended /O Memory (MCU dependent)
- Internal SRAM

Rx space consists of 32 general purpose working 8-bit registers (R0-R31). These
registers have the shortest (fastest) access time, which allows single-cycle Arith-
metic Logic Unit (ALU) operation.

I/O Memory space contains addresses for CPU peripheral function, such as Control
registers, SPI, and other I/O functions.

Due to the complexity, some AVR microcontrollers with more peripherals have
Extended I/O memory, which occupies part of the internal SRAM. Extended 1/O
memory is MCU dependent.

Storing data in I/O and Extended I/O memory is handled by the compiler only. Users
can not use this memory space for storing their data.

Internal SRAM (Data Memory) is used for temporarily storing and keeping interme-
diate results and variables (static link and dynamic link).

There are four memory type specifiers that can be used to refer to the data memo-
ry: rx, data, io and sfr.

e N
| AVR memory RAM memory |
I spaces space }
I 4 0x00 ' 0x00 |
| Register : . |
| Space) |
| \4d 0x1F |
| 1 it |
I o : : |
| Space ;i . |
| yboeeE | Ox5F |
I AT ox00 | 0x60 I
| SRAM |
| (Data) Space| : : |
| y EndofSRAM-1| End of RAM - 1 I
I

e /

116 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 4
mikroC PRO for AVR AVR Specifics

MEMORY TYPE SPECIFIERS

The mikroC PRO for AVR supports usage of all memory areas. Each variable may be explicitly
assigned to a specific memory space by including a memory type specifier in the declaration, or
implicitly assigned.

The following memory type specifiers can be used:

- code
- data
- rx
- io

- sfr

Memory type specifiers can be included in variable declaration.

For example:

char data data buffer; // puts data buffer in data ram
const char code txt[] = "ENTER PARAMETER:"; // puts text in program memory
code

Description | The code memory type may be used for allocating constants in program memory.

// puts txt in program memory

Example const char code txt[] = "ENTER PARAMETER:";

data

Description | This memory specifier is used when storing variable to the internal data SRAM.

// puts PORTG in data ram

Exan"ﬂe sfr data unsigned short PORTG absolute 0x65;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 117

CHAPTER 4
AVR Specifics mikroC PRO for AVR

rx

This memory specifier allows variable to be stored in the Rx space (Register
file).

Description |Note: In most of the cases, there will be enough space left for the user variables
in the Rx space. However, since compiler uses Rx space for storing temporary
variables, it might happen that user variables will be stored in the internal data
SRAM, when writing complex programs.

// puts y in Rx space

Example sfr char rx y;

io

Description | This memory specifier allows user to access the I/O Memory space.

// put PORTB in io memory space

Example sfr io unsigned short PORTB absolute 0x38;

sfr

This memory specifier in combination with (rx, io, data) allows user to
Description |access special function registers. It also instructs compiler to maintain same
identifier in C and assembly.

sfr io unsigned short PORTB absolute 0x38; // put PORTB in I/O
memory space

Example sfr rx char vy; // puts y in Rx space sfr data unsigned
short PORTG absolute 0x65; and sfr unsigned short PORTG absolute

0x65; are equivalent, and put PORTG in Extended I/O Space.

Note: If none of the memory specifiers are used when declaring a variable, data specifier will be
set as default by the compiler.

Related topics: AVR Memory Organization, Accessing individual bits, SFRs, Constants, Func-
tions

118 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

mikroC PRO for AVR
Language Reference

The mikroC PRO for AVR Language Reference describes the syntax, semantics and
implementation of the mikroC PRO for AVR language.

The aim of this reference guide is to provide a more understandable description of
the mikroC PRO for AVR language to the user.

119

CHAPTER 5
Language Reference mikroC PRO for AVR

MIKROC PRO FOR AVR LANGUAGE REFERENCE

Lexical Elements

Whitespace
Comments
Tokens
Constants
Constants Overview
Integer Constants
Floating Point Constants
Character Constants
String Constants
Enumeration Constants
Pointer Constants
Constant Expressions
Keywords
Identifiers
Punctuators
Concepts

Objects and Lvalues
Scope and Visibility
Name Spaces
Duration
Types
Fundamental Types
Arithmetic Types
Enumerations
Void Type
Derived Types
Arrays
Pointers
Introduction to Pointers
Pointer Arithmetic
Structures
Introduction to Structures
Working with Structures
Structure Member Access
Unions
Bit Fields
Types Conversions
Standard Conversions
Explicit Typecasting
Declarations
Introduction to Declarations

120 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 5
Language Reference

Linkage

Storage Classes
Type Qualifiers
Typedef Specifier
ASM Declaration
Initialization

Functions

Introduction to Functions
Function Calls and Argument Conversion

Operators

Introduction to Operators

Operators Precedence and Associativity
Arithmetic Operators

Relational Operators

Bitwise Operators

Logical Operators

Conditional Operator

Assignment Operators

Sizeof Operator

Expressions

Introduction to Expressions
Comma Expressions

Statements

Introduction
Labeled Statements
Expression Statements
Selection Statements
If Statement
Switch Statement
Iteration Statements (Loops)
While Statement
Do Statement
For Statement
Jump Statements
Break and Continue Statements
Goto Statement
Return Statement
Compound Statements (Blocks)

Preprocessor

Introduction to Preprocessor
Preprocessor Directives
Macros

File Inclusion

Preprocessor Operators
Conditional Compilation

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

121

CHAPTER 5
Language Reference mikroC PRO for AVR

LEXICAL ELEMENTS OVERVIEW

The following topics provide a formal definition of the mikroC PRO for AVR lexical
elements. They describe different categories of word-like units (tokens) recognized
by the mikroC PRO for AVR.

In the tokenizing phase of compilation, the source code file is parsed (that is, bro-
ken down) into tokens and whitespace. The tokens in the mikroC PRO for AVR are
derived from a series of operations performed on your programs by the compiler and
its built-in preprocessor.

WHITESPACE

Whitespace is a collective name given to spaces (blanks), horizontal and vertical
tabs, newline characters and comments. Whitespace can serve to indicate where
tokens start and end, but beyond this function, any surplus whitespace is discarded.
For example, two sequences

int 1i; float £f;
and

int
i;

float f£;

are lexically equivalent and parse identically to give six tokens:

int
i

float
f

’

Whitespace in Strings

The ASCII characters representing whitespace can occur within string literals. In that
case they are protected from the normal parsing process (they remain as a part of
the string). For example,

char name[] = "mikro foo";

parses into seven tokens, including a single string literal token:

122 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

char
name
[
]

"mikro foo" /* just one token here! */

Line Splicing with Backslash (\)

A special case occurs if a line ends with a backslash (\). Both backslash and new
line character are discarded, allowing two physical lines of a text to be treated as
one unit. So, the following code

"mikroC PRO \
Compiler"
parses into "mikroC PRO Compiler". Refer to String Constants for more information.

COMMENTS

Comments are pieces of a text used to annotate a program and technically are
another form of whitespace. Comments are for the programmer’s use only; they are
stripped from the source text before parsing. There are two ways to delineate com-
ments: the C method and the C++ method. Both are supported by mikroC PRO for
AVR.

You should also follow the guidelines on the use of whitespace and delimiters in
comments, discussed later in this topic to avoid other portability problems.

C comments

C comment is any sequence of characters placed after the symbol pair /*. The com-
ment terminates at the first occurance of the pair */ following the initial /*. The entire
sequence, including four comment-delimiter symbols, is replaced by one space after
macro expansion.

In the mikroC PRO for AVR,

int /* type */ 1 /* identifier */;

parses as:

int 1i;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 123

CHAPTER 5

Language Reference mikroC PRO for AVR

Note that the mikroC PRO for AVR does not support a nonportable token pasting
strategy using /**/. For more information on token pasting, refer to the Preprocessor
Operators.

C++ comments

The mikroC PRO for AVR allows single-line comments using two adjacent slashes
(//). The comment can start in any position and extends until the next new line.

The following code

int i; // this is a comment

int j;
parses as:

int 1;
int j;

Nested comments

ANSI C doesn’t allow nested comments. The attempt to nest a comment like this
/* int /* declaration */ 1i; */

fails, because the scope of the first /* ends at the first /. This gives us

i */

which would generate a syntax error.

124

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

TOKENS

Token is the smallest element of a C program that compiler can recognize. The
parser separates tokens from the input stream by creating the longest token possi-
ble using the input characters in a left—to—right scan.

The mikroC PRO for AVR recognizes the following kinds of tokens:

- keywords
- identifiers
- constants
- operators
- punctuators (also known as separators)

Tokens can be concatenated (pasted) by means of the preprocessor operator ##.
See the Preprocessor Operators for details.

Token Extraction Example

Here is an example of token extraction. Take a look at the following example code
sequence:

inter = a+++b;

First, note that inter would be parsed as a single identifier, rather than as the key-
word int followed by the identifier er.

The programmer who has written the code might have intended to write inter = a
+ (++b), but it wouldn’t work that way. The compiler would parse it into the seven
following tokens:

inter // variable identifier

= // assignment operator

a // variable identifier

++ // postincrement operator
+ // addition operator

b // variable identifier

; // statement terminator
Note that +++ parses as ++ (the longest token possible) followed by +.

According to the operator precedence rules, our code sequence is actually:

inter (a++)+b;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 125

CHAPTER 5
Language Reference mikroC PRO for AVR

CONSTANTS
Constants or literals are tokens representing fixed numeric or character values.
The mikroC PRO for AVR supports:

- integer constants

- floating point constants

- character constants

- string constants (strings literals)
- enumeration constants

The data type of a constant is deduced by the compiler using such clues as a
numeric value and format used in the source code.

126 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

INTEGER CONSTANTS

Integer constants can be decimal (base 10), hexadecimal (base 16), binary (base
2), or octal (base 8). In the absence of any overriding suffixes, the data type of an
integer constant is derived from its value.

Long and Unsigned Suffixes

The suffix T (or1) attached to any constant forces that constant to be represented as
a long. Similarly, the suffix u (or u) forces a constant to be unsigned. Both . and u
suffixes can be used with the same constant in any order or case: ul, Lu, UL, efc.

In the absence of any suffix (U, u, 1, or 1), a constant is assigned the “smallest”

of the following types that can accommodate its value: short, unsigned short,
int, unsigned int, long int, unsigned long int.

Otherwise:

- If a constant has the u suffix, its data type will be the first of the following
that can accommodate its value: unsigned short, unsigned int,
unsigned long int.

- If a constant has the 1 suffix, its data type will be the first of the following
that can accommodate its value: 1ong int, unsigned long int.

- If a constant has both 1. and u suffixes, (Lu or uL), its data type will be
unsigned long int.

Decimal

Decimal constants from -2147483648 to 4294967295 are allowed. Constants
exceeding these bounds will produce an “Out of range” error. Decimal constants
must not use an initial zero. An integer constant that has an initial zero is interpret-
ed as an octal constant. Thus,

int 1 = 10; /* decimal 10 */
int 1 = 010; /* decimal 8 */
int 1 = 0; /* decimal 0 = octal 0 */

In the absence of any overriding suffixes, the data type of a decimal constant is
derived from its value, as shown below:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 127

CHAPTER 5

Language Reference mikroC PRO for AVR
Value Assigned to Constant Assumed Type
< -2147483648 Error: Out of range!
-2147483648 — -32769 long
-32768 — -129 int
-128 — 127 short
128 — 255 unsigned short
256 — 32767 int
32768 — 65535 unsigned int
65536 — 2147483647 long
2147483648 — 4294967295 unsigned long
> 4294967295 Error: Out of range!

Hexadecimal

All constants starting with 0x (or 0x) are taken to be hexadecimal. In the absence of
any overriding suffixes, the data type of an hexadecimal constant is derived from its
value, according to the rules presented above. For example, 0xc367 will be treated
as unsigned int.

Binary

All constants starting with 0o (or 0B) are taken to be binary. In the absence of any over-
riding suffixes, the data type of an binary constant is derived from its value, according
to the rules presented above. For example, 0b11101 will be treated as short.

Octal

All constants with an initial zero are taken to be octal. If an octal constant contains
the illegal digits 8 or 9, an error is reported. In the absence of any overriding suffix-
es, the data type of an octal constant is derived from its value, according to the rules
presented above. For example, 0777 will be treated as int.

128 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

FLOATING POINT CONSTANTS

A floating-point constant consists of:

- Decimal integer

- Decimal point

- Decimal fraction

- e or E and a signed integer exponent (optional)
- Type suffix: £ or F or 1 or L (optional)

Either decimal integer or decimal fraction (but not both) can be omitted. Either dec-
imal point or letter e (or) with a signed integer exponent (but not both) can be omit-
ted. These rules allow conventional and scientific (exponent) notations.

Negative floating constants are taken as positive constants with an unary operator
minus (-) prefixed.

The mikroC PRO for AVR limits floating-point constants to the range
+1.17549435082 * 10-38 .. +6.80564774407 * 1038.

Here are some examples:

0. // = 0.0

-1.23 // = -1.23
23.45e6 // = 23.45 * 1076
2e-5 // = 2.0 * 10"-5
3E+10 // = 3.0 * 10710
.09E34 // = 0.09 * 10734

The mikroC PRO for AVR floating-point constants are of the type doub1e. Note that
the mikroC PRO for AVR'’s implementation of ANSI Standard considers fioat and
double (together with the 1ong double variant) to be the same type.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 129

CHAPTER 5
Language Reference mikroC PRO for AVR

CHARACTER CONSTANTS

A character constant is one or more characters enclosed in single quotes, such as
'a', '+',0r "\n'.Inthe mikroC PRO for AVR, single-character constants are of the
unsigned int type. Multi-character constants are referred to as string constants or
string literals. For more information refer to String Constants.

Escape Sequences

A backslash character (\) is used to introduce an escape sequence, which allows a
visual representation of certain nongraphic characters. One of the most common
escape constants is the newline character (\ n).

A backslash is used with octal or hexadecimal numbers to represent an ASCIl sym-
bol or control code corresponding to that value; for example, '\ x3r' for the ques-
tion mark. Any value within legal range for data type char (0 to 0xrr for the mikroC
PRO for AVR) can be used. Larger numbers will generate the compiler error “Out of
range”.

For example, the octal number \ 777 is larger than the maximum value allowed
(\377) and will generate an error. The first nonoctal or nonhexadecimal character
encountered in an octal or hexadecimal escape sequence marks the end of the
sequence.

Note: You must use the sequence \\ to represent an ASCII backslash, as used in
operating system paths.

The following table shows the available escape sequences:

130 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5

mikroC PRO for AVR Language Reference
Sequence |Value Char What it does
\a 0x07 BEL Audible bell
\b 0x08 BS Backspace
\ £ 0x0C FF Formfeed
\n 0x0A LF Newline (Linefeed)
\r 0x0D CR Carriage Return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical Tab
AN\ 0x5C / Backslash
\! 0x27 ! Single quote (Apostrophe)
\ " 0x22 " Double quote
\? O0x3F ? Question mark
\O any O = string of up to 3 octal digits
\ xH any H = string of hex digits
\ XH any H = string of hex digits

Disambiguation

Some ambiguous situations might arise when using escape sequences.

Here is an example:

Lced Out Cp("\x091.0 Intro");

This is intended to be interpreted as \ x09 and "1.0 Intro". However, the mikroC
PRO for AVR compiles it as the hexadecimal number \ x091 and literal string .0
Intro". To avoid such problems, we could rewrite the code in the following way:
Lcd Out Cp(™\x09™ "1.0 Intro");

For more information on the previous line, refer to String Constants.

Ambiguities might also arise if an octal escape sequence is followed by a nonoctal
digit. For example, the following constant:

vv\ 118"

would be interpreted as a two-character constant made up of the characters \ 11 and
8, because 8 is not a legal octal digit.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

131

CHAPTER 5
Language Reference mikroC PRO for AVR

STRING CONSTANTS

String constants, also known as string literals, are a special type of constants which
store fixed sequences of characters. A string literal is a sequence of any number of
characters surrounded by double quotes:

"This is a string."
The null string, or empty string, is written like "". A literal string is stored internally
as a given sequence of characters plus a final null character. A null string is stored

as a single null character.

The characters inside the double quotes can include escape sequences. This code,
for example:

"\ £\ "Name\ "\\\ tAddress\n\n"
prints like this:
"Name "™\ Address
The "Name" is preceded by two tabs; The Address is preceded by one tab. The line
is followed by two new lines. The \ " provides interior double quotes. The escape

character sequence \\ is translated into \ by the compiler.

Adjacent string literals separated only by whitespace are concatenated during the
parsing phase. For example:

"This is " "just"
" an example."

is equivalent to
"This is just an example."
Line Continuation with Backslash

You can also use the backslash (\) as a continuation character to extend a string
constant across line boundaries:

"This is really \
a one-line string."

132 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

ENUMERATION CONSTANTS

Enumeration constants are identifiers defined in enum type declarations. The identi-
fiers are usually chosen as mnemonics to contribute to legibility. Enumeration con-
stants are of int type. They can be used in any expression where integer constants
are valid.

For example:
enum weekdays { SUN = 0, MON, TUE, WED, THU, FRI, SAT };
The identifiers (enumerators) used must be unique within the scope of the enum

declaration. Negative initializers are allowed. See Enumerations for details about
enun declarations.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 133

CHAPTER 5
Language Reference mikroC PRO for AVR

Pointer Constants

A pointer or pointed-at object can be declared with the const modifier. Anything
declared as const cannot change its value. It is also illegal to create a pointer that
might violate a non-assignability of the constant object.

Consider the following examples:

int 1i; // i 1is an int
int * pi; // pi 1s a pointer to int (uninitial-
ized)
int * const cp = &i; // cp 1is a constant pointer to int
const int ci = 7; // ci is a constant int
const int * pci; // pci is a pointer to constant int
const int * const cpc = &ci; // cpc is a constant pointer to a

// constant int

The following assignments are legal:

i = ci; // Assign const-int to int
*cp = ci; // Assign const-int to
// object-pointed-at-by-a-const-pointer
++pci; // Increment a pointer-to-const
pci = cpc; // Assign a const-pointer-to-a-const to
a
// pointer-to-const

The following assignments are illegal:

ci = 0; // NO--cannot assign to a const-int
ci--; // NO--cannot change a const-int
*pci = 3; // NO--cannot assign to an object
// pointed at by pointer-to-const.
cp = &ci; // NO--cannot assign to a const-pointer,
// even if value would be unchanged.
cpct++; // NO--cannot change const-pointer
pi = pci; // NO--if this assignment were allowed,
// you would be able to assign to *pci
// (a const value) by assigning to *pi.

Similar rules are applayed to the volatile modifier. Note that both const and
volatile can appear as modifiers to the same identifier.

134 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

CONSTANT EXPRESSIONS

A constant expressions can be evaluated during translation rather that runtime and
accordingly may be used in any place that a constant may be.

Constant expressions can consist only of the following:

- literals,

- enumeration constants,

- simple constants (no constant arrays or structures),
- sizeof operators.

Constant expressions cannot contain any of the following operators, unless the
operators are contained within the operand of a sizeof operator: assignment,
comma, decrement, function call, increment.

Each constant expression can evaluate to a constant that is in the range of repre-
sentable values for its type.

Constant expression can be used anywhere a constant is legal.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 135

CHAPTER 5
Language Reference mikroC PRO for AVR

KEYWORDS

Keywords are words reserved for special purposes and must not be used as normal
identifier names.

Beside standard C keywords, all relevant SFR are defined as global variables and
represent reserved words that cannot be redefined (for example: TMrO, PCL, etc).
Probe the Code Assistant for specific letters (Ctrl+Space in Editor) or refer to Pre-
defined Globals and Constants.

Here is an alphabetical listing of keywords in C:

- asm
- auto

- break

- case

- char

- const

- continue
- default
- do

- double

- else

- enum

- extern

- float

- for

- goto

- 1if

- int

- long

- register
- return

- short

- signed

- sizeof

- static

- struct

- switch

- typedef
- union

- unsigned
- void

- volatile
- while

Also, the mikroC PRO for AVR includes a number of predefined identifiers used in
libraries. You could replace them by your own definitions, if you want to develop your
own libraries. For more information, see mikroC PRO for AVR Libraries.

136 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

IDENTIFIERS

Identifiers are arbitrary names of any length given to functions, variables, symbolic
constants, user-defined data types, and labels. All these program elements will be
referred to as objects throughout the help (don't get confused with the meaning of
object in object-oriented programming).

Identifiers can contain the letters a to z and A to Z, underscore character “_”, and
digits 0 to 9. The only restriction is that the first character must be a letter or an
underscore.

Case Sensitivity

The mikroC PRO for AVR identifiers are not case sensitive by default, so that sum,
sum, and suM represent an equivalent identifier. Case sensitivity can be activated or
suspended in Output Settings window. Even if case sensitivity is turned off Key-
words remain case sensitive and they must be written in lower case.

Uniqueness and Scope

Although identifier names are arbitrary (according to the stated rules), if the same
name is used for more than one identifier within the same scope and sharing the
same name space then error arises. Duplicate names are legal for different name
spaces regardless of scope rules. For more information on scope, refer to Scope
and Visibility.

Identifier Examples

Here are some valid identifiers:

temperature V1
Pressure

no hit
dat2string
SUM3

_vtext

... and here are some invalid identifiers:

Ttemp // NO -- cannot begin with a numeral

Shigher // NO -- cannot contain special characters

int // NO —-- cannot match reserved word

323.07.04 // NO -- cannot contain special characters (dot)

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 137

CHAPTER 5
Language Reference mikroC PRO for AVR

PUNCTUATORS
The mikroC PRO for AVR punctuators (also known as separators) are:

[1— Brackets

() — Parentheses
{} - Braces

, — Comma

; — Semicolon

: — Colon

* — Asterisk

= — Equal sign

— Pound sign

Most of these punctuators also function as operators.

Brackets

Brackets [] indicate single and multidimensional array subscripts:

char ch, str[] = "mikro";

int mat[311 4] ; /* 3 x 4 matrix */

ch = strf 3] ; /* 4th element */

Parentheses

Parentheses () are used to group expressions, isolate conditional expressions,

and indicate function calls and function parameters:

d=c¢c* (a + b); /* override normal precedence */

if (d == z) ++x; /* essential with conditional statement */
func () ; /* function call, no args */

void func2 (int n); /* function declaration with parameters */

Parentheses are recommended in macro definitions to avoid potential precedence
problems during an expansion:

#define CUBE (x) ((x) * (x) * (x))

For more information, refer to Operators Precedence And Associativity and Expres-
sions.

138 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

Braces

Braces { } indicate the start and end of a compound statement:

if (d == z) {
++x;
func () ;

}

Closing brace serves as a terminator for the compound statement, so a semicolon
is not required after } , except in structure declarations. Sometimes, the semicolon
can be illegal, as in

if (statement)
R /* illegal semicolon! */
else
{ ...}z
For more information, refer to the Compound Statements.
Comma
Comma (,) separates the elements of a function argument list:
void func(int n, float £, char ch);
Comma is also used as an operator in comma expressions. Mixing two uses of

comma is legal, but you must use parentheses to distinguish them. Note that (exp1,
exp2) evalutates both but is equal to the second:

func (i, 7J); /* call func with two args */
func ((expl, exp2), (exp3, exp4, expd)): /* also calls func with two
args! */

Semicolon

Semicolon (;) is a statement terminator. Any legal C expression (including the empty
expression) followed by a semicolon is interpreted as a statement, known as an
expression statement. The expression is evaluated and its value is discarded. If the
expression statement has no side effects, the mikroC PRO for AVR might ignore it.

a + b; /* Evaluate a + b, but discard value */
++a; /* Side effect on a, but discard value of ++a */
; /* Empty expression, or a null statement */

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 139

CHAPTER 5
Language Reference mikroC PRO for AVR

Semicolons are sometimes used to create an empty statement:

for (1 = 0; 1 < n; i++) ;

For more information, see the Statements.

Colon

Use colon (:) to indicate the labeled statement:

start: x =0;

gé).’éo start;

Labels are discussed in the Labeled Statements.

Asterisk (Pointer Declaration)

Asterisk () in a variable declaration denotes the creation of a pointer to a type:

char *char ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by indicating a pertinent
number of asterisks:

int **int ptr; /* a pointer to an array of integers */

double ***double ptr; /* a pointer to a matrix of doubles */

You can also use asterisk as an operator to either dereference a pointer or as mul-
tiplication operator:

i = *int ptr;
a =Db* 3.14;

For more information, see the Pointers.
Equal Sign
Equal sign (=) separates variable declarations from initialization lists:

int test[5] ={ 1, 2, 3, 4, 51};
int x = 5;

Equal sign is also used as an assignment operator in expressions:

140 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

int a, b, c;
a=>b + c;

For more information, see Assignment Operators.

Pound Sign (Preprocessor Directive)

Pound sign (#) indicates a preprocessor directive when it occurs as the first non-
whitespace character on a line. It signifies a compiler action, not necessarily asso-
ciated with a code generation. See the Preprocessor Directives for more informa-

tion.

and #+# are also used as operators to perform token replacement and merging dur-
ing the preprocessor scanning phase. See the Preprocessor Operators.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 141

CHAPTER 5
Language Reference mikroC PRO for AVR

CONCEPTS

This section covers some basic concepts of language, essential for understanding
of how C programs work. First, we need to establish the following terms that will be
used throughout the help:

- Objects and Ivalues
- Scope and Visibility
- Name Spaces

- Duration

OBJECTS

An object is a specific region of memory that can hold a fixed or variable value (or
set of values). This use of a term object is different from the same term, used in
object-oriented languages, which is more general. Our definiton of the word would
encompass functions, variables, symbolic constants, user-defined data types, and
labels.

Each value has an associated name and type (also known as a data type). The
name is used to access the object and can be a simple identifier or complex expres-
sion that uniquely refers the object.

Objects and Declarations

Declarations establish a necessary mapping between identifiers and objects. Each
declaration associates an identifier with a data type.

Associating identifiers with objects requires each identifier to have at least two attrib-
utes: storage class and type (sometimes referred to as data type). The mikroC PRO
for AVR compiler deduces these attributes from implicit or explicit declarations in the
source code. Usually, only the type is explicitly specified and the storage class spec-
ifier assumes the automatic value auto.

Generally speaking, an identifier cannot be legally used in a program before its dec-
laration point in the source code. Legal exceptions to this rule (known as forward ref-
erences) are labels, calls to undeclared functions, and struct or union tags.

The range of objects that can be declared includes:

142 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

- Variables

- Functions

- Types

- Arrays of other types

- Structure, union, and enumeration tags
- Structure members

- Union members

- Enumeration constants

- Statement labels

- Preprocessor macros

The recursive nature of the declarator syntax allows complex declarators. You'll
probably want to use typedefs to improve legibility if constructing complex objects.

Lvalues

Lvalue is an object locator: an expression that designates an object. An example of
Ivalue expression is * P, where P is any expression evaluating to a non-null pointer.
A modifiable Ivalue is an identifier or expression that relates to an object that can be
accessed and legally changed in memory. A const pointer to a constant, for exam-
ple, is not a modifiable lvalue. A pointer to a constant can be changed (but its deref-
erenced value cannot).

Historically, 1 stood for “left”, meaning that Ivalue could legally stand on the left (the
receiving end) of an assignment statement. Now only modifiable Ivalues can legal-
ly stand to the left of an assignment operator. For example, if a and b are noncon-
stant integer identifiers with properly allocated memory storage, they are both mod-
ifiable Ivalues, and assignments suchas a = 1andb = a + b are legal.

Rvalues
The expression a + bis notlvalue: a + b = a is illegal because the expression on

the left is not related to an object. Such expressions are sometimes called rvalues
(short for right values).

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 143

CHAPTER 5
Language Reference mikroC PRO for AVR

SCOPE AND VISIBILITY
Scope

The scope of an identifier is a part of the program in which the identifier can be used
to access its object. There are different categories of scope: block (or local), func-
tion, function prototype, and file. These categories depend on how and where iden-
tifiers are declared.

- Block: The scope of an identifier with block (or local) scope starts at the
declaration point and ends at the end of the block containing the declara-
tion (such block is known as the enclosing block). Parameter declarations
with a function definition also have block scope, limited to the scope of the
function body.

- File: File scope identifiers, also known as globals, are declared outside of
all blocks; their scope is from the point of declaration to the end of the
source file.

- Function: The only identifiers having function scope are statement labels.
Label names can be used with goto statements anywhere in the function
in which the label is declared. Labels are declared implicitly by writing
label_name: followed by a statement. Label names must be unique within
a function.

- Function prototype: Identifiers declared within the list of parameter dec-
larations in a function prototype (not as a part of a function definition) have a
function prototype scope. This scope ends at the end of the function prototype.

Visibility

The visibility of an identifier is a region of the program source code from which an
identifier’s associated object can be legally accessed.

Scope and visibility usually coincide, though there are circumstances under which
an object becomes temporarily hidden by the appearance of a duplicate identifier:
the object still exists but the original identifier cannot be used to access it until the
scope of the duplicate identifier ends.

Technically, visibility cannot exceed a scope, but a scope can exceed visibility. See
the following example:

144 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5

mikroC PRO for AVR Language Reference

void f (int i) {
int J; // auto by default
3 3; // int i and j are in scope and visible

{ // nested block
double j; // J 1s local name in the nested block
j = 0.1; // i and double Jj are visible;
// int j = 3 in scope but hidden
}
// double j out of scope
j o+=1; // int J visible and = 4
}

// 1 and j are both out of scope

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 145

CHAPTER 5
Language Reference mikroC PRO for AVR

NAME SPACES

Name space is a scope within which an identifier must be unique. The mikroC PRO
for AVR uses four distinct categories of identifiers:

1. goto label names - must be unique within the function in which they are
declared.

2. Structure, union, and enumeration tags - must be unique within the block
in which they are defined. Tags declared outside of any function must be

unique.

3. Structure and union member names - must be unique within the structure
or union in which they are defined. There is no restriction on the type or
offset of members with the same member name in different structures.

4. Variables, typedefs, functions, and enumeration members - must be
unique within the scope in which they are defined. Externally declared
identifiers must be unique among externally declared variables.

Duplicate names are legal for different name spaces regardless of the scope rules.
For example:

int blue = 73;

{ // open a block

enum colors { black, red, green, blue, violet, white } c;
/* enumerator blue = 3 now hides outer declaration of int blue */
struct colors { int 1, J; }; // ILLEGAL: colors duplicate tag
double red = 2; // ILLEGAL: redefinition of red
}
blue = 37; // back in int blue scope

146 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

DURATION

Duration, closely related to a storage class, defines a period during which the
declared identifiers have real, physical objects allocated in memory. We also distin-
guish between compile-time and run-time objects. Variables, for instance, unlike
typedefs and types, have real memory allocated during run time. There are two
kinds of duration: static and local.

Static Duration

Memory is allocated to objects with static duration as soon as execution is under-
way; this storage allocation lasts until the program terminates. Static duration
objects usually reside in fixed data segments allocated according to the memory
model in force. All globals have static duration. All functions, wherever defined, are
objects with static duration. Other variables can be given static duration by using the
explicit static or extern storage class specifiers.

In the mikroC PRO for AVR, static duration objects are not initialized to zero (or null)
in the absence of any explicit initializer.

Don’t mix static duration with file or global scope. An object can have static duration
and local scope — see the example below.

Local Duration

Local duration objects are also known as automatic objects. They are created on the
stack (or in a register) when an enclosing block or a function is entered. They are
deallocated when the program exits that block or function. Local duration objects
must be explicitly initialized; otherwise, their contents are unpredictable.

The storage class specifier auto can be used when declaring local duration vari-
ables, but it is usually redundant, because auto is default for variables declared
within a block.

An object with local duration also has local scope because it does not exist outside
of its enclosing block. On the other hand, a local scope object can have static dura-
tion. For example:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 147

CHAPTER 5

Language Reference mikroC PRO for AVR
void f£() {
/* local duration variable; init a upon every call to f */
int a = 1;

/* static duration variable; init b only upon first call to f */
static int b = 1;

/* checkpoint! */

a++;

b++;

}

void main () {
/* At checkpoint, we will have: */

£f(); // a=1, b=1, after first call,

f(); // a=1, b=2, after second call,

£f(); // a=1, b=3, after third call,
// etc.

}

148 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

TYPES

The mikroC PRO for AVR is a strictly typed language, which means that every
object, function, and expression must have a strictly defined type, known in the time
of compilation. Note that the mikroC PRO for AVR works exclusively with numeric
types.

The type serves:

- to determine the correct memory allocation required initially.

- to interpret the bit patterns found in the object during subsequent access.

- in many type-checking situations, to ensure that illegal assignments are
trapped.

The mikroC PRO for AVR supports many standard (predefined) and user-defined
data types, including signed and unsigned integers in various sizes, floating-point
numbers with various precisions, arrays, structures, and unions. In addition, point-
ers to most of these objects can be established and manipulated in memory.

The type determines how much memory is allocated to an object and how the pro-
gram will interpret the bit patterns found in the object’s storage allocation. A given
data type can be viewed as a set of values (often implementation-dependent) that
identifiers of that type can assume, together with a set of operations allowed with
these values. The compile-time operator sizeof allows you to determine the size in
bytes of any standard or user-defined type.

The mikroC PRO for AVR standard libraries and your own program and header files
must provide unambiguous identifiers (or expressions derived from them) and types
so that the mikroC PRO for AVR can consistently access, interpret, and (possibly)
change the bit patterns in memory corresponding to each active object in your pro-
gram.

Type Categories
A common way to categorize types is to divide them into:

- fundamental
- derived

The fudamental types represent types that cannot be split up into smaller parts.
They are sometimes referred to as unstructured types. The fundamental types are
void, char, int, float, and double, together with short, long, signed, and
unsigned variants of some of them. For more information on fundamental types,
refer to the topic Fundamental Types.

The derived types are also known as structured types and they include pointers to
other types, arrays of other types, function types, structures, and unions. For more
information on derived types, refer to the topic Derived Types.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 149

CHAPTER 5
Language Reference mikroC PRO for AVR

FUNDAMENTAL TYPES

The fudamental types represent types that cannot be divided into more basic ele-
ments, and are the model for representing elementary data on machine level. The
fudamental types are sometimes referred to as unstructured types, and are used as
elements in creating more complex derived or user-defined types.

The fundamental types include:

- Arithmetic Types
- Enumerations
- Void Type

ARITHMETIC TYPES

The arithmetic type specifiers are built up from the following keywords: void, char,
int, float and double, together with the prefixes short, long, signed and unsigned.
From these keywords you can build both integral and floating-point types.

Integral Types

The types char and int, together with their variants, are considered to be integral
data types. Variants are created by using one of the prefix modifiers short, long,
signed and unsigned.

In the table below is an overview of the integral types — keywords in parentheses
can be (and often are) omitted.

The modifiers signed and unsigned can be applied to both char and int. In the absence
of the unsigned prefix, signed is automatically assumed for integral types. The only
exception is char, which is unsigned by default. The keywords signed and unsigned,
when used on their own, mean signed int and unsigned int, respectively.

The modifiers short and 1ong can only be applied to int. The keywords short and
long, used on their own, mean short int and long int, respectively.

150 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 5
Language Reference

Type Size in bytes Range
(unsigned) char 1 0.. 255
signed char 1 -128 .. 127
(signed) short (int) 1 -128 .. 127
unsigned short (int) 1 0..255
(signed) int 2 -32768 .. 32767
unsigned (int) 2 0 .. 65535
(signed) long (int) 4 -2147483648 .. 2147483647
unsigned long (int) 4 0 .. 4294967295

Floating-point Types

The types f1oat and double, together with the 1ong double variant, are considered
to be floating-point types. The mikroC PRO for AVR’s implementation of an ANSI

Standard considers all three to be the same type.

Floating point in the mikroC PRO for AVR is implemented using the Microchip

AN575 32-bit format (IEEE 754 compliant).

An overview of the floating-point types is shown in the table below:

Type Size in bytes Range
float 4 -1.5*1049 . +3.4* 1038
double 4 -1.5* 1045 . +3.4* 1038
double 4 -1.5*1045 . +3.4* 1038

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

151

CHAPTER 5
Language Reference mikroC PRO for AVR

ENUMERATIONS

An enumeration data type is used for representing an abstract, discreet set of val-
ues with appropriate symbolic names.

Enumeration Declaration
Enumeration is declared like this:
enum tag { enumeration-1list} ;

Here, tag is an optional name of the enumeration; enumeration-1ist is a comma-
delimited list of discreet values, enumerators (or enumeration constants). Each enu-
merator is assigned a fixed integral value. In the absence of explicit initializers, the
first enumerator is set to zero, and the value of each succeeding enumerator is set
to a value of its predecessor increased by one.

Variables of the enum type are declared the same as variables of any other type.
For example, the following declaration:

enum colors { black, red, green, blue, violet, white } c;

establishes a unique integral type, enum colors, variable c of this type, and set of
enumerators with constant integer values (black =0, red = 1, ...). In the mikroC PRO
for AVR, a variable of an enumerated type can be assigned any value of the type
int — no type checking beyond that is enforced. That is:

c = red; // OK
c = 1; // Also OK, means the same

With explicit integral initializers, you can set one or more enumerators to specific
values. The initializer can be any expression yielding a positive or negative integer
value (after possible integer promotions). Any subsequent names without initializers
will be increased by one. These values are usually unique, but duplicates are legal.

The order of constants can be explicitly re-arranged. For example:

enum colors { black, // value 0
red, // value 1
green, // value 2
blue=6, // value 6
violet, // value 7
white=4 }; // value 4

152 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

Initializer expression can include previously declared enumerators. For example, in
the following declaration:

enum memory sizes { bit = 1, nibble = 4 * bit, byte = 2 * nibble,
kilobyte = 1024 * byte };

nibble would acquire the value 4, byte the value 8, and kilobyte the value 8192.
Anonymous Enum Type

In our previous declaration, the identifier colors is an optional enumeration tag that
can be used in subsequent declarations of enumeration variables of the enum col-
ors type:

enum colors bg, border; /* declare variables bg and border */

Like with struct and union declarations, you can omit the tag if no further variables
of this enum type are required:

/* Anonymous enum type: */
enum { black, red, green, blue, violet, white } color;

Enumeration Scope

Enumeration tags share the same name space as structure and union tags. Enu-
merators share the same name space as ordinary variable identifiers:

int blue = 73;
{ // open a block
enum colors { black, red, green, blue, violet, white } c;

/* enumerator blue = 3 now hides outer declaration of int blue */

struct colors { int i, J; }; // ILLEGAL: colors duplicate tag
double red = 2; // ILLEGAL: redefinition of red
}

blue = 37; // back in int blue scope

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 153

CHAPTER 5
Language Reference mikroC PRO for AVR

VOID TYPE

void is a special type indicating the absence of any value. There are no objects of
void; instead, void is used for deriving more complex types.

Void Functions

Use the void keyword as a function return type if the function does not return a
value.

voild print temp (char temp) {
Lcd Out Cp ("Temperature:");
Lcd Out Cp (temp) ;
Lcd Chr Cp(223); // degree character
Led Chr Cp('Ch);
}

Use void as a function heading if the function does not take any parameters. Alter-
natively, you can just write empty parentheses:

main (void) { // same as main{()
}
Generic Pointers

Pointers can be declared as void, which means that they can point to any type.
These pointers are sometimes called generic.

154 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

DERIVED TYPES

The derived types are also known as structured types. They are used as elements
in creating more complex user-defined types.

The derived types include:

- arrays
- pointers

- structures
- unions

ARRAYS

Array is the simplest and most commonly used structured type. A variable of array
type is actually an array of objects of the same type. These objects represent ele-
ments of an array and are identified by their position in array. An array consists of a
contiguous region of storage exactly large enough to hold all of its elements.

Array Declaration

Array declaration is similar to variable declaration, with the brackets added after
identifer:

type array name[constant-expression]

This declares an array named as array name and composed of elements of type.
The type can be any scalar type (except void), user-defined type, pointer, enumer-
ation, or another array. Result of constant-expression within the brackets deter-
mines a number of elements in array. If an expression is given in an array declara-
tor, it must evaluate to a positive constant integer. The value is a number of ele-
ments in an array.

Each of the elements of an array is indexed from 0 to the number of elements minus
one. If a number of elements is n, elements of array can be approached as variables
array name[0] .. array name[n-1] Oftype.

Here are a few examples of array declaration:

#define MAX = 50

int vector one[10] ; /* declares an array of 10 integers */
float vector two[MAX] ; /* declares an array of 50 floats *x/
float vector three[MAX - 20]; /* declares an array of 30 floats */

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 155

CHAPTER 5
Language Reference mikroC PRO for AVR

Array Initialization

An array can be initialized in declaration by assigning it a comma-delimited
sequence of values within braces. When initializing an array in declaration, you can
omit the number of elements — it will be automatically determined according to the
number of elements assigned. For example:

/* Declare an array which holds number of days in each month: */
int days[121 = {31,28,31,30,31,30,31,31,30,31,30,31};

/* This declaration is identical to the previous one */
int days[] = {31,28,31,30,31,30,31,31,30,31,30,31};

If you specify both the length and starting values, the number of starting values must
not exceed the specified length. The opposite is possible, in this case the trailing
“excess” elements will be assigned to some encountered runtime values from mem-

ory.
In case of array of char, you can use a shorter string literal notation. For example:
/* The two declarations are identical: */

const char msgl[] = {'T', 'e', 's', 't', "\0'"};
const char msg2[] = "Test";

For more information on string literals, refer to String Constants.

Arrays in Expressions

When the name of an array comes up in expression evaluation (except with opera-
tors & and sizeof), it is implicitly converted to the pointer pointing to array’s first
element. See Arrays and Pointers for more information.

Multi-dimensional Arrays

An array is one-dimensional if it is of scalar type. One-dimensional arrays are some-
times referred to as vectors.

Multidimensional arrays are constructed by declaring arrays of array type. These
arrays are stored in memory in such way that the right most subscript changes
fastest, i.e. arrays are stored “in rows”. Here is a sample of 2-dimensional array:

float m 50][20] ; /* 2-dimensional array of size 50x20 */

156 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

A variable m is an array of 50 elements, which in turn are arrays of 20 floats each.
Thus, we have a matrix of 50x20 elements: the first elementis m[0][0], the last one
ism 49][19] . The first element of the 5th row would be [4][0] .

If you don't initialize the array in the declaration, you can omit the first dimension of
multi-dimensional array. In that case, array is located elsewhere, e.g. in another file.
This is a commonly used technique when passing arrays as function parameters:

int a[31[2][4] ; /* 3-dimensional array of size 3x2x4 */

void func(int n[][2][4]) { /* we can omit first dimension */
n[21[11[3] ++; /* increment the last element*/

Yy //~

void main () {

func(a);

}

You can initialize a multi-dimensional array with an appropriate set of values within
braces. For example:

int al 310 2] = {{1,2}, {2,6}, {3,7}};

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 157

CHAPTER 5
Language Reference mikroC PRO for AVR

POINTERS

Pointers are special objects for holding (or “pointing to”) memory addresses. In the
mikroC PRO for AVR, address of an object in memory can be obtained by means of
an unary operator &. To reach the pointed object, we use an indirection operator (*)
on a pointer.

A pointer of type “pointer to object of type” holds the address of (that is, points to)
an object of type. Since pointers are objects, you can have a pointer pointing to a
pointer (and so on). Other objects commonly pointed to include arrays, structures,
and unions.

A pointer to a function is best thought of as an address, usually in a code segment,
where that function’s executable code is stored; that is, the address to which control
is transferred when that function is called.

Although pointers contain numbers with most of the characteristics of unsigned inte-
gers, they have their own rules and restrictions for declarations, assignments, con-
versions, and arithmetic. The examples in the next few sections illustrate these rules
and restrictions.

Pointer Declarations

Pointers are declared the same as any other variable, but with » ahead of identifier.
A type at the beginning of declaration specifies the type of a pointed object. A point-
er must be declared as pointing to some particular type, even if that type is void,
which really means a pointer to anything. Pointers to void are often called generic
pointers, and are treated as pointers to char in the mikroC PRO for AVR.

If type is any predefined or user-defined type, including void, the declaration

type *p; /* Uninitialized pointer */

declares p to be of type “pointer to type”. All scoping, duration, and visibility rules
are applied to the p object just declared. You can view the declaration in this way: if

*p is an object of type, then p has to be a pointer to such object (object of type).

Note: You must initialize pointers before using them! Our previously declared point-
er *p is not initialized (i.e. assigned a value), so it cannot be used yet.

Note: In case of multiple pointer declarations, each identifier requires an indirect
operator. For example:

158 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

int *pa, *pb, *pc;
/* is same as: */

int *pa;
int *pb;
int *pc;

Once declared, though, a pointer can usually be reassigned so that it points to an
object of another type. The mikroC PRO for AVR lets you reassign pointers without
typecasting, but the compiler will warn you unless the pointer was originally declared
to be pointing to void. You can assign the void* pointer to the non-void* pointer
— refer to void for details.

Null Pointers

A null pointer value is an address that is guaranteed to be different from any valid
pointer in use in a program. Assigning the integer constant 0 to a pointer assigns a
null pointer value to it.

For example:
int *pn = 0; /* Here's one null pointer */

/* We can test the pointer like this: */
if (pn == 0) { ...}

The pointer type “pointer to void” must not be confused with the null pointer. The
declaration

void *vp;

declares that vp is a generic pointer capable of being assigned to by any “pointer to
type” value, including null, without complaint.

Assignments without proper casting between a “pointer to type1” and a “pointer to
type2”, where typel and type2 are different types, can invoke a compiler warning
or error. If typel is a function and type2 isn’t (or vice versa), pointer assignments
are illegal. If type1l is a pointer to void, no cast is needed. If type2 is a pointer to
void, no cast is needed.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 159

CHAPTER 5
Language Reference mikroC PRO for AVR

FUNCTION POINTERS

Function Pointers are pointers, i.e. variables, which point to the address of a func-
tion.

// Define a function pointer
int (*pt2Function) (float, char, char);

Note: Thus functions and function pointers with different calling convention (argu-
ment order, arguments type or return type is different) are incompatible with each
other.

Assign an address to a Function Pointer

It's quite easy to assign the address of a function to a function pointer. Simply take
the name of a suitable and known function. Using the address operator & infront of
the function's name is optional.

//Assign an address to the function pointer

int DoIt (float a, char b, char c¢){ return a+b+c; }
pt2Function = &Dolt; // assignment

Example:
int addC(char x,char y){

return x+y;

}
int subC(char x,char vy){

return x-y;

}
int mulC(char x,char vy){

return x*y;

int divC(char x,char y){

return x/y;

160 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

int modC (char x,char y){

return x%y;

//array of pointer to functions that receive two chars and returns

int

int (*arrpf[]) (char,char) = { addC ,subC,mulC,divC,modC} ;
int res;

char i;

void main () {

for (i=0;1i<5;i++){
res = arrpf[i] (10,20);
}

POINTER ARITHMETIC
Pointer arithmetic in the mikroC PRO for AVR is limited to:

- assigning one pointer to another,

- comparing two pointers,

- comparing pointer to zero,

- adding/subtracting pointer and an integer value,
- subtracting two pointers.

The internal arithmetic performed on pointers depends on the memory model in
force and the presence of any overriding pointer modifiers. When performing arith-
metic with pointers, it is assumed that the pointer points to an array of objects.

Arrays and Pointers

Arrays and pointers are not completely independent types in the mikroC PRO for
AVR. When the name of an array comes up in expression evaluation (except with
operators & and sizeof), it is implicitly converted to the pointer pointing to array’s
first element. Due to this fact, arrays are not modifiable Ivalues.

Brackets [1 indicate array subscripts. The expression

idl exp]

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 161

CHAPTER 5
Language Reference mikroC PRO for AVR

is defined as
*((id) + (exp))
where either:

- id is a pointer and exp is an integer, or
- id is an integer and exp is a pointer.

The following statements are true:

&al 1] = a + i
al i] = *(a + 1)

According to these guidelines, it can be written:

pa = é&a[4] ; // pa points to a[4]
x = *(pa + 3); /) x = al 7]

/* .. but: */

y = *pa + 3; // vy = a4 + 3

Also the care should be taken when using operator precedence:

*pat+; // Equal to * (pa++), increments the pointer
(*pa) ++; // Increments the pointed object!

The following examples are also valid, but better avoid this syntax as it can make
the code really illegible:

(a + D1 = 3;
*((a + 1) + 1)

// same as: =3, i.e. a[i + 1] =3
(1 + 2)[al = 0;
// same as: *((i + 2) + a) =0, i.e. a[1 + 2] =0

Assignment and Comparison

The simple assignment operator (=) can be used to assign value of one pointer to
another if they are of the same type. If they are of different types, you must use a
typecast operator. Explicit type conversion is not necessary if one of the pointers is
generic (of the void type).

Assigning the integer constant 0 to a pointer assigns a null pointer value to it.

162 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

Two pointers pointing to the same array may be compared by using relational oper-
ators ==, '=, <, <=, >, and >=. Results of these operations are the same as if
they were used on subscript values of array elements in question:

int *pa = &a[4], *pb = &a[2] ;

if (pa == pb) {... /* won't be executed as 4 is not equal to 2 */ }
if (pa > pb) {... /* will be executed as 4 is greater than 2 */ }

You can also compare pointers to zero value — testing in that way if the pointer actu-
ally points to anything. All pointers can be successfully tested for equality or inequal-

ity to null:
if (pa == 0) { ...}
if (pb !=0) { ...}

Note: Comparing pointers pointing to different objects/arrays can be performed at
programmer’s own responsibility — a precise overview of data’s physical storage is
required.

Pointer Addition

You can use operators +, ++, and += to add an integral value to a pointer. The
result of addition is defined only if the pointer points to an element of an array and
if the result is a pointer pointing to the same array (or one element beyond it).

If a pointer is declared to point to type, adding an integral value n to the pointer
increments the pointer value by n * sizeof (type) as long as the pointer remains
within the legal range (first element to one beyond the last element). If type has a
size of 10 bytes, then adding 5 to a pointer to type advances the pointer 50 bytes in
memory. In case of the void type, the size of a step is one byte.

For example:

int af[10] ; /* array a containing 10 elements of type int */
int *pa = &a[0] ; /* pa is pointer to int, pointing to a[0] */
(pa + 3) = 6; / pa+3 1s a pointer pointing to a[3], so a[3]
now equals 6 */

pat+; /* pa now points to the next element of array a:
a[1] */

There is no such element as “one past the last element”, of course, but the pointer
is allowed to assume such value. C “guarantees” that the result of addition is defined
even when pointing to one element past array. If p points to the last array element,
P + 1islegal, but P + 2 is undefined.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 163

CHAPTER 5
Language Reference mikroC PRO for AVR

This allows you to write loops which access the array elements in a sequence by
means of incrementing pointer — in the last iteration you will have the pointer point-
ing to one element past the array, which is legal. However, applying an indirection
operator (*) to a “pointer to one past the last element” leads to undefined behavior.

For example:

void f (some type a[], int n)
/* function f handles elements of array a; */
/* array a has n elements of type some type */

int 1;
some type *p=&al 0] ;

for (i = 0; 1 < n; i++) {
/* .. here we do something with *p .. */
pt++; /* .. and with the last iteration p exceeds

the last element of array a */
}
/* at this point, *p is undefined! */

}

Pointer Subtraction

Similar to addition, you can use operators -, -- , and -= to subtract an integral
value from a pointer.

Also, you may subtract two pointers. The difference will be equal to the distance
between two pointed addresses, in bytes.

For example:

int a[10] ;

int *pil = &a[0] ;

int *pi2 = &al 4] ;

i = pi2 - pil; /* 1 equals 8 */

pi2 -= (1 >> 1); /* pi2 = pi2 - 4: pi2 now points to [0] */

164 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

STRUCTURES

A structure is a derived type usually representing a user-defined collection of named
members (or components). These members can be of any type, either fundamental
or derived (with some restrictions to be discussed later), in any sequence. In addi-
tion, a structure member can be a bit field.

Unlike arrays, structures are considered to be single objects. The mikroC PRO for
AVR structure type lets you handle complex data structures almost as easily as sin-
gle variables.

Note: the mikroC PRO for AVR does not support anonymous structures (ANSI diver-
gence).

Structure Declaration and Initialization
Structures are declared using the keyword struct:
struct tag { member-declarator-list} ;

Here, tag is the name of a structure; member-declarator-1ist is a list of structure
members, actually a list of variable declarations. Variables of structured type are
declared the same as variables of any other type.

The member type cannot be the same as the struct type being currently declared.
However, a member can be a pointer to the structure being declared, as in the fol-
lowing example:

struct mystruct {mystruct s;}; /* illegal! */
struct mystruct {mystruct *ps;}; /* OK */

Also, a structure can contain previously defined structure types when declaring an
instance of declared structure. Here is an example:

/* Structure defining a dot: */
struct Dot { float x, y;};

/* Structure defining a circle: */
struct Circle {
float r;
struct Dot center;
} ol, o02;
/* declare variables ol and 02 of Circle */

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 165

CHAPTER 5
Language Reference mikroC PRO for AVR

Note that the structure tag can be omitted, but then additional objects of this type
cannot be declared elsewhere. For more information, see the Untagged Structures
below.

Structure is initialized by assigning it a comma-delimited sequence of values within
braces, similar to array. For example:

/* Referring to declarations from the example above: */

/* Declare and initialize dots p and g: */
struct Dot p ={1., 1.}, g ={3.7, -0.5};

/* Declare and initialize circle ol: */
struct Circle ol = {1., {0., 0.}}; // radius is 1, center is at (O,
0)

Incomplete Declarations

Incomplete declarations are also known as forward declarations. A pointer to a
structure type A can legally appear in the declaration of another structure B before a
has been declared:

struct A; // incomplete
struct B { struct A *pa;};

struct A {struct B *pb;};

The first appearance of A is called incomplete because there is no definition for it at
that point. An incomplete declaration is allowed here, because the definition of B
doesn’t need the size of a.

Untagged Structures and Typedefs

If the structure tag is omitted, an untagged structure is created. The untagged struc-
tures can be used to declare the identifiers in the comma-delimited member-
declarator-1list to be of the given structure type (or derived from it), but addition-
al objects of this type cannot be declared elsewhere.

/* With tag: */
typedef struct mystruct { ... } Mystruct;
Mystruct s, *ps, arrs[10]; /* same as struct mystruct s, etc. */

/* Without tag: */
typedef struct { ... } Mystruct;
Mystruct s, *ps, arrs[10];

166 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

Usually, there is no need to use both tag and typedef: either can be used in struc-
ture type declarations.

Untagged structure and union members are ignored during initialization.

Note: See also Working with structures.
WORKING WITH STRUCTURES

Structures represent user-defined types. A set of rules regarding the application of
structures is strictly defined.

Assignment

Variables of the same structured type may be assigned one to another by means of
simple assignment operator (=). This will copy the entire contents of the variable to
destination, regardless of the inner complexity of a given structure.

Note that two variables are of the same structured type only if they are both defined
by the same instruction or using the same type identifier. For example:

/* a and b are of the same type: */
struct {int ml, m2;} a, b;

/* But c and d are not of the same type although
their structure descriptions are identical: */

struct {int ml, m2;} c;

struct {int ml, m2;} d;

Size of Structure

The size of the structure in memory can be retrieved by means of the operator
sizeof. It is not necessary that the size of the structure is equal to the sum of its
members’ sizes. It is often greater due to certain limitations of memory storage.

Structures and Functions

A function can return a structure type or a pointer to a structure type:

mystruct funcl (void); /* funcl () returns a structure */

mystruct *func?2 (void); /* func2 () returns pointer to structure */

A structure can be passed as an argument to a function in the following ways:

void funcl (mystruct s;); /* directly */
void func?2 (mystruct *sptr;); /* via a pointer */

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 167

CHAPTER 5
Language Reference mikroC PRO for AVR

STRUCTURE MEMBER ACCESS

Structure and union members are accessed using the following two selection oper-
ators:

. (period)
-> (right arrow)

The operator . is called the direct member selector and it is used to directly access
one of the structure’s members. Suppose that the object s is of the struct type s and
m is @ member identifier of the type M declared in s, then the expression

s.m // direct access to member m
is of the type M, and represents the member object m in S.

The operator -> is called the indirect (or pointer) member selector. Suppose that the
object s is of the struct type s and ps is a pointer to s. Then if m is a member iden-
tifier of the type v declared in s, the expression

ps—>m // indirect access to member m;
// identical to (*ps).m

is of the type v, and represents the member object m in s. The expression ps->m is
a convenient shorthand for (*ps) .m.

For example:

struct mystruct {
int 1i;
char str[21] ;
double d;

} s, *sptr = &s;

s.i = 3; // assign to the i member of mystruct s
sptr => d = 1.23; // assign to the d member of mystruct s

The expression s.m is Ivalue, providing that s is Ivalue and m is not an array type.
The expression sptr->m is an lvalue unless m is an array type.

168 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

Accessing Nested Structures

If the structure B contains a field whose type is the structure A, the members of A
can be accessed by two applications of the member selectors:

struct A {
int j; double x;
b

struct B {
int i; struct A aa; double d;
} s, *sptr;
s.i = 3; // assign 3 to the i member of B
s.aa.j = 2 // assign 2 to the j member of A

sptr->d = 1.23; // assign 1.23 to the d member of B
sptr->aa.x = 3.14; // assign 3.14 to x member of A

Structure Uniqueness

Each structure declaration introduces a unique structure type, so that in

struct A {
int i,3j; double d;
} aa, aaa;

struct B {
int i,3j; double d;
} bb;

the objects aa and aza are both of the type struct 2, but the objects aa and vb are
of different structure types. Structures can be assigned only if the source and desti-
nation have the same type:

aa = aaa; /* OK: same type, member by member assignment */
aa = bb; /* ILLEGAL: different types */

/* but you can assign member by member: */
aa.i = bb.i;
aa.j = bb.7j;
aa.d = bb.d;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 169

CHAPTER 5
Language Reference mikroC PRO for AVR

UNIONS

Union types are derived types sharing many of syntactic and functional features of
structure types. The key difference is that a union members share the same mem-
ory space.

Note: The mikroC PRO for AVR does not support anonymous unions (ANSI diver-
gence).

Union Declaration

Unions have the same declaration as structures, with the keyword union used
instead of struct:

union tag { member-declarator-list };

Unlike structures’ members, the value of only one of union’s members can be stored
at any time. Here is a simple example:

union myunion { // union tag is 'myunion'
int 1i;
double d;
char ch;

} mu, *pm;

The identifier mu, of the type myunion, can be used to hold a 2-byte int, 4-byte dou-
ble or single-byte char, but only one of them at a certain moment. The identifier pm
is a pointer to union myunion.

Size of Union

The size of a union is the size of its largest member. In our previous example, both

sizeof (union myunion) and sizeof (mu) return 4, but 2 bytes are unused (padded)
when mu holds the int object, and 3 bytes are unused when mu holds char.

Union Member Access

Union members can be accessed with the structure member selectors (. and ->),
be careful when doing this:

170 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

/* Referring to declarations from the example above: */
pm = μ

mu.d = 4.016;

tmp = mu.d; // OK: mu.d = 4.016

tmp = mu.i; // peculiar result

pm->i = 3;
tmp = mu.i; // OK: mu.i = 3

The third line is legal, since mu. i is an integral type. However, the bit pattern in mu.. i
corresponds to parts of the previously assigned double. As such, it probably won’t
provide an useful integer interpretation.

When properly converted, a pointer to a union points to each of its members, and
vice versa.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 171

CHAPTER 5
Language Reference mikroC PRO for AVR

BIT FIELDS

Bit fields are specified numbers of bits that may or may not have an associated iden-
tifier. Bit fields offer a way of subdividing structures into named parts of user-defined
sizes.

Structures and unions can contain bit fields that can be up to 16 bits.
You cannot take the address of a bit field.

Note: If you need to handle specific bits of 8-bit variables (char and unsigned
short) or registers, you don’t need to declare bit fields. Much more elegant solution
is to use the mikroC PRO for AVR’s intrinsic ability for individual bit access — see
Accessing Individual Bits for more information.

Bit Fields Declaration

Bit fields can be declared only in structures and unions. Declare a structure normal-
ly and assign individual fields like this (fields need to be unsigned):

struct tag {
unsigned bitfield-declarator-list;

}

Here, tag is an optional name of the structure; bitfield-declarator-1list is a list
of bit fields. Each component identifer requires a colon and its width in bits to be
explicitly specified. Total width of all components cannot exceed two bytes (16 bits).

As an object, bit fields structure takes two bytes. Individual fields are packed within
two bytes from right to left. In bitfield-declarator-list, you can omit
identifier(s) to create an artificial “padding”, thus skipping irrelevant bits.

For example, if there is a need to manipulate only bits 2—4 of a register as one block,
create a structure like this:

struct {
unsigned : 2, // Skip bits 0 and 1, no identifier here
mybits : 3; // Relevant bits 2, 3 and 4
// Bits 5, 6 and 7 are implicitly left out

} myreg;

Here is an example:

172 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

typedef struct {
lo nibble 4;
hi nibble : 4;

high byte 8;} myunsigned;

which declares the structured type myunsigned containing three components:

lo nibble (bits 3..0), hi nibble (bits 7..4) and high byte (bits 15..8).

Bit Fields Access

Bit fields can be accessed in the same way as the structure members. Use direct
and indirect member selector (. and ->). For example, we could work with our pre-
viously declared myunsigned like this:

// This example writes low byte of bit field of myunsigned type to
PORTO :
myunsigned Value For PORTO;

void main () {

Value For PORTO.lo nibble = 7;
Value For PORTO.hi nibble = 0x0C;
PO = * (char *) (void *)&Value For PORTO;
// typecasting
// 1. address of structure to pointer to void
// 2. pointer to void to pointer to char
// 3. dereferencing to obtain the value

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 173

CHAPTER 5
Language Reference mikroC PRO for AVR

TYPES CONVERSIONS

The mikroC PRO for AVR is a strictly typed language, with each operator, statement
and function demanding appropriately typed operands/arguments. However, we
often have to use objects of “mismatching” types in expressions. In that case, type
conversion is needed.

Conversion of object of one type means that object's type is changed into another
type. The mikroC PRO for AVR defines a set of standard conversions for built-in
types, provided by compiler when necessary. For more information, refer to the
Standard Conversions.

Conversion is required in the following situations:

- if a statement requires an expression of particular type (according to lan
guage definition), and we use an expression of different type,

- if an operator requires an operand of particular type, and we use an
operand of different type,

- if a function requires a formal parameter of particular type, and we pass it
an object of different type,

- if an expression following the keyword return does not match the
declared function return type,

- if intializing an object (in declaration) with an object of different type.

In these situations, compiler will provide an automatic implicit conversion of types,
without any programmer's interference. Also, the programmer can demand conver-
sion explicitly by means of the typecast operator. For more information, refer to the
Explicit Typecasting.

174 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

STANDARD CONVERSIONS

Standard conversions are built in the mikroC PRO for AVR. These conversions are
performed automatically, whenever required in the program. They can also be
explicitly required by means of the typecast operator (refer to the Explicit Typecast-

ing).

The basic rule of automatic (implicit) conversion is that the operand of simpler type
is converted (promoted) to the type of more complex operand. Then, the type of the
result is that of more complex operand.

Arithmetic Conversions

When using arithmetic expression, such as a + b, where a and b are of different
arithmetic types, the mikroC PRO for AVR performs implicit type conversions before
the expression is evaluated. These standard conversions include promotions of
“lower” types to “higher” types in the interests of accuracy and consistency.

Assigning a signed character object (such as a variable) to an integral object results
in automatic sign extension. Objects of type signed char always use sign extension;
objects of type unsigned char always has its high byte set to zero when converted
to int.

Converting a longer integral type to a shorter type truncates the higher order bits
and leaves low-order bits unchanged. Converting a shorter integral type to a longer
type either sign-extends or zero-fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.

Note: Conversion of floating point data into integral value (in assignments or via
explicit typecast) produces correct results only if the f1o0at value does not exceed
the scope of destination integral type.

In details:

Here are the steps the mikroC PRO for AVR uses to convert the operands in an
arithmetic expression:

First, any small integral types are converted according to the following rules:

. char converts to int

. signed char converts to int, with the same value

. short converts to int, with the same value, sign-extended

. unsigned short converts to int, with the same value, zero-filled
. enum converts to int, with the same value

A ON -~

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 175

CHAPTER 5
Language Reference mikroC PRO for AVR

After this, any two values associated with an operator are either int (including the
long and unsigned modifiers) or flocat (equivalent with double and long double
in the mikroC PRO for AVR).

1. If either operand is float, the other operand is converted to float.

2. Otherwise, if either operand is unsigned long, the other operand is con-
verted t0 unsigned long.

3. Otherwise, if either operand is 1ong, then the other operand is converted
to long.

4. Otherwise, if either operand is unsigned, then the other operand is con-
verted to unsigned.

5. Otherwise, both operands are int.

The result of the expression is the same type as that of the two operands.

Here are several examples of implicit conversion:

2 + 3.1 J¥ 2 2. 4+ 3.1 7 5.1 %/

5/ 4 * 3, /¥ 2 (5/4)*3. 2 1%3. 2 1.*¥3. 2 3. %/

3. 5 /4 /* 2 (3.%¥5)/4 ? (3.%¥5.)/4 ? 15./4 ? 15./4. ? 3.75 */
Pointer Conversions

Pointer types can be converted to other pointer types using the typecasting mecha-
nism:

char *str;

int *ip;

str = (char *)ip;

More generally, the cast typex will convert a pointer to type “pointer to type”.

176 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

EXPLICIT TYPES CONVERSIONS (TYPECASTING)

In most situations, compiler will provide an automatic implicit conversion of types
where needed, without any user's interference. Also, the user can explicitly convert
an operand to another type using the prefix unary typecast operator:

(type) object
This will convert object to a specified type. Parentheses are mandatory.

For example:

/* Let's have two variables of char type: */
char a, b;

/* Following line will coerce a to unsigned int: */
(unsigned int) a;

/* Following line will coerce a to double,
then coerce b to double automatically,
resulting in double type value: */
(double) a + b; // equivalent to ((double) a) + b;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 177

CHAPTER 5
Language Reference mikroC PRO for AVR

DECLARATIONS

A declaration introduces one or several names to a program — it informs the compil-
er what the name represents, what its type is, what operations are allowed with it,
etc. This section reviews concepts related to declarations: declarations, definitions,
declaration specifiers, and initialization.

The range of objects that can be declared includes:

- Variables

- Constants

- Functions

- Types

- Structure, union, and enumeration tags
- Structure members

- Union members

- Arrays of other types

- Statement labels

- Preprocessor macros

Declarations and Definitions

Defining declarations, also known as definitions, beside introducing the name of an
object, also establish the creation (where and when) of an object; that is, the alloca-
tion of physical memory and its possible initialization. Referencing declarations, or
just declarations, simply make their identifiers and types known to the compiler.

Here is an overview. Declaration is also a definition, except if:

- it declares a function without specifying its body
- it has the extern specifier, and has no initializator or body (in case of func.)
- it is the typedef declaration

There can be many referencing declarations for the same identifier, especially in a
multifile program, but only one defining declaration for that identifier is allowed.

For example:

/* Here is a nondefining declaration of function max; */
/* it merely informs compiler that max is a function */
int max();

/* Here is a definition of function max: */
int max(int x, int y) {
return (x >= vy) ? x : y;

}

178 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

/* Definition of variable i: */
int 1i;

/* Following line is an error, 1 is already defined! */
int 1i;

Declarations and Declarators

The declaration contains specifier(s) followed by one or more identifiers (declara-
tors). The declaration begins with optional storage class specifiers, type specifiers,
and other modifiers. The identifiers are separated by commas and the list is termi-
nated by a semicolon.

Declarations of variable identifiers have the following pattern:
storage-class [type-qualifier] type varl [=initl], wvar2 [=init2], ... ;

where var1, var2,... are any sequence of distinct identifiers with optional initial-
izers. Each of the variables is declared to be of type; if omitted, type defaults to int.
The specifier storage-class can take the values extern, static, register, orthe
default auto. Optional type-qualifier can take values const or volatile. For
more details, refer to Storage Classes and Type Qualifiers.

For example:

/* Create 3 integer variables called x, y, and z
and initialize x and y to the values 1 and 2, respectively: */
int x =1, v = 2, z; // z remains uninitialized

/* Create a floating-point variable g with static modifier,
and initialize it to 0.25: */
static float g = .25;

These are all defining declarations; storage is allocated and any optional initializers
are applied.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 179

CHAPTER 5
Language Reference mikroC PRO for AVR

LINKAGE

An executable program is usually created by compiling several independent trans-
lation units, then linking the resulting object files with preexisting libraries. A term
translation unit refers to a source code file together with any included files, but with-
out the source lines omitted by conditional preprocessor directives. A problem aris-
es when the same identifier is declared in different scopes (for example, in different
files), or declared more than once in the same scope.

The linkage is a process that allows each instance of an identifier to be associated cor-
rectly with one particular object or function. All identifiers have one of two linkage attrib-
utes, closely related to their scope: external linkage or internal linkage. These attributes
are determined by the placement and format of your declarations, together with an
explicit (or implicit by default) use of the storage class specifier static or extern.

Each instance of a particular identifier with external linkage represents the same
object or function throughout the entire set of files and libraries making up the pro-
gram. Each instance of a particular identifier with internal linkage represents the
same object or function within one file only.

Linkage Rules

Local names have internal linkage; the same identifier can be used in different files
to signify different objects. Global names have external linkage; identifier signifies
the same object throughout all program files.

If the same identifier appears with both internal and external linkage within the same
file, the identifier will have internal linkage.

Internal Linkage Rules

1. names having file scope, explicitly declared as static, have internal linkage

2. names having file scope, explicitly declared as const and not explicitly
declared as extern, have internal linkage

3. typedef names have internal linkage

4. enumeration constants have internal linkage

External Linkage Rules

1. names having file scope, that do not comply to any of previously stated
internal linkage rules, have external linkage

180 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

The storage class specifiers auto and register cannot appear in an external dec-
laration. No more than one external definition can be given for each identifier in a
translation unit declared with internal linkage. An external definition is an external
declaration that defines an object or a function and also allocates a storage. If an
identifier declared with external linkage is used in an expression (other than as part
of the operand of sizeof), then exactly one external definition of that identifier must
be somewhere in the entire program.

STORAGE CLASSES

Associating identifiers with objects requires each identifier to have at least two attrib-
utes: storage class and type (sometimes referred to as data type). The mikroC PRO
for AVR compiler deduces these attributes from implicit or explicit declarations in the
source code.

A storage class dictates the location (data segment, register, heap, or stack) of
object and its duration or lifetime (the entire running time of the program, or during
execution of some blocks of code). A storage class can be established by the syn-
tax of a declaration, by its placement in the source code, or by both of these factors:

storage-class type identifier
The storage class specifiers in the mikroC PRO for AVR are:
- auto
- register
- static
- extern

Auto

The auto modifer is used to define that a local variable has a local duration. This is
the default for local variables and is rarely used. auto can not be used with globals.
See also Functions.

Register

At the moment the modifier register technically has no special meaning. The
mikroC PRO for AVR compiler simply ignores requests for register allocation.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 181

CHAPTER 5
Language Reference mikroC PRO for AVR

Static

A global name declared with the static specifier has internal linkage, meaning that
it is local for a given file. See Linkage for more information.

Alocal name declared with the static specifier has static duration. Use static with
a local variable to preserve the last value between successive calls to that function.
See Duration for more information.

Extern

A name declared with the extern specifier has external linkage, unless it has been
previously declared as having internal linkage. A declaration is not a definition if it
has the extern specifier and is not initialized. The keyword extern is optional for a
function prototype.

Use the extern modifier to indicate that the actual storage and initial value of the
variable, or body of the function, is defined in a separate source code module. Func-
tions declared with extern are visible throughout all source files in the program,
unless the function is redefined as static.

See Linkage for more information.

182 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

TYPE QUALIFIERS

The type qualifiers const and volatile are optional in declarations and do not
actually affect the type of declared object.

Qualifier const

The qualifier const implies that a declared object will not change its value during
runtime. In declarations with the const qualifier all objects need to be initialized.

The mikroC PRO for AVR treats objects declared with the const qualifier the same
as literals or preprocessor constants. If the user tries to change an object declared
with the const qualifier compiler will report an error.

For example:
const double PI = 3.14159;
Qualifier volatile

The qualifier volatile implies that a variable may change its value during runtime
independently from the program. Use the volatile modifier to indicate that a variable
can be changed by a background routine, an interrupt routine, or 1/0O port. Declaring
an object to be volatile warns the compiler not to make assumptions concerning the
value of an object while evaluating expressions in which it occurs because the value
could be changed at any moment.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 183

CHAPTER 5
Language Reference mikroC PRO for AVR

TYPEDEF SPECIFIER

The specifier t ypedef introduces a synonym for a specified type. The typedef dec-
larations are used to construct shorter or more convenient names for types already
defined by the language or declared by the user.

The specifier typedef stands first in the declaration:
typedef <type definition> synonym;

The typedef keyword assigns synonym t0 <type definition>. The synonym
needs to be a valid identifier.

A declaration starting with the typedef specifier does not introduce an object or a
function of a given type, but rather a new name for a given type. In other words, the
typedef declaration is identical to a “normal” declaration, but instead of objects, it
declares types. It is a common practice to name custom type identifiers with start-
ing capital letter — this is not required by the mikroC PRO for AVR.

For example:

/* Let's declare a synonym for "unsigned long int" */
typedef unsigned long int Distance;

/* Now, synonym "Distance" can be used as type identifier: */
Distance i; // declare variable i1 of unsigned long int

In the typedef declaration, as in any other declaration, several types can be
declared at once. For example:

typedef int *Pti, Arrayf 10];

Here, pti is a synonym for type “pointer to int”, and array is a synonym for type
“array of 10 int elements”.

184 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

ASM DECLARATION

The mikroC PRO for AVR allows embedding assembly in the source code by means
of the asm declaration. The declarations asm and _ asm are also allowed in the
mikroC PRO for AVR and have the same meaning. Note that numerals cannnot be
used as absolute addresses for SFR or GPR variables in assembly instructions.
Symbolic names may be used instead (listing will display these names as well as
addresses).

Assembly instructions can be grouped by the asm keyword (or asm, or asm):

asm {
block of assembly instructions

}

There are two ways to embeding single assembly instruction to C code:
asm assembly instruction ;

and

asm assembly instruction

Note: semicolon and LF are terminating asm scope for single assembly instructions.
This is the reason why the following syntax is not asm block:

asm

{

block of assembly instructions

}

This code will be interpreted as single empty asm line followed by C compound
statement.

The mikroC PRO for AVR comments (both single-line and multi-line) are allowed in
embedded assembly code.

Accessing individual bytes is different as well. For example, a global variable "g_var"
of type char (i.e. 1 byte) can be accessed like this:

STS g var+0, RI10
If you want to know details about asm syntax supported by mikroC PRO for AVR it is
recomended to study asm and 1st files generated by compiler. It is also recomended

to check "Include source lines in output files" checkbox in Output settings

Related topics: mikroC PRO for AVR specifcs

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 185

CHAPTER 5
Language Reference mikroC PRO for AVR

Initialization

The initial value of a declared object can be set at the time of declaration (initializa-
tion). A part of the declaration which specifies the initialization is called initializer.

Initializers for globals and static objects must be constants or constant expres-
sions. The initializer for an automatic object can be any legal expression that eval-
uates to an assignment-compatible value for the type of the variable involved.

Scalar types are initialized with a single expression, which can optionally be
enclosed in braces. The initial value of an object is that of the expression; the same
constraints for type and conversions as for simple assignments are applied to initial-
izations too.

For example:
int 1 = 1;
char *s = "hello";

struct complex ¢ = {0.1, -0.2};
// where 'complex' is a structure (float, float)

For structures or unions with automatic storage duration, the initializer must be one
of the following:

- An initializer list.
- A single expression with compatible union or structure type. In this case,
the initial value of the object is that of the expression.

For example:
struct dot {int x; int y; } m = {30, 40};
For more information, refer to Structures and Unions.
Also, you can initialize arrays of character type with a literal string, optionally
enclosed in braces. Each character in the string, including the null terminator, initial-
izes successive elements in the array. For more information, refer to Arrays.

Automatic Initialization

The mikroC PRO for AVR does not provide automatic initialization for objects. Uninitial-
ized globals and objects with static duration will take random values from memory.

186 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

FUNCTIONS

Functions are central to C programming. Functions are usually defined as subpro-
grams which return a value based on a number of input parameters. Return value
of the function can be used in expressions — technically, function call is considered
to be an expression like any other.

C allows a function to create results other than its return value, referred to as side
effects. Often, the function return value is not used at all, depending on the side
effects. These functions are equivalent to procedures of other programming lan-
guages, such as Pascal. C does not distinguish between procedure and function —
functions play both roles.

Each program must have a single external function named main marking the entry
point of the program. Functions are usually declared as prototypes in standard or
user-supplied header files, or within program files. Functions have external linkage
by default and are normally accessible from any file in the program. This can be
restricted by using the static storage class specifier in function declaration (see
Storage Classes and Linkage).

Note: Check the AVR Specifics for more information on functions’ limitations on the
AVR compliant micros.

Function Declaration

Functions are declared in user's source files or made available by linking precom-
piled libraries. The declaration syntax of the function is:

type function name (parameter-declarator-list);

The function name must be a valid identifier. This name is used to call the func-
tion; see Function Calls for more information.

type represents the type of function result, and can be of any standard or user-
defined type. For functions that do not return value the void type should be used.
The type can be omitted in global function declarations, and function will assume the
int type by default.

Function type can also be a pointer. For example, float* means that a function
result is a pointer to float. The generic pointer void* is also allowed.

The function cannot return an array or another function.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 187

CHAPTER 5
Language Reference mikroC PRO for AVR

Within parentheses, parameter-declarator-1ist is a list of formal arguments that
function takes. These declarators specify the type of each function parameter. The
compiler uses this information to check validity of function calls. If the list is empty,
a function does not take any arguments. Also, if the list is void, a function also does
not take any arguments; note that this is the only case when void can be used as
an argument’s type.

Unlike variable declaration, each argument in the list needs its own type specifier
and possible qualifier const or volatile.

Function Prototypes

A function can be defined only once in the program, but can be declared several
times, assuming that the declarations are compatible. When declaring a function,
the formal argument's identifier does not have to be specified, but its type does.

This kind of declaration, commonly known as the function prototype, allows better
control over argument number, type checking and type conversions. The name of a
parameter in function prototype has its scope limited to the prototype. This allows
one parameter identifier to have different name in different declarations of the same
function:

/* Here are two prototypes of the same function: */

int test (const char*) /* declares function test */
int test (const char*p) /* declares the same function test */

Function prototypes are very useful in documenting code. For example, the function
Ccf Init takes two parameters: Control Port and Data Port. The question is, which
is which? The function prototype:

void Cf Init(char *ctrlport, char *dataport);

makes it clear. If a header file contains function prototypes, the user can read that
file to get the information needed for writing programs that call these functions. If a
prototype parameter includes an identifier, then the indentifier is only used for error
checking.

FUNCTION DEFINITION

Function definition consists of its declaration and function body. The function body
is technically a block — a sequence of local definitions and statements enclosed
within braces {} . All variables declared within function body are local to the func-
tion, i.e. they have function scope.

188 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

The function itself can be defined only within the file scope, which means that func-
tion declarations cannot be nested.

To return the function result, use the return statement. The statement return in func-
tions of the void type cannot have a parameter — in fact, the return statement can
be omitted altogether if it is the last statement in the function body.

Here is a sample function definition:

[+ function max returns greater one of its 2 arguments: */

int max(int x, int y) {
return (x>=y) ? x : Vy;

}

Here is a sample function which depends on side effects rather than return value:

/* function converts Descartes coordinates (x,y) to polar (r,fi): */
#include <math.h>

void polar (double x, double y, double *r, double *fi) {
*r = sqrt(x * x + y * y);
*fi = (x == 0 && y == 0) 2 0 : atan2(y, x);
return; /* this line can be omitted */

}
Functions reentrancy

Functions reentrancy is allowed. Remember that the AVR has stack and memory
limitations which can varies greatly between MCUs.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 189

CHAPTER 5
Language Reference mikroC PRO for AVR

FUNCTION CALLS AND ARGUMENT CONVERSIONS

Function Calls

A function is called with actual arguments placed in the same sequence as their
matching formal parameters. Use the function-call operator ():

function name (expression 1, ... , expression n)

Each expression in the function call is an actual argument. Number and types of
actual arguments should match those of formal function parameters. If types do not
match, implicit type conversions rules will be applied. Actual arguments can be of
any complexity, but order of their evaluation is not specified.

Upon function call, all formal parameters are created as local objects initialized by
the values of actual arguments. Upon return from a function, a temporary object is
created in the place of the call, and it is initialized by the expression of the return
statement. This means that the function call as an operand in complex expression
is treated as a function result.

If the function has no result (type void) or the result is not needed, then the func-
tion call can be written as a self-contained expression.

In C, scalar arguments are always passed to the function by value. The function can
modify the values of its formal parameters, but this has no effect on the actual argu-
ments in the calling routine. A scalar object can be passed by the address if a for-
mal parameter is declared as a pointer. The pointed object can be accessed by
using the indirection operator * .

// For example, Soft Uart Read takes the pointer to error variable,
// so it can change the value of an actual argument:
Soft Uart Read(&error);

// The following code would be wrong; you would pass the value
// of error variable to the function:

Soft Uart Read(error);

190 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

Argument Conversions

If a function prototype has not been previously declared, the mikroC PRO for AVR
converts integral arguments to a function call according to the integral widening
(expansion) rules described in Standard Conversions. If a function prototype is in
scope, the mikroC PRO for AVR converts the passed argument to the type of the
declared parameter according to the same conversion rules as in assignment state-
ments.

If a prototype is present, the number of arguments must match. The types need to
be compatible only to the extent that an assignment can legally convert them. The
user can always use an explicit cast to convert an argument to a type that is accept-
able to a function prototype.

Note: If the function prototype does not match the actual function definition, the
mikroC PRO for AVR will detect this if and only if that definition is in the same com-
pilation unit as the prototype. If you create a library of routines with the correspon-
ding header file of prototypes, consider including that header file when you compile
the library, so that any discrepancies between the prototypes and actual definitions
will be detected.

The compiler is also able to force arguments to change their type to a proper one.
Consider the following code:

int limit = 32;
char ch = '"A'";
long res;

// prototype
extern long func(long parl, long par2);

main () {

res = func(limit, ch); // function call

}

Since the program has the function prototype for func, it converts 1imit and ch to
long, using the standard rules of assignment, before it places them on the stack for
the call to func.

Without the function prototype, 1imit and ch would be placed on the stack as an
integer and a character, respectively; in that case, the stack passed to func will not
match size or content that func expects, which can cause problems.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 191

CHAPTER 5
Language Reference mikroC PRO for AVR

Ellipsis ('...") Operator

The ellipsis (' ... ') consists of three successive periods with no whitespace inter-
vening. An ellipsis can be used in the formal argument lists of function prototypes to
indicate a variable number of arguments, or arguments with varying types.

For example:

void func (int n, char ch, ...);

This declaration indicates that func will be defined in such a way that calls must have
at least two arguments, int and char, but can also have any number of additional
arguments.

Example:

#include <stdarg.h>

int addvararg(char al,...){
va list ap;

char temp;

va start (ap,al);

while(temp = va arg(ap,char))
al += temp;

return al;

}

int res;
void main () {

res = addvararg(l,2,3,4,5,0);

res = addvararg(l,2,3,4,5,6,7,8,9,10,0);

192

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

OPERATORS

Operators are tokens that trigger some computation when applied to variables and
other objects in an expression.

- Arithmetic Operators

- Assignment Operators

- Bitwise Operators

- Logical Operators

- Reference/Indirect Operators
- Relational Operators

- Structure Member Selectors

- Comma Operator ,
- Conditional Operator >

- Array subscript operator []
- Function call operator ()

- sizeof Operator

- Preprocessor Operators # and ##

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 193

CHAPTER 5

Language Reference mikroC PRO for AVR

OPERATORS PRECEDENCE AND ASSOCIATIVITY

There are 15 precedence categories, some of them contain only one operator.
Operators in the same category have equal precedence.

If duplicates of operators appear in the table, the first occurrence is unary and the
second binary. Each category has an associativity rule: left-to-right (-»), or right-to-
left (¢~). In the absence of parentheses, these rules resolve a grouping of expres-
sions with operators of equal precedence.

Precedence | Operands Operators Associativity
15 2 () (] - .
14 1 !(typeN) +s+izeo_f_ I -
13 2 * /% -
12 2 + -
11 2 << >> .
10 2 < <= > >= s
9 2 == = -
8 2 & -
7 2 "
6 2 \ -
5 2 && -
4 2 || -
3 3 ?: =
2 2 N *_: /Z<= 6_>>=+_ o -
1 2 ,

194 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 5
Language Reference

ARITHMETIC OPERATORS

Arithmetic operators are used to perform mathematical computations. They have
numerical operands and return numerical results. The type char technically repre-
sents small integers, so the char variables can be used as operands in arithmetic
operations.

All arithmetic operators associate from left to right.

Arithmetic Operators Overview

value of the operand after it evaluates; while pre-
decrement subtracts one before it evaluates

Operator Operation Precedence Type
Binary Operators
+ addition 12
- subtraction 12
* multiplication 13
/ division 13
o modulus operator returns the remainder of inte- 13
° ger division (cannot be used with floating points)
Unary Operators
+ unary plus does not affect the operand 14
- unary minus changes the sign of the operand 14
increment adds one to the value of the operand.
Postincrement adds one to the value of the
++ . ; ; 14
operand after it evaluates; while preincrement
adds one before it evaluates
decrement subtracts one from the value of the
_ operand. Postdecrement subtracts one from the 14

Note: Operator * is context sensitive and can also represent the pointer reference

operator.

Binary Arithmetic Operators

Division of two integers returns an integer, while remainder is simply truncated:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

195

CHAPTER 5

Language Reference mikroC PRO for AVR
/* for example: */
7/ 4; /* equals 1 */
7% 3/ 4; /* equals 5 */
/* but: */
7.7 3./ 4., /* equals 5.25 because we are working with floats */

Remainder operand % works only with integers; the sign of result is equal to the sign
of the first operand:

/* for example: */

9 % 3; /* equals 0 */
7% 3; /* equals 1 */
-7 % 3; /* equals -1 */

Arithmetic operators can be used for manipulating characters:

'A' + 32; /* equals 'a' (ASCII only) */
'G'" - 'A' + 'a'; /* equals 'g' (both ASCII and EBCDIC) */

Unary Arithmetic Operators

Unary operators ++ and -- are the only operators in C which can be either prefix
(e.g. ++kx, --k)or postfix (e.g. k++, k--).

When used as prefix, operators ++ and -- (preincrement and predecrement) add or
subtract one from the value of the operand before the evaluation. When used as suf-
fix, operators ++ and -- (postincrement and postdecrement) add or subtract one
from the value of the operand after the evaluation.

For example:

int j = 5;
j = ++k; /* k

k + 1, 7 = k, which gives us j = 6, k 6 */

but:

int § = 5;
j = k++; /* 3 =k, k =%k + 1, which gives us j =5, k = 6 */

196 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

RELATIONAL OPERATORS

Use relational operators to test equality or inequality of expressions. If an expres-
sion evaluates to be true, it returns 1; otherwise it returns 0.

All relational operators associate from left to right.

Relational Operators Overview

Operator Operation Precedence
== equal 9
1= not equal 9
> greater than 10
< less than 10
>= greater than or equal 10
<= less than or equal 10

Relational Operators in Expressions

Precedence of arithmetic and relational operators is designated in such a way to
allow complex expressions without parentheses to have expected meaning:

a+ 5> c¢c - 1.0/ e /* 2 (a + 5) >= (¢ - (1.0 / e)) */

Do not forget that relational operators return either 0 or 1. Consider the following

examples:
/* ok: */
5> 7 /* returns 0 */
10 <= 20 /* returns 1 */

/* this can be tricky: */

8 == 13 > 5 /* returns 0, as: 8 == (13 > 5) 2 8§ == 1
20 */

14 > 5 < 3 /* returns 1, as: (14 > 5) < 3 2 1 <3 2
1 */

a < b < 5 /* returns 1, as: (a < b) < 5 2 (0 or 1)

<5 2 1*/

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 197

CHAPTER 5
Language Reference mikroC PRO for AVR

BITWISE OPERATORS

Use the bitwise operators to modify individual bits of numerical operands.

Bitwise operators associate from left to right. The only exception is the bitwise com-
plement operator ~ which associates from right to left.

Bitwise Operators Overview

Operator Operation Precedence

. bitwise AND; compares pairs of bits and returns 1 if 8
both bits are 1, otherwise returns 0

bitwise (inclusive) OR; compares pairs of bits and
returns 1 if either or both bits are 1, otherwise 6
returns 0

bitwise exclusive OR (XOR); compares pairs of bits
8 and returns 1 if the bits are complementary, other- 7
wise returns 0

~ bitwise complement (unary); inverts each bit 14

— bitwise shift left; moves the bits to the left, discards 1
the far left bit and assigns 0 to the far right bit.

bitwise shift right; moves the bits to the right, dis-
>> cards the far right bit and if unsigned assigns 0 to 11
the far left bit, otherwise sign extends

Logical Operations on Bit Level

&« 01 Ifof1 ~101(1 ~10]1
0 0 0[{0]1 0|01 110
1 1(111 11110

Bitwise operators &, | and ~ perform logical operations on the appropriate pairs of bits
of their operands. Operator ~ complements each bit of its operand. For example:

0x1234 & 0x5678 /* equals 0x1230 */
/* because ..

O0x1234 : 0001 0010 0011 0100
0x5678 : 0101 0110 0111 1000

198 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

& : 0001 0010 0011 O0O0OO
. that is, 0x1230 */

/* Similarly: */

0x1234 | 0x5678; /* equals 0x567C */
0x1234 ~ 0x5678; /* equals 0x444C */
~ 0x1234; /* equals O0xEDCB */

Note: Operator & can also be a pointer reference operator. Refer to Pointers for
more information.

Bitwise Shift Operators

Binary operators << and >> move the bits of the left operand by a number of posi-
tions specified by the right operand, to the left or right, respectively. Right operand
has to be positive.

With shift left (<<), far left bits are discarded and “new” bits on the right are assigned
zeroes. Thus, shifting unsigned operand to the left by n positions is equivalent to
multiplying it by 2n if all discarded bits are zero. This is also true for signed operands
if all discarded bits are equal to a sign bit.

000001 << 5; /* equals 000040 */
0x3801 << 4; /* equals 0x8010, overflow! */

With shift right (>>), far right bits are discarded and the “freed” bits on the left are
assigned zeroes (in case of unsigned operand) or the value of a sign bit (in case of
signed operand). Shifting operand to the right by n positions is equivalent to divid-

ing it by 2N,
0xFF56 >> 4; /* equals OxFFF5 */
O0xFF56u >> 4; /* equals OxOFF5 */

Bitwise vs. Logical

Do not forget of the principle difference between how bitwise and logical operators
work. For example:

0222222 & 0555555; /* equals 000000 */
0222222 && 0555555; /* equals 1 */
~ 0x1234; /* equals OxEDCB */
! 0x1234; /* equals 0 */

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 199

CHAPTER 5
Language Reference mikroC PRO for AVR

LOGICAL OPERATORS

Operands of logical operations are considered true or false, that is non-zero or zero.
Logical operators always return 1 or 0. Operands in a logical expression must be of
scalar type.

Logical operators ss and | | associate from left to right. Logical negation operator !
associates from right to left.

Logical Operators Overview

Operator Operation Precedence
&6 logical AND 5
N logical OR 4
! logical negation 14

Logical Operations

s&| 0] x 110 | x 110 | x
0|]0]O0 0|01 1
x|0]1 x|1]1

Precedence of logical, relational, and arithmetic operators was designated in such
a way to allow complex expressions without parentheses to have an expected

meaning:
c >= '0'" && c <= '9'; /* reads as: (c >= '0') && (c <= '9") */
a+1=="D» || ! £(x); /* reads as: ((a + 1) == Db) || (! (f(x))) */

Logical AND ss returns 1 only if both expressions evaluate to be nonzero, otherwise
returns 0. If the first expression evaluates to false, the second expression will not be
evaluated. For example:

a > Db && c < d; /* reads as (a > b) && (c < d) */
/* 1if (a > b) 1is false (0), (c < d) will not be evaluated */

Logical OR | | returns 1 if either of expression evaluates to be nonzero, otherwise
returns 0. If the first expression evaluates to true, the second expression is not eval-
uated. For example:

a && b || ¢ && d; /* reads as: (a && b) || (c && d) */
/* 1f (a && b) 1is true (1), (c && d) will not be evaluated */

200 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

LOGICAL EXPRESSIONS AND SIDE EFFECTS

General rule regarding complex logical expressions is that the evaluation of consec-
utive logical operands stops at the very moment the final result is known. For exam-
ple, if we have an expression a ss b «s c where a is false (0), then operands b and
c will not be evaluated. This is very important if b and ¢ are expressions, as their
possible side effects will not take place!

LOGICAL VS. BITWISE

Be aware of the principle difference between how bitwise and logical operators
work. For example:

0222222 & 0555555 /* equals 000000 */
0222222 && 0555555 /* equals 1 */
~ 0x1234 /* equals OxEDCB */
! 0x1234 /* equals 0 */

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 201

CHAPTER 5
Language Reference mikroC PRO for AVR

CONDITIONAL OPERATOR ?:

The conditional operator 2 : is the only ternary operator in C. Syntax of the condi-
tional operator is:

expressionl ? expression2 : expression3

The expressionl is evaluated first. If its value is true, then expression2 evaluates
and expression3 is ignored. If expressionl evaluates to false, then expression3
evaluates and expression2 is ignored. The result will be a value of either expres-
sion2 oOr expression3 depending upon which of them evaluates.

Note: The fact that only one of these two expressions evaluates is very important if
they are expected to produce side effects!

Conditional operator associates from right to left.

Here are a couple of practical examples:

/* Find max(a, b): */
max = (a > b) ? a : b;

/* Convert small letter to capital: */
/* (no parentheses are actually necessary) */
c = (c>= 'a'" & c <= "T"z'") ? (c - 32) : c;

Conditional Operator Rules

expressionl must be a scalar expression; expression2 and expression3 must
obey one of the following rules:

1. Both expressions have to be of arithmetic type. expression2 and
expression3 are subject to usual arithmetic conversions, which
determines the resulting type.

2. Both expressions have to be of compatible struct or union types. The
resulting type is a structure or union type of expression2 and expression3.

3. Both expressions have to be of void type. The resulting type is void.

4. Both expressions have to be of type pointer to qualified or unqualified ver-
sions of compatible types. The resulting type is a pointer to a type quali-
fied with all type qualifiers of the types pointed to by both expressions.

5. One expression is a pointer, and the other is a null pointer constant. The

resulting type is a pointer to a type qualified with all type qualifiers of the
types pointed to by both expressions.

6. One expression is a pointer to an object or incomplete type, and the other
is a pointer to a qualified or unqualified version of void. The resulting type

is that of the non-pointer-to-void expression.

202 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

ASSIGNMENT OPERATORS

Unlike many other programming languages, C treats value assignment as operation
(represented by an operator) rather than instruction.

Simple Assignment Operator

For a common value assignment, a simple assignment operator (=) is used:
expressionl = expression?2

The expressionl is an object (memory location) to which the value of expression2
is assigned. Operand expressionl has to be Ivalue and expression2 can be any
expression. The assignment expression itself is not Ivalue.

If expressionl and expression2 are of different types, the result of the expres-
sion2 will be converted to the type of expressioni, if necessary. Refer to Type
Conversions for more information.

Compound Assignment Operators

C allows more comlex assignments by means of compound assignment operators.

The syntax of compound assignment operators is:

expressionl op= expression?2

where op can be one of binary operators +, -, *, /, %, &, |, ~, <<, Or>>.
Thus, we have 10 different compound assignment operators: +=, -=, *=, /=,
s=, &=, |=, ~=, <<=and>>=. All of them associate from right to left. Spaces sep-

arating compound operators (e.g. + =) will generate error.
Compound assignment has the same effect as
expressionl = expressionl op expression2

except the Ivalue expressionl is evaluated only once. For example, expressionl
+= expression?2 is the same as expressionl = expressionl + expression2.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 203

CHAPTER 5
Language Reference mikroC PRO for AVR

Assignment Rules

For both simple and compound assignment, the operands expressionl and
expression2 must obey one of the following rules:

1. expressionl is of qualified or unqualified arithmetic type and
expression? is of arithmetic type.

2. expressionl has a qualified or unqualified version of structure or union
type compatible with the type of expression2.

3. expressionl and expression2 are pointers to qualified or unqualified
versions of compatible types and the type pointed to by left has all
qualifiers of the type pointed to by right.

4. Either expressionl Or expression2 is a pointer to an object or incomplete
type and the other is a pointer to a qualified or unqualified version of void. The
type pointed to by left has all qualifiers of the type pointed to by right.

5. expressionl is a pointer and expression2 is a null pointer constant.

204 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

SIZEOF OPERATOR

The prefix unary operator sizeof returns an integer constant that represents the size
of memory space (in bytes) used by its operand (determined by its type, with some
exceptions).

The operator sizeof can take either a type identifier or an unary expression as an
operand. You cannot use sizeof with expressions of function type, incomplete types,
parenthesized names of such types, or with Ivalue that designates a bit field object.

Sizeof Applied to Expression

If applied to expression, the size of an operand is determined without evaluating the
expression (and therefore without side effects). The result of the operation will be
the size of the type of the expression’s result.

Sizeof Applied to Type

If applied to a type identifier, sizeof returns the size of the specified type. The unit

for type size is sizeof (char) which is equivalent to one byte. The operation size-
of(char) gives the result 1, whether char is signed or unsigned.

Thus:

sizeof (char) /* returns 1 */
sizeof (int) /* returns 2 */
sizeof (unsigned long) /* returns 4 */
sizeof (float) /* returns 4 */

When the operand is a non-parameter of array type, the result is the total number of
bytes in the array (in other words, an array name is not converted to a pointer type):

int i, 3, al 10];

sizeof (a[1]); /* j = sizeof (int) = 2 */

J
i sizeof (a); /* 1 = 10*sizeof (int) = 20 */

/* To get the number of elements in an array: */
int num _elem = 1i/3;

If the operand is a parameter declared as array type or function type, sizeof gives
the size of the pointer. When applied to structures and unions, sizeof gives the total
number of bytes, including any padding. The operator sizeof cannot be applied to
a function.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 205

CHAPTER 5
Language Reference mikroC PRO for AVR

Expressions

Expression is a sequence of operators, operands, and punctuators that specifies a
computation. Formally, expressions are defined recursively: subexpressions can be
nested without formal limit. However, the compiler will report an out-of-memory error
if it can’t compile an expression that is too complex.

In ANSI C, the primary expressions are: constant (also referred to as literal), identi-
fier, and (expression), defined recursively.

Expressions are evaluated according to a certain conversion, grouping, associativi-
ty and precedence rules, which depends on the operators used, presence of paren-
theses and data types of the operands. The precedence and associativity of the
operators are summarized in Operator Precedence and Associativity. The way
operands and subexpressions are grouped does not necessarily specify the actual
order in which they are evaluated by the mikroC PRO for AVR.

Expressions can produce Ivalue, rvalue, or no value. Expressions might cause side
effects whether they produce a value or not.

206 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

COMMA EXPRESSIONS

One of the specifics of C is that it allows using of comma as a sequence operator to
form so-called comma expressions or sequences. Comma expression is a comma-
delimited list of expressions — it is formally treated as a single expression so it can
be used in places where an expression is expected. The following sequence:

expression 1, expression 2;

results in the left-to-right evaluation of each expression, with the value and type of
expression 2 giving the result of the whole expression. Result of expression 1 is
discarded.

Binary operator comma (,) has the lowest precedence and associates from left to
right, sothata, b, cisthesameas (a, b), c. This allows writing sequences with
any number of expressions:

expression 1, expression 2, ... expression n;

which results in the left-to-right evaluation of each expression, with the value and
type of expression n giving the result of the whole expression. Results of other
expressions are discarded, but their (possible) side-effect do occur.

For example:

result = (a =5, b /=2, c+t+);
/* returns preincremented value of variable c,
but also intializes a, divides b by 2 and increments c */

result = (x = 10, y = x + 3, x-—, z -= x * 3 - --y);

/* returns computed value of variable z,

and also computes x and y */
Note
Do not confuse comma operator (sequence operator) with comma punctuator which
separates elements in a function argument list and initializator lists. To avoid ambi-
guity with commas in function argument and initializer lists, use parentheses. For
example,

func(i, (3 =1, 3 + 4), k);

calls the function func with three arguments (i, 5, k), not four.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 207

CHAPTER 5
Language Reference mikroC PRO for AVR

STATEMENTS

Statements specify a flow of control as the program executes. In the absence of
specific jump and selection statements, statements are executed sequentially in
the order of appearance in the source code.

Statements can be roughly divided into:

- Labeled Statements

- Expression Statements

- Selection Statements

- lteration Statements (Loops)

- Jump Statements

- Compound Statements (Blocks)

Labeled Statements

Each statement in a program can be labeled. A label is an identifier added before
the statement like this:

label identifier: statement;
There is no special declaration of a label — it just “tags” the statement.
Label identifier has a function scope and the same label cannot be redefined

within the same function.

Labels have their own namespace: label identifier can match any other identifier in
the program.

A statement can be labeled for two reasons:
1.The label identifier serves as a target for the unconditional goto statement,

2.The label identifier serves as a target for the switch statement. For this
purpose, only case and default labeled statements are used:

case constant-expression : statement
default : statement

208 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

EXPRESSION STATEMENTS
Any expression followed by a semicolon forms an expression statement:
expression;

The mikroC PRO for AVR executes an expression statement by evaluating the
expression. All side effects from this evaluation are completed before the next
statement starts executing. Most of expression statements are assignment state-
ments or function calls.

A null statement is a special case, consisting of a single semicolon (;). The null
statement does nothing, and therefore is useful in situations where the mikroC PRO
for AVR syntax expects a statement but the program does not need one. For exam-
ple, a null statement is commonly used in “empty” loops:

for (; *gt+ = *p++ ;); /* body of this loop is a null statement */

SELECTION STATEMENTS

Selection or flow-control statements select one of alternative courses of action by
testing certain values. There are two types of selection statements:

- if

- switch

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 209

CHAPTER 5
Language Reference mikroC PRO for AVR

IF STATEMENT

The if statement is used to implement a conditional statement. The syntax of the
if statement is:

if (expression) statementl [else statement?2]

If expression evaluates to true, statement1 executes. If expressionis false, state-
ment2 executes. The expression must evaluate to an integral value; otherwise, the
condition is ill-formed. Parentheses around the expression are mandatory.

The el1se keyword is optional, but no statements can come between if and else.
Nested If statements

Nested if statements require additional attention. A general rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available if on its left:

if (expressionl) statementl
else if (expression2)
if (expression3) statement?2

else statement3 /* this belongs to: 1f (expression3) */
else statementd /* this belongs to: if (expression2) */
Note

#if and #else preprocessor statements (directives) look similar to if and else
statements, but have very different effects. They control which source file lines are
compiled and which are ignored.

210 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

SWITCH STATEMENT

The switch statement is used to pass control to a specific program branch, based
on a certain condition. The syntax of the switch statement is:

switch (expression) {

case constant-expression 1 : statement 1;
case constant-expression n : statement n;
[default : statement;]

}

First, the expression (condition) is evaluated. The switch statement then com-
pares it to all available constant-expressions following the keyword case. If a
match is found, switch passes control to that matching case causing the state-
ment following the match evaluates. Note that constant-expressions must evalu-
ate to integer. It is not possible to have two same constant expressions evaluating
to the same value.

Parentheses around expression are mandatory.

Upon finding a match, program flow continues normally: the following instructions
will be executed in natural order regardless of the possible case label. If no case
satisfies the condition, the default case evaluates (if the label default is speci-
fied).

For example, if a variable i has value between 1 and 3, the following switch would
always return it as 4:

switch (i) {
case 1l: i++;
case 2: i++;
case 3: 1++;

}

To avoid evaluating any other cases and relinquish control from switch, each case
should be terminated with break.

Here is a simple example with switch. Suppose we have a variable phase with only
3 different states (0, 1, or 2) and a corresponding function (event) for each of these
states. This is how we could switch the code to the appopriate routine:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 211

CHAPTER 5

Language Reference mikroC PRO for AVR
switch (phase) {
case 0: Lo(); Dbreak;
case 1: Mid(); break;
case 2: Hi(); Dbreak;
default: Message ("Invalid state!");

}
Nested switch

Conditional switch statements can be nested — labels case and default are then
assigned to the innermost enclosing switch statement.

ITERATION STATEMENTS (LOOPS)

Iteration statements allows to loop a set of statements. There are three forms of iter-
ation statements in the mikroC PRO for AVR:

- while
- do
- for

WHILE STATEMENT

The while keyword is used to conditionally iterate a statement. The syntax of the
while statement is:

while (expression) statement

The statement executes repeatedly until the value of expression is false. The test
takes place before statement is executed. Thus, if expression evaluates to false
on the first pass, the loop does not execute. Note that parentheses around expres-
sion are mandatory.

Here is an example of calculating scalar product of two vectors, using the while
statement:

int s = 0, i = 0;
while (i < n) {
s += al i] * bl i] ;
i++;

}

Note that body of the loop can be a null statement. For example:

while (*g++ = *p++);

212 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

DO STATEMENT

The do statement executes until the condition becomes false. The syntax of the do
statement is:

do statement while (expression);

The statement is executed repeatedly as long as the value of expression remains
non-zero. The expression is evaluated after each iteration, so the loop will execute
statement at least once.

Parentheses around expression are mandatory.

Note that do is the only control structure in C which explicitly ends with semicolon
(;)- Other control structures end with statement, which means that they implicitly

include a semicolon or closing brace.

Here is an example of calculating scalar product of two vectors, using the do statement:

do {
s += ali] * b[i];
i++;

} while (1 < n);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 213

CHAPTER 5
Language Reference mikroC PRO for AVR

FOR STATEMENT

The for statement implements an iterative loop. The syntax of the for statement is:

for ([init-expression]; [condition-expression]; [increment-expres-
sion]) statement

Before the first iteration of the loop, init-expression sets the starting variables for
the loop. You cannot pass declarations in init-expression.

condition-expression is checked before the first entry into the block; statement
is executed repeatedly until the value of condition-expression is false. After each

iteration of the loop, increment-expression increments a loop counter. Conse-
quently, i++ is functionally the same as ++i.

All expressions are optional. If condition-expression is left out, it is assumed to
be always true. Thus, “empty” for statement is commonly used to create an end-
less loop in C:

for (; ;) statement

The only way to break out of this loop is by means of the break statement.

Here is an example of calculating scalar product of two vectors, using the for statement:
for (s =0, 1 =0; 1 < n; i++) s += a[i] * bl 1] ;

There is another way to do this:

for (s =0, i =20; 1< n; s += a[i] * b[i], i++); /* valid, but
ugly */

but it is considered a bad programming style. Although legal, calculating the sum
should not be a part of the incrementing expression, because it is not in the service
of loop routine. Note that null statement (;) is used for the loop body.

214 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

JUMP STATEMENTS

The jump statement, when executed, transfers control unconditionally. There are
four such statements in the mikroC PRO for AVR:

- break

- continue
- goto

- return

BREAK AND CONTINUE STATEMENTS

Break Statement

Sometimes it is necessary to stop the loop within its body. Use the break statement
within loops to pass control to the first statement following the innermost switch,
for, while, Or do block.

Break is commonly used in the switch statements to stop its execution upon the
first positive match. For example:

switch (state) {
case 0: Lo(); break;
case 1: Mid(); break;
case 2: Hi(); Dbreak;
default: Message ("Invalid state!");

}

Continue Statement

The continue statement within loops is used to “skip the cycle”. It passes control to
the end of the innermost enclosing end brace belonging to a looping construct. At
that point the loop continuation condition is re-evaluated. This means that contin-
ue demands the next iteration if the loop continuation condition is true.

Specifically, the continue statement within the loop will jump to the marked position
as it is shown below:

while (..) { do {

if (val>0) continue; if (val>0) continue;
// continue Jjumps here // continue Jjumps here
} while (..);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 215

CHAPTER 5
Language Reference mikroC PRO for AVR

for (..;..;..) {
if (val>0) continue;

// continue jumps here

}

GOTO STATEMENT

The goto statement is used for unconditional jump to a local label — for more infor-
mation on labels, refer to Labeled Statements. The syntax of the goto statement is:

goto label identifier ;

This will transfer control to the location of a local label specified by 1abel identi-
fier. The label identifier has to be a name of the label within the same func-
tion in which the goto statement is. The goto line can come before or after the label.

goto is used to break out from any level of nested control structures but it cannot be
used to jump into block while skipping that block’s initializations — for example, jump-
ing into loop’s body, etc.

The use of goto statement is generally discouraged as practically every algorithm can
be realized without it, resulting in legible structured programs. One possible application
of the goto statement is breaking out from deeply nested control structures:

for (...) {
for (...) {

if (disaster) goto Error;

Error: /* error handling code */

216 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

RETURN STATEMENT

The return statement is used to exit from the current function back to the calling
routine, optionally returning a value. The syntax is:

return [expression] ;

This will evaluate expression and return the result. Returned value will be automat-
ically converted to the expected function type, if needed. The expression is option-
al; if omitted, the function will return a random value from memory.

Note: The statement return in functions of the void type cannot have expression
—in fact, the return statement can be omitted altogether if it is the last statement
in the function body.

COMPOUND STATEMENTS (BLOCKS)

The compound statement, or block, is a list (possibly empty) of statements enclosed
in matching braces { }. Syntactically, the block can be considered to be a single
statement, but it also plays a role in the scoping of identifiers. An identifier declared
within the block has a scope starting at the point of declaration and ending at the
closing brace. Blocks can be nested to any depth up to the limits of memory.

For example, the for loop expects one statement in its body, so we can pass it a
compound statement:

for (i = 0; i < n; i++) {
int temp = a[i] ;
al i] = b[1] ;
bl 1] = temp;

}

Note that, unlike other statements, compound statements do not end with semicolon
(7), i.e. there is never a semicolon following the closing brace.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 217

CHAPTER 5
Language Reference mikroC PRO for AVR

PREPROCESSOR

Preprocessor is an integrated text processor which prepares the source code for
compiling. Preprocessor allows:

- inserting text from a specifed file to a certain point in the code (see
File Inclusion),

- replacing specific lexical symbols with other symbols (see Macros),

- conditional compiling which conditionally includes or omits parts of the
code (see Conditional Compilation).

Note that preprocessor analyzes text at token level, not at individual character level.
Preprocessor is controled by means of preprocessor directives and preprocessor
operators.

218 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

PREPROCESSOR DIRECTIVES

Any line in the source code with a leading # is taken as a preprocessing directive (or
control line), unless # is within a string literal, in a character constant, or embedded
in a comment. The initial # can be preceded or followed by a whitespace (excluding
new lines).

A null directive consists of a line containing the single character #. This line is always
ignored.

Preprocessor directives are usually placed at the beginning of the source code, but
they can legally appear at any point in a program. The mikroC PRO for AVR pre-
processor detects preprocessor directives and parses the tokens embedded in
them. A directive is in effect from its declaration to the end of the program file.
Here is one commonly used directive:

#include <math.h>

For more information on including files with the #incilude directive, refer to File
Inclusion.

The mikroC PRO for AVR supports standard preprocessor directives:

(null directive) #if
#define #ifdef
felif #ifndef
felse #include
#endif #line
ferror #undef

Note: For the time being only funcall pragma is supported.
Line Continuation with Backslash (\)

To break directive into multiple lines end the line with a backslash (\):

#define MACRO This directive continues to \
the following line.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 219

CHAPTER 5
Language Reference mikroC PRO for AVR

MACROS

Macros provide a mechanism for a token replacement, prior to compilation, with or
without a set of formal, function-like parameters.

Defining Macros and Macro Expansions
The #define directive defines a macro:
#define macro identifier <token sequence>

Each occurrence of macro identifier in the source code following this control line
will be replaced in the original position with the possibly empty token sequence
(there are some exceptions, which are discussed later). Such replacements are
known as macro expansions.token sequence is sometimes called the body of a
macro. An empty token sequence results in the removal of each affected macro
identifier from the source code.

No semicolon (;) is needed to terminate a preprocessor directive. Any character
found in the token sequence, including semicolons, will appear in a macro expan-
sion.token sequence terminates at the first non-backslashed new line encoun-
tered. Any sequence of whitespace, including comments in the token sequence, is
replaced with a single-space character.

After each individual macro expansion, a further scan is made of the newly expand-
ed text. This allows the possibility of using nested macros: the expanded text can
contain macro identifiers that are subject to replacement. However, if the macro
expands into something that looks like a preprocessing directive, such directive will
not be recognized by the preprocessor. Any occurrences of the macro identifier
found within literal strings, character constants, or comments in the source code will
not be expanded.

A macro won’'t be expanded during its own expansion (so #define MACRO MACRO
won’t expand indefinitely).

Here is an example:

/* Here are some simple macros: */
#define ERR_MSG "Out of range!"
#define EVERLOOP for(; ;)

/* which we could use like this: */

main () {
EVERLOOP {

if (error) { Lcd Out Cp(ERR MSG); break; }

}
}

220 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

Attempting to redefine an already defined macro identifier will result in a warning
unless a new definition is exactly the same token-by-token definition as the existing
one. The preferred strategy when definitions might exist in other header files is as
follows:

#ifndef BLOCK SIZE
#define BLOCK SIZE 512

fendif

The middle line is bypassed if BLock s1zE is currently defined; if BLock s1zE is not
currently defined, the middle line is invoked to define it.

MACROS WITH PARAMETERS
The following syntax is used to define a macro with parameters:

#define macro identifier(<arg list>) <token sequence>

Note that there can be no whitespace between macro identifier and “(". The
optional arg 1ist is a sequence of identifiers separated by commas, like the argu-
ment list of a C function. Each comma-delimited identifier has the role of a formal
argument or placeholder.

Such macros are called by writing
macro identifier (<actual arg list>)

in the subsequent source code. The syntax is identical to that of a function call;
indeed, many standard library C “functions” are implemented as macros. However,
there are some important semantic differences.

The optional actual arg 1ist must contain the same number of comma-delimited
token sequences, known as actual arguments, as found in the formal arg_list of the
#define line —there must be an actual argument for each formal argument. An error
will be reported if the number of arguments in two lists is not the same.

A macro call results in two sets of replacements. First, the macro identifier and the
parenthesis-enclosed arguments are replaced by the token sequence. Next, any for-
mal arguments occurring in the token sequence are replaced by the corresponding
real arguments appearing in actual arg list. Like with simple macro definitions,
rescanning occurs to detect any embedded macro identifiers eligible for expansion.

Here is a simple example:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 221

CHAPTER 5
Language Reference mikroC PRO for AVR

/* A simple macro which returns greater of its 2 arguments: */
#define MAX (A, B) ((A) > (B)) 2 (A) : (B)

/* Let's call it: */
x = MAX(a + b, c + d);

/* Preprocessor will transform the previous line into:
x = ((a +Db) > (c+d)) ? (a+b) : (c+d */

It is highly recommended to put parentheses around each argument in the macro
body in order to avoid possible problems with operator precedence.

Undefining Macros
The #undef directive is used to undefine a macro.
#undef macro identifier

The directive #undef detaches any previous token sequence from macro identi-
fier; the macro definition has been forgotten, and macro identifier is undefined.
No macro expansion occurs within the #undef lines.

The state of being defined or undefined is an important property of an identifier,
regardless of the actual definition. The #ifdef and #ifndef conditional directives,
used to test whether any identifier is currently defined or not, offer a flexible mech-
anism for controlling many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined with #define, using
the same or different token sequence.

222 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

FILE INCLUSION

The preprocessor directive #include pulls in header files (extension .h) into the
source code. Do not rely on preprocessor to include source files (extension) — see
Add/Remove Files from Project for more information.

The syntax of the #include directive has two formats:

#include <header name>
#include "header name"

The preprocessor removes the #include line and replaces it with the entire text of
a header file at that point in the source code. The placement of #inc1lude can there-
fore influence the scope and duration of any identifiers in the included file.

The difference between these two formats lies in searching algorithm employed in
trying to locate the include file.

If the #include directive is used with the <header name> version, the search is
made successively in each of the following locations, in this particular order:

1. the mikroC PRO for AVR installation folder » “include” folder
2. user's custom search paths

The "header name" version specifies a user-supplied include file; the mikroC PRO
for AVR will look for the header file in the following locations, in this particular order:

1. the project folder (folder which contains the project file .ppc)
2. the mikroC PRO for AVR installation folder » “include” folder
3. user's custom search paths

Explicit Path

By placing an explicit path in header name, only that directory will be searched. For
example:

#include "C:\my files\test.h"

Note

There is also a third version of the #include directive, rarely used, which assumes that
neither < nor " appear as the first non-whitespace character following #include:

#include macro identifier

It assumes that macro definition that will expand macro identifier into a valid delimit-
ed header name with either <neader name> or "header_name" formats exists.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 223

CHAPTER 5
Language Reference mikroC PRO for AVR

PREPROCESSOR OPERATORS

The # (pound sign) is a preprocessor directive when it occurs as the first non-white-
space character on a line. Also, # and ## perform operator replacement and merg-
ing during the preprocessor scanning phase.

Operator #

In C preprocessor, a character sequence enclosed by quotes is considered a token
and its content is not analyzed. This means that macro names within quotes are not
expanded.

If you need an actual argument (the exact sequence of characters within quotes) as
a result of preprocessing, use the # operator in macro body. It can be placed in front
of a formal macro argument in definition in order to convert the actual argument to
a string after replacement.

For example, let's have macro n.cp prINT for printing variable name and value on LCD:

#define LCD_PRINT (val) Lcd Custom Out Cp (#val ": "); \
Lcd Custom Out Cp (IntToStr(val));

Now, the following code,
LCD_PRINT (temp)

will be preprocessed to this:
Lcd Custom Out Cp("temp" ": "); Lcd Custom Out Cp(IntToStr (temp));

Operator ##

Operator ## is used for token pasting. Two tokens can be pasted(merged) together
by placing ## in between them (plus optional whitespace on either side). The pre-
processor removes whitespace and ##, combining the separate tokens into one
new token. This is commonly used for constructing identifiers.

For example, see the definition of macro sprIcE for pasting two tokens into one
identifier:

#define SPLICE(x,y) x ## _ ## y

Now, the call spLICE (cnt, 2) will expand to the identifier cnt 2.

Note

The mikroC PRO for AVR does not support the older nonportable method of token
pasting using (1/** /r).

224 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroC PRO for AVR Language Reference

CONDITIONAL COMPILATION

Conditional compilation directives are typically used to make source programs easy
to change and easy to compile in different execution environments. The mikroC
PRO for AVR supports conditional compilation by replacing the appropriate source-
code lines with a blank line.

All conditional compilation directives must be completed in the source or include file
in which they have begun.

Directives #if, #elif, #else, and #endif

The conditional directives #if, #elif, #else, and #endif work very similar to the
common C conditional statements. If the expression you write after #if has a
nonzero value, the line group immediately following the #if directive is retained in
the translation unit.

The syntax is:

#1f constant expression 1
<section 1>

[#elif constant expression 2
<section 2>]

[#elif constant expression n
<section n>]

[#else
<final section>]

#endif

Each #1if directive in a source file must be matched by a closing #endi £ directive.
Any number of #e11 £ directives can appear between #if and #endif directives, but
at most one #e1se directive is allowed. The #e1se directive, if present, must be the
last directive before #endi f.

sections can be any program text that has meaning to compiler or preprocessor.
The preprocessor selects a single section by evaluating constant expression
following each #if or #elif directive until it finds a true (nonzero) constant expres-
sion. The constant expressions are subject to macro expansion.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 225

CHAPTER 5
Language Reference mikroC PRO for AVR

If all occurrences of constant-expression are false, or if no #e1if directives appear,
the preprocessor selects the text block after the #else clause. If the #e1se clause is
omitted and all instances of constant expression in the #if block are false, no
section is selected for further processing.

Any processed section can contain further conditional clauses, nested to any depth.
Each nested #else, #elif, or #endif directive belongs to the closest preceding the
#1f directive.

The net result of the preceding scenario is that only one code section (possibly
empty) will be compiled.

Directives #ifdef and #ifndef

The #ifdef and #ifndef directives can be used anywhere #if can be used and
they can test whether an identifier is currently defined or not. The line

#ifdef identifier

has exactly the same effect as #if 1 if identifier is currently defined, and the
same effect as #if 0 if identifier is currently undefined. The other directive,
#ifndef, tests true for the “not-defined” condition, producing the opposite results.

The syntax thereafter follows that of #if, #elif, #else, and #endif.

An identifier defined as NULL is considered to be defined.

226 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

mikroC PRO for
AVR Libraries

mikroC PRO for AVR provides a set of libraries which simplify the initialization and
use of AVR compliant MCUs and their modules:

Use Library manager to include mikroC PRO for AVR Libraries in you project.

227

CHAPTER 6
Libraries mikroC PRO for AVR

Hardware AVR-specific Libraries

- ADC Library

- CANSPI Library

- Compact Flash Library

- EEPROM Library

- Flash Memory Library

- Graphic LCD Library

- Keypad Library

- LCD Library

- Manchester Code Library
- Multi Media Card library
- OneWire Library

- Port Expander Library

- PS/2 Library

- PWM Library

- PWM 16 bit Library

- RS-485 Library

- Software 12C Library

- Software SPI Library

- Software UART Library

- Sound Library

- SPI Library

- SPI Ethernet Library

- SPI Graphic LCD Library
- SPI LCD Library

- SPI LCD8 Library

- SPI T6963C Graphic LCD Library
- T6963C Graphic LCD Library
- TWI Library

- UART Library

228 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Standard ANSI C Libraries

- ANSI C Ctype Library
- ANSI C Math Library

- ANSI C Stdlib Library
- ANSI C String Library

Miscellaneous Libraries

- Button Library

- Conversions Library

- Sprint Library

- Time Library

- Trigonometry Library

- See also Built-in Routines.

LIBRARY DEPENDENCIES

Certain libraries use (depend on) function and/or variables, constants defined in
other libraries.
Image below shows clear representation about these dependencies.

For example, SPI_Glcd uses Glcd_Fonts and Port_Expander library which uses SPI
library.

This means that if you check SPI_Glcd library in Library manager, all libraries on
which it depends will be checked too.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 229

CHAPTER 6
Libraries

mikroC PRO for AVR

[cANsPI J——{spPI ol
[Gled |—[Glcd_Fonts]
[Lcd }——{ Lcd_Constants]
[mMmc J—{sp1 J
[Port_Expander |—[sPI]
| RS-485 |——{ usART ol
SPI)
| SPI_Ethernet J/'[
\‘[String]
[Port_Expander ——[sPI il
[SPI_Glcd <
[Glcd_Fonts]
[Port_Expander |——{sPI]
[sPI_Lcd J<
rLcd Constants 1
[Port_Expander |—— sPi |
[SPI_Lcds l<:
{ Lcd_Constants]
[Port_Expander [sPI
[sP1_T6963C |
Trigon
[Sprintf J—+[ctype]
[Sprintl _|——={ ctype ol
[Sprinti —{ Ctype J
[T6963C }—+[Trigon J

Related topics: Library manager, AVR Libraries

230 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

ADC LIBRARY

ADC (Analog to Digital Converter) module is available with a number of AVR micros. Library func-
tion ADC_Read is included to provide you comfortable work with the module in single-ended
mode.

ADC_Read

Prototype |unsigned ADC Read(char channel);

Returns 10-bit or 12-bit (MCU dependent) unsigned value from the specified channel.

Initializes AVR ’s internal ADC module to work with XTAL frequency prescaled
by 128. Clock determines the time period necessary for performing A/D conver-
Ny sion.

Description
Parameter channel represents the channel from which the analog value is to be
acquired. Refer to the appropriate datasheet for channel-to-pin mapping.

Requires Nothing.

unsigned tmp;
Example

tmp = ADC_Read(2); // Read analog value from channel 1

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 231

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example

This example code reads analog value from channel 2 and displays it on PORTB
and PORTC.

#include <built in.h>
unsigned int adc_ rd;

void main () {

DDRB = OxFF; // Set PORTB as output
DDRC = OXxFF; // Set PORTC as output

while (1) {

adc_rd = ADC Read(2); // get ADC value from 2nd channel
PORTB = adc_rd; // display adc_rd 7..0]
PORTC = Hi(adc_rd); // display adc_rd[9..8]

232 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

HW Connection

LDo 2 330

LD1 %> 330 |
L

LD2 == 330
1

d

PB.O vce

PB.1
PB.2 PA.2
PB.3
PB.4
PB.5
PB.6
PB.7

@@

330
1

| S

4
XX
4
LD4 ‘@ 330
®
xX

| S

330

1
| S

VvCC
GND

GND
330 OSCILLATOR

1 1
LD7 3 e O)
¢

<

Q

O
}j'lil_ll"ll"ll"ll"ll"ll"ll"ll"l

| 1 e 1 s 1 e s s ¥ |

XTAL1

| S

330
1

| S

LD9 '@ 330

91VO3INLY

| SN NN) S— Sm— S— m— m—

PC.1
PC.0

By

ADC HW connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 233

CHAPTER 6
Libraries mikroC PRO for AVR

CANSPI LIBRARY

The SPI module is available with a number of the AVR compliant MCUs. The mikroC
PRO for AVR provides a library (driver) for working with mikroElektronika's CANSPI
Add-on boards (with MCP2515 or MCP2510) via SPI interface.

The CAN is a very robust protocol that has error detection and signalization,
self-checking and fault confinement. Faulty CAN data and remote frames are re-
transmitted automatically, similar to the Ethernet.

Data transfer rates depend on distance. For example, 1 Mbit/s can be achieved at
network lengths below 40m while 250 Kbit/s can be achieved at network lengths
below 250m. The greater distance the lower maximum bitrate that can be achieved.
The lowest bitrate defined by the standard is 200Kbit/s. Cables used are shielded
twisted pairs.

CAN supports two message formats:

Standard format, with 11 identifier bits and
Extended format, with 29 identifier bits

Note:

- Consult the CAN standard about CAN bus termination resistance.

- An effective CANSPI communication speed depends on SPI and certainly
is slower than “real” CAN.

- CANSPI module refers to mikroElektronika's CANSPI Add-on board con
nected to SPI module of MCU.

- Prior to calling any of this library routines, Spi_Rd_Ptr needs to be initial-
ized with the appropriate SPI_Read routine.

234 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

External dependecies of CANSPI Library

The following variables
must be defined in all proj-
ects using CANSPI Library:

Description :

Example :

extern sfr sbit
CanSpi CS;

Chip Select line.

sbit CanSpi CS at
PORTB.BO;

extern sfr sbit
CanSpi Rst;

Reset line.

sbit CanSpi Rst at
PORTB.B2;

extern sfr sbit
CanSpi CS Bit Direction;

Direction of the Chip Select
pin.

sbit
CanSpi CS Bit Direction
at DDRB.BO;

extern sfr sbit
CanSpi Rst Bit Direction;

Direction of the Reset pin.

sbit
CanSpi Rst Bit Direction
at DDRB.B2;

Library Routines

- CANSPISetOperationMode
- CANSPIGetOperationMode

- CANSPIInitialize

- CANSPISetBaudRate

- CANSPISetMask
- CANSPISetFilter
- CANSPIread
- CANSPIWrite

The following routines are for an internal use by the library only:

- RegsToCANSPIID
- CANSPIIDToRegs

Be sure to check CANSPI constants necessary for using some of the functions.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

235

CHAPTER 6
Libraries mikroC PRO for AVR

CANSPISetOperationMode

Prounype void CANSPISetOperationMode (char mode, char WAIT);

Returns Nothing.

Sets the CANSPI module to requested mode.
Parameters :

- mode: CANSPI module operation mode. Valid values: caNSPI 0P MODE con-
Description |stants (see CANSPI constants).

- wa1T: CANSPI mode switching verification request. If watT == 0, the call is
non-blocking. The function does not verify if the CANSPI module is switched to
requested mode or not. Caller must use CANSPIGetOperationMode to verify cor-
rect operation mode before performing mode specific operation. If watT =0,
the call is blocking — the function won’t “return” until the requested mode is set.

The CANSPI routines are supported only by MCUs with the SPI module.

Requires MCU has to be properly connected to mikroElektronika's CANSPI Extra Board

or similar hardware. See connection example at the bottom of this page.

// set the CANSPI module into configuration mode (wait inside
Example CANSPISetOperationMode until this mode is set)
CANSPISetOperationMode (CANSPI MODE CONFIG, OxFF);

CANSPIGetOperationMode

Prototype char CANSPIGetOperationMode () ;

Returns Current operation mode.

The function returns current operation mode of the CANSPI module. Check
Description |canspI op MODE constants (see CANSPI constants) or device datasheet for
operation mode codes.

The CANSPI routines are supported only by MCUs with the SPI module.

Requires ; ;
a MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.
// check whether the CANSPI module is in Normal mode and 1if it 1is
do something.
Exanuﬂe if (CANSPIGetOperationMode () == CANSPI MODE NORMAL) {

}

236 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

CANSPIInitialize

Protot void CANSPIInitialize(char SJW, char BRP, char PHSEG1l, char
rototypeé |ppsec2, char PROPSEG, char CAN_CONFIG FLAGS);
Returns Nothing.
Initializes the CANSPI module.
Stand-Alone CAN controller in the CANSPI module is set to:
- Disable CAN capture
- Continue CAN operation in Idle mode
- Do not abort pending transmissions
- Fcan clock : 4*Tcy (Fosc)
- Baud rate is set according to given parameters
- CAN mode : Normal
- Filter and mask registers IDs are set to zero
- Filter and mask message frame type is set according to
Description CAN CONFIG FLAGS value
SAM, SEG2PHTS, WAKFIL and DBEN bits are set according to CAN CONFIG FLAGS
value.
Parameters:
- sgw as defined in CAN controller's datasheet
- BRP as defined in CAN controller's datasheet
- pHSEG1 as defined in CAN controller's datasheet
- pHSEG2 as defined in CAN controller's datasheet
- PROPSEG as defined in CAN controller's datasheet
- CAN CONFIG FLAGS is formed from predefined constants (see
CANSPI constants)
Global variables :
- canspi cs: Chip Select line
- CanSpi Rst: Reset line
- CanSpi CS Bit Direction: Direction of the Chip Select pin
- CanSpi Rst Bit Direction: Direction of the Reset pin
Requires must be defined before using this function.
The CANSPI routines are supported only by MCUs with the SPI module.
The SPI module needs to be initialized. See the Spi_Init and Spi_Init_Advanced
routines.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

237

CHAPTER 6
Libraries mikroC PRO for AVR

// CANSPI module connections

sbit CanSpi CS at PORTB.BO;

sbit CanSpi CS Direction at DDRB.BO;
sbit CanSpi Rst at PORTB.BZ2;

sbit CanSpi Rst Direction at DDRB.BZ2;
// End CANSPI module connections

// initialize the CANSPI module with the appropriate baud rate
and message acceptance flags along with the sampling rules

char Can Init Flags;

Can Init Flags = CAN CONFIG SAMPLE THRICE & // form value to

be used
Example CAN CONFIG PHSEG2 PRG ON & // with
CANSPIInitialize
CAN CONFIG XTD MSG &
CAN CONFIG DBL BUFFER ON &
CAN CONFIG VALID XTD MSG;
SPI1 Init(); // initialize
SPI module
Spi Rd Ptr = SPI1 Read; // pass pointer

to SPI Read function of used SPI module

CANSPIInitialize(1,3,3,3,1,Can Init Flags); // initialize
external CANSPI module

238 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

CANSPISetBaudRate

void CANSPISetBaudRate(char SJW, char BRP, char PHSEG1l, char

Prototype | ;;5rG2, char PROPSEG, char CAN CONFIG FLAGS);

Returns Nothing.

Sets the CANSPI module baud rate. Due to complexity of the CAN protocol, you
can not simply force a bps value. Instead, use this function when the CANSPI
module is in Config mode.

SAM, SEG2PHTS and WAKFIL bits are set according to cCaN CONFIG FLAGS value.
Refer to datasheet for details.

Description Parameters:

- sgw as defined in CAN controller's datasheet

- BrRP as defined in CAN controller's datasheet

- pHSEG1 as defined in CAN controller's datasheet

- pHSEG2 as defined in CAN controller's datasheet

- PROPSEG as defined in CAN controller's datasheet

- CAN CONFIG FLAGS is formed from predefined constants (see CANSPI
constants)

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// set required baud rate and sampling rules
char can config flags;

CANSPISetOperationMode (CANSPI MODE CONFIG, OXFF) ; //
set CONFIGURATION mode (CANSPI module mast be in config mode for
baud rate settings)
Example can _config flags = CANSPI CONFIG SAMPLE THRICE &
CANSPI_CONFIG_PHSEG2_PRG_ON &
CANSPI CONFIG STD MSG &
CANSPI_CONFIG_DBL_BUFFER_ON &
CANSPI CONFIG VALID XTD MSG &
CANSPI CONFIG LINE FILTER OFF;
CANSPISetBaudRate (1, 1, 3, 3, 1, can config flags);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 239

CHAPTER 6
Libraries mikroC PRO for AVR

CANSPISetMask

void CANSPISetMask (char CAN MASK, long val, char

Prototype CAN CONFIG_FLAGS) ;

Returns Nothing.

Configures mask for advanced filtering of messages. The parameter value is bit-
adjusted to the appropriate mask registers.

Parameters:

- can_Mask: CANSPI module mask number. Valid values: CANSPI MASK con-
stants (see CANSPI constants)

Description |- va1: mask register value

- CAN CONFIG FLAGS: selects type of message to filter. Valid values:

CANSPI CONFIG ALL VALID MSG,

CANSPI_CONFIG _MATCH MSG_TYPE & CANSPI CONFIG_STD MSG,
CANSPI_CONFIG MATCH MSG TYPE & CANSPI CONFIG XTD MSG.

(see CANSPI constants)

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// set the appropriate filter mask and message type value
CANSPISetOperationMode (CANSPI MODE CONFIG, O0xFF); //
set CONFIGURATION mode (CANSPI module must be in config mode for
mask settings)

Example // Set all Bl mask bits to 1 (all filtered bits are relevant):
// Note that -1 is Jjust a cheaper way to write OXFFFFFFFF.

// Complement will do the trick and fill it up with ones.
CANSPISetMask (CANSPI MASK B1l, -1, CANSPI CONFIG MATCH MSG TYPE &
CANSPI CONFIG XTD MSG) ;

240 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

CANSPISetFilter

void CANSPISetFilter (char CAN FILTER, long val, char

Prototype |, conrrc FraGs);

Returns Nothing.

Configures message filter. The parameter value is bit-adjusted to the appropri-
ate filter registers.

Parameters:

- can_rILTER: CANSPI module filter number. Valid values: cANSPI FILTER CON-
stants (see CANSPI constants)

Description |- a1 filter register value

- CAN CONFIG FLAGS: selects type of message to filter. Valid values:

CANSPI_CONFIG ALL VALID MSG,

CANSPI_CONFIG MATCH MSG _TYPE & CANSPI CONFIG_STD MSG,
CANSPI CONFIG MATCH MSG TYPE & CANSPI CONFIG XTD MSG.

(see CANSPI constants)

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// set the appropriate filter value and message type
CANSPISetOperationMode(CANSPIAMODEACONFIG,OxFF);

// set CONFIGURATION mode (CANSPI module must be in config mode
Example for filter settings)

/* Set id of filter Bl F1 to 3: */
CANSPISetFilter (CANSPI FILTER Bl F1, 3, CANSPI CONFIG XTD MSG);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 241

CHAPTER 6

Libraries mikroC PRO for AVR
CANSPIRead
Protot char CANSPIRead(long *id, char *rd data, char *data len, char
rototype |, CAN RX MSG FLAGS) ;
Returns - 0 if nothing is received
- 0xFF if one of the Receive Buffers is full (message received)
If at least one full Receive Buffer is found, it will be processed in the following way:
- Message ID is retrieved and stored to location provided by the id parameter
- Message data is retrieved and stored to a buffer provided by the rd data
parameter
- Message length is retrieved and stored to location provided by the data len
parameter
Description |” Message flags are retrieved and stored to location provided by the

CAN RX MSG FLAGS parameter
Parameters:

- id: message identifier storage address

- rd_data: data buffer (an array of bytes up to 8 bytes in length)
- data_len: data length storage address.

- CAN_RX MSG_FLAGS: message flags storage address

The CANSPI module must be in a mode in which receiving is possible. See
CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// check the CANSPI module for received messages. If any was
received do something.

char msg rcvd, rx flags, data len;

char datal 8] ;

long msg id;

CANSPISetOperationMode (CANSPI_MODE_NORMAL, OxFF) ;
Example // set NORMAL mode (CANSPI module must be in mode in which
receive 1is possible)

rx flags = 0;
// clear message flags

if (msg rcvd = CANSPIRead(msg id, data, data len, rx flags)) f{

}

242 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

CANSPIWrite

char CANSPIWrite (long id, char *wr data, char data len, char

PrOtOtype CAN TX MSG FLAGS) ;

- 0 if all Transmit Buffers are busy

Returns - oxFF if at least one Transmit Buffer is available
If at least one empty Transmit Buffer is found, the function sends message in
the queue for transmission.
Parameters:

Description

- id:CAN message identifier. Valid values: 11 or 29 bit values, depending on
message type (standard or extended)

-wr data: data to be sent (an array of bytes up to 8 bytes in length)

- data len: data length. Valid values: 1 to 8

- CAN RX MSG FLAGS: message flags

The CANSPI module must be in mode in which transmission is possible. See
CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// send message extended CAN message with the appropriate ID and
data

char tx flags;

char datal 8] ;

long msg id;

Exanuﬂe CANSPISetOperationMode (CAN MODE NORMAL, OxFF) ;
// set NORMAL mode (CANSPI must be in mode 1in which transmission
is possible)

tx flags = CANSPI TX PRIORITY 0 & CANSPI TX XTD FRAME;
// set message flags
CANSPIWrite (msg_id, data, 2, tx flags);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 243

CHAPTER 6
Libraries mikroC PRO for AVR

CANSPI Constants

There is a number of constants predefined in the CANSPI library. You need to be
familiar with them in order to be able to use the library effectively. Check the exam-
ple at the end of the chapter.

CANSPI_OP_MODE

The CANSPI_OP_MODE constants define CANSPI operation mode. Function
CANSPISetOperationMode expects one of these as it's argument:

const char

CANSPI MODE BITS = 0xEO, // Use this to access opmode bits
CANSPI MODE NORMAL = 0x00,
CANSPI MODE SLEEP = 0x20,
CANSPI MODE LOOP = 0x40,

CANSPI_MODE LISTEN = 0x60,
CANSPI MODE CONFIG = 0x80;

CANSPI_CONFIG_FLAGS

The CANSPI_CONFIG_FLAGS constants define flags related to the CANSPI mod-
ule configuration. The functions CANSPIInitialize, CANSPISetBaudRate,
CANSPISetMask and CANSPISetFilter expect one of these (or a bitwise combina-
tion) as their argument:

const char

CANSPI CONFIG DEFAULT = OxFF, // 11111111
CANSPI CONFIG PHSEG2 PRG BIT = 0x01,

CANSPI CONFIG PHSEG2 PRG ON = OxFF, // XXXXXXX1
CANSPI CONFIG PHSEG2 PRG OFF = OxFE, // XXXXXXXO0

CANSPI_CONFIG _LINE FILTER BIT = 0x02,

CANSPI_CONFIG_LINE FILTER ON = OxFF, // XXXXXX1X
CANSPI_CONFIG_LINE FILTER OFF = OxFD, // XXXXXX0X
CANSPI CONFIG SAMPLE BIT = 0x04,

CANSPI CONFIG SAMPLE ONCE = OxFF, // XXXXX1XX
CANSPI CONFIG SAMPLE THRICE = 0xFB, // XXXXX0XX
CANSPI CONFIG MSG TYPE BIT = 0x08,

CANSPI_CONFIG_STD MSG = OxFF, // XXXX1XXX
CANSPI CONFIG_XTD MSG = 0xF7, // XXXX0XXX

244 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries

CANSPI_CONFIG DBL BUFFER BIT = 0x10,

CANSPI CONFIG DBL BUFFER ON = OxFF, // XXX1XXXX
CANSPI CONFIG DBL BUFFER OFF = OxEF, // XXX0XXXX
CANSPI CONFIG MSG BITS = 0x60,

CANSPI_CONFIG_ALL_MSG = 0OxFF, // X11XXXXX
CANSPI_CONFIG_VALID_XTD_MSG = 0xDF, // X10XXXXX
CANSPI_CONFIG VALID STD MSG = OxBF, // X01XXXXX

CANSPI_CONFIG ALL VALID MSG 0x9F; // X00XXXXX

You may use bitwise AND (&) to form config byte out of these values. For example:

init = CANSPI_CONFIG_SAMPLE THRICE &
CANSPI CONFIG PHSEG2 PRG ON &
CANSPI_CONFIG _STD MSG &
CANSPI CONFIG DBL BUFFER ON &
CANSPI_CONFIG VALID XTD MSG &
CANSPI_CONFIG_LINE FILTER OFF;

CANSPIInitialize(l, 1, 3, 3, 1, init); // initialize CANSPI
CANSPI_TX_MSG_FLAGS

CANSPI_TX_MSG_FLAGS are flags related to transmission of a CAN message:

const char
CANSPI TX PRIORITY BITS = 0x03,

CANSPI_TX PRIORITY 0 = 0xFC, // XXXXXX00
CANSPI TX PRIORITY 1 = 0xFD, // XXXXXX01
CANSPI TX PRIORITY 2 = OxFE, // XXXXXX10
CANSPI_TX PRIORITY 3 = OxFF, // XXXXXX11
CANSPI TX FRAME BIT = 0x08,

CANSPI TX STD FRAME = OxFF, // XXXXXIXX
CANSPI TX XTD FRAME = 0xF7, // XXXXX0XX
CANSPI TX RTR BIT = 0x40,

CANSPI TX NO RTR FRAME = OxFF, // X1XXXXXX
CANSPI TX RTR FRAME = OxBF; // XOXXXXXX

You may use bitwise AND (&) to adjust the appropriate flags. For example:

/* form value to be used as sending message flag : */
send config = CANSPI TX PRIORITY 0 &

CANSPI TX XTD FRAME &

CANSPI TX NO RTR FRAME;

CANSPIWrite (id, data, 1, send config);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 245

CHAPTER 6
Libraries

mikroC PRO for AVR

CANSPI_RX_MSG_FLAGS

CANSPI_RX_MSG_FLAGS are flags related to reception of CAN message. If a par-
ticular bit is set then corresponding meaning is TRUE or else it will be FALSE.

const char
CANSPI RX FILTER BITS = 0x07,// Use this to access filter bits

CANSPT RX FILTER 1 = 0x00,

CANSPT RX FILTER 2 = 0x01,

CANSPI RX FILTER 3 = 0x02,

CANSPI RX FILTER 4 = 0x03,

CANSPI RX FILTER 5 = 0x04,

CANSPI RX FILTER 6 = 0x05,

CANSPI RX OVERFLOW = 0x08,// Set if Overflowed else cleared
CANSPI RX INVALID MSG = 0x10, // Set if invalid else cleared
CANSPI RX XTD FRAME = 0x20,//Set if XTD message else cleared
CANSPI RX RTR FRAME = 0x40,//Set if RTR message else cleared

CANSPI RX DBL BUFFERED = 0x80; // Set if this message was
hardware double-buffered

You may use bitwise AND (&) to adjust the appropriate flags. For example:
if (MsgFlag & CANSPI RX OVERFLOW != 0) {

// Receiver overflow has occurred.

// We have lost our previous message.

}

CANSPI_MASK

The CANSPI_MASK constants define mask codes. Function CANSPISetMask
expects one of these as it's argument:

const char
CANSPI MASK Bl 0,

CANSPI MASK B2 = 1;

246 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

CANSPI_FILTER

The CANSPI_FILTER constants define filter codes. Functions CANSPISetFilter
expects one of these as it's argument:

const char
CANSPI FILTER Bl F1 =
CANSPI FILTER Bl F2 =
CANSPI FILTER B2 F1 =
CANSPI FILTER B2 F2 =
CANSPI FILTER B2 F3 =

CANSPI_FILTER B2 F4 =

~ 0~ 0~

g Ww N PO
~

~.

Library Example

This is a simple demonstration of CANSPI Library routines usage. First node initi-
ates the communication with the second node by sending some data to its address.
The second node responds by sending back the data incremented by 1. First node
then does the same and sends incremented data back to second node, etc.

Code for the first CANSPI node:

unsigned char Can Init Flags, Can Send Flags, Can Rcv Flags; // can

flags

unsigned char Rx Data Len; // received data length in bytes
char RxTx Datal 8] ; // can rx/tx data buffer

char Msg Rcvd; // reception flag

long Tx ID, Rx ID; // can rx and tx ID

// CANSPI module connections

sbit CanSpi CS at PORTB.BO;

sbit CanSpi CS Direction at DDRB.BO;
sbit CanSpi Rst at PORTB.B2;

sbit CanSpi Rst Direction at DDRB.B2;
// End CANSPI module connections

void main () {
ADCSRA.B7 = 0; // set AN pins to Digital I/O
PORTC = 0; // clear PORTC
DDRC = 255;

Can_Init Flags = 0; //
Can_Send Flags = 0; // clear flags
Can_Rcv_Flags = 0; //

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 247

CHAPTER 6

Libraries mikroC PRO for AVR
Can Send Flags = CANSPI TX PRIORITY 0 & // form value to be used
_CANSPI TX XTD FRAME & /7 with CANSPIWrite

_CANSPI TX NO RTR FRAME;

Can Init Flags = CANSPI CONFIG SAMPLE THRICE & // form
value to be used
_CANSPI_CONFIG_PHSEG2 PRG ON &// with CANSPIInit
_CANSPI_CONFIG_XTD_MSG &
_CANSPI_CONFIG_DBL BUFFER ON &
_CANSPI CONFIG VALID XTD MSG;

SPI1 Init();

Spi Rd Ptr = SPI1 Read; 7/
pass pointer to SPI Read function of used SPI module

SPI1 Init(); // initialize SPI1 module

CANSPIInitialize(1,3,3,3,1,Can_Init Flags); //
initialize external CANSPI module

CANSPISetOperationMode (_ CANSPI MODE CONFIG, OxFF); //

set CONFIGURATION mode
CANSPISetMask (_CANSPT MASK B1,-1, CANSPI CONFIG_XTD MSG);
// set all maskl bits to ones
CANSPISetMask (CANSPI MASK B2,-1, CANSPI CONFIG XTD MSG);
// set all mask2 bits to ones
CANSPISetFilter (CANSPI FILTER B2 F4,3, CANSPI CONFIG XTD MSG);
// set id of filter BI F1 to 3

CANSPISetOperationMode (CANSPI MODE NORMAL, OxFF) ; //
set NORMAL mode

RxTx Datal 0] = 9; // set initial data to be sent

Tx_ID = 12111; // set transmit ID

CANSPIWrite (Tx ID, RxTx Data, 1, Can_Send Flags); //

send initial message

while (1) {
// endless loop
Msg Rcvd = CANSPIRead(&Rx ID , RxTx Data , &Rx Data Len,
&Can_Rcv_Flags) ; // receive message
if ((Rx_ID == 3u) && Msg Rcvd) {
// if message received check id
PORTC = RxTx Datal 0] ;

// id correct, output data at PORTC
RxTx Datal 0] ++ H
// increment received data
Delay ms (10);
CANSPIWrite (Tx ID, RxTx Data, 1, Can Send Flags);
// send incremented data back

}

248 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Code for the second CANSPI node:

unsigned char Can Init Flags, Can Send Flags, Can Rcv Flags; // can

flags

unsigned char Rx Data Len; // received data length in bytes
char RxTx Data[8] ; // can rx/tx data buffer
char Msg Rcvd; // reception flag

long Tx_ ID, Rx ID; // can rx and tx ID

// CANSPI module connections

sbit CanSpi CS at PORTB.BO;

sbit CanSpi CS Direction at DDRB.BO;
sbit CanSpi Rst at PORTB.B2;

sbit CanSpi Rst Direction at DDRB.B2;
// End CANSPI module connections

void main () {

PORTC = 0; // clear PORTC

DDRC = 255; // set PORTC as output

Can_Init Flags = 0; //

Can_Send Flags = 0; // clear flags

Can Rcv_Flags = 0; //

Can_Send Flags = CANSPI TX PRIORITY 0 & // form value to be used
_CANSPI TX XTD FRAME & // with CANSPIWrite

_CANSPI TX NO_RTR FRAME;

Can Init Flags = CANSPI CONFIG SAMPLE THRICE &//orm value to be used
_CANSPI CONFIG _PHSEG2 PRG ON & // with CANSPIInit
_CANSPI CONFIG XTD MSG &
_CANSPI CONFIG DBL BUFFER ON &
_CANSPI CONFIG VALID XTD MSG &
_CANSPI CONFIG LINE FILTER OFF;

SPI1 Init();
Spi Rd Ptr = SPI1 Read; // pass pointer to SPI Read function of used

SPI module

SPI1 Init(); // initialize SPI1 module
CANSPIInitialize(1,3,3,3,1,Can Init Flags); // initialize exter-

nal CANSPI module
CANSPISetOperationMode (CANSPI MODE CONFIG, OxFF);//set CONFIGURA-

TION mode

CANSPISetMask (CANSPI MASK Bl,-1, CANSPI CONFIG XTD MSG) ;

// set all maskl bits to ones

CANSPISetMask (CANSPI MASK B2,-1, CANSPI CONFIG XTD MSG) ;

// set all mask2 bits to ones

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 249

CHAPTER 6
Libraries mikroC PRO for AVR

CANSPISetFilter (CANSPT FILTER B2 F3,12111, CANSPI CONFIG_XTD MSG) ;
// set id of filter Bl FI1 to 3
CANSPISetOperationMode(7CANSP17MODE7NORMAL,OxFF); // set NORMAL mode

Tx ID = 3; // set tx ID

while (1) { // endless loop
Msg Rcvd = CANSPIRead(&Rx ID , RxTx Data , &Rx Data Len,

&Can_Rcv_Flags); // receive message
if ((Rx_ID == 12111u) && Msg_Rcvd) { // 1f message
received check id
PORTC = RxTx Data[0] ; // id correct, output data at PORTC
RxTx Datal 0] ++ ; // increment received data
CANSPIWrite (Tx ID, RxTx Data, 1, Can Send Flags); // send incre-

mented data back
}

HW Connection

VCC
100K vee
Tl vaa]LT oe
2o R [i
%: CLKO CS]::] ‘ E PB.2
L—{]™0 so [}
5 4 14 i
—] i st [}
L eme sa i s B
8 ___ R g
=] ’—{ 0SC1 RX0B [|— i g
9 Vss RX1B [ﬁ VCCo-] vee m GND
— 8MHz OSCILLATOR I[GND] —
—— MCP2510 _ L G)
) = o B
XTAL1
s
10R
R
N
% TX-CAN RS]8— [I
\”—;[GND CANH :H E %
vcco——] vec canL [}—
4 5
L—————{|RxD wref [|—
MCP2551
Shielded <~ |
twisted pair -

Example of interfacing CAN transceiver MCP2510 with MCU via SPI interface

250 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

COMPACT FLASH LIBRARY

The Compact Flash Library provides routines for accessing data on Compact Flash
card (abbr. CF further in text). CF cards are widely used memory elements, com-
monly used with digital cameras. Great capacity and excellent access time of only
a few microseconds make them very attractive for microcontroller applications.

In CF card, data is divided into sectors. One sector usually comprises 512 bytes.
Routines for file handling, the Cf_Fat routines, are not performed directly but suc-
cessively through 512B buffer.

Note: Routines for file handling can be used only with FAT16 file system.
Note: Library functions create and read files from the root directory only.

Note: Library functions populate both FAT1 and FAT2 tables when writing to files,
but the file data is being read from the FAT1 table only; i.e. there is no recovery if
the FAT1 table gets corrupted.

Note: If MMC/SD card has Master Boot Record (MBR), the library will work with the
first available primary (logical) partition that has non-zero size. If MMC/SD card has
Volume Boot Record (i.e. there is only one logical partition and no MBRs), the library
works with entire card as a single partition. For more information on MBR, physical
and logical drives, primary/secondary partitions and partition tables, please consult
other resources, e.g. Wikipedia and similar.

Note: Before writing operation, make sure not to overwrite boot or FAT sector as it
could make your card on PC or digital camera unreadable. Drive mapping tools,
such as Winhex, can be of great assistance.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 251

CHAPTER 6
Libraries mikroC PRO for AVR

External dependencies of Compact Flash Library

The following variables must
be defined in all projects Description: Example :
using Compact Flash Library:

fr ch
extern sfr char Compact Flash Data zFrDsterort at
CF _Data Port; Port. POETD; —
. . sfr ch
extern sfr char Direction of the Com- =7 “** =
F D P D1 ion; = _ _
CF_Data_Port Direction pact Flash Data Port. tion at DDRD;
. ; ; sbit CF RDY at
extern sfr sbit CF RDY; Ready signal line. PINB.B7;
. . . : sbit CF WE at
extern sfr sbit CF_WE; Write Enable signal line. PORTB. B6:
Output Enable signal sbit CF OE at
£ i F OE; K -
extern sfr sbit CF O line. PORTB.B5;
. . ; sbit CF CD1 at
£ i F CD1;) _
extern sfr sbit CF C Chip Detect signal line DINB.B4;
. . . . sbit CF CEl at
extern sfr sbit CF_CEl; Chip Enable signal line. PORTB. B3
. sbit CF A2 at
£ i F A2; . -
extern sfr sbit CF Address pin 2 PORTB. B2
. sbit CF Al at
£ i F Al; i _
extern sfr sbit CF Address pin 1 PORTB. BL;
. . sbit CF AO0 at
extern sfr sbit CF_AO; Address pin 0. PORTE.BO:
. L bit
extern sfr sbit Direction of the Ready 2F1RDY irection
F_RDY di ion; i - =
CF | _direction pin. at DDRB.B7;
extern sfr sbit Direction of the Write sbit CF WE direc-
CF WE direction; Enable pin_ tion at DDRB.B6;
extern sfr sbit Direction of the Output |sbit CF OE direc-
CF_OE direction; Enable pin_ tion at DDRB.B5;
extern sfr sbit Direction of the Chip E?lle direction
CF CD1 direction; Detect pin. ThhRA
- at DDRB.B4;
. . . . sbit
extern sfr sbit Direction of the Chip CF CEl direction
CF_CEl direction; Enable pin. at_DDRg.B3;
extern sfr sbit Direction of the Address |sbit CF A2 direc-
CF A2 direction; 2pin_ tion at DDRB.B2;

252 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

extern sfr sbit
CF Al direction;

Direction of the Address
1 pin.

sbit
tion

CF Al direc-
at DDRB.BI1;

extern sfr sbit
CF_AQ direction;

Direction of the Address
0 pin.

sbit
tion

CF_AQ direc-
at DDRB.BO;

Library Routines

- Cf_Init

- Cf Detect

- Cf_Enable

- Cf_Disable

- Cf_Read_lInit

- Cf_Read_Byte

- Cf_Write_Init

- Cf_Write_Byte

- Cf_Read_Sector
- Cf_Write_Sector

Routines for file handling:

- Cf_Fat_Init

- Cf_Fat_QuickFormat

- Cf_Fat_Assign

- Cf_Fat_Reset

- Cf_Fat_Read

- Cf_Fat_Rewrite

- Cf_Fat_Append

- Cf_Fat_Delete

- Cf_Fat_Write

- Cf_Fat_Set File Date
- Cf_Fat_Get_File_Date
- Cf_Fat_Get_File_Size
- Cf_Fat_Get_Swap_File

The following routine is for the internal use by compiler only:

- Cf_Issue_ID_Command

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

253

CHAPTER 6
Libraries mikroC PRO for AVR

Cf_Init

Prototype |void Cf Init();

Returns Nothing.

Description |Initializes ports appropriately for communication with CF card.

Global variables :

- CF _Data port : Compact Flash data port

- CF_RDY : Ready signal line

- cr_wE : Write enable signal line

- cr_oE : Output enable signal line

- cr_cp1 : Chip detect signal line

- CF_CcEl : Enable signal line

- cr_a2 : Address pin 2

- cr_al : Address pin 1

- CF_ A0 : Address pin 0

Requires - CF Data Port direction : Direction of the Compact Flash data
direction port

- CF_RDY direction : Direction of the Ready pin

- CF_WE direction : Direction of the Write enable pin

- CF_OE direction : Direction of the Output enable pin

- CF_CD1 direction : Direction of the Chip detect pin

- CF_CE1 direction : Direction of the Chip enable pin

- CF A2 direction : Direction of the Address 2 pin

- CF Al direction : Direction of the Address 1 pin

- CF_ A0 direction : Direction of the Address 0 pin

must be defined before using this function.

Example

CEf Init(); // initialize CF

254 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Cf_Detect

Prototype |unsigned short Cf Detect (void);

- 1 - if CF card was detected

Returns)
- 0 - otherwise

Description |Checks for presence of CF card by reading the chip detect pin.

The corresponding MCU ports must be appropriately initialized for CF card. See

Requires .
q Cf_Init.

// Wait until CF card is inserted:
d

Example °

asm nop;

while (!Cf Detect());

Cf_Enable

Prototype [void Cf Enable (void);

Returns Nothing.

Enables the device. Routine needs to be called only if you have disabled the
Description |device by means of the Cf_Disable routine. These two routines in conjunction
allow you to free/occupy data line when working with multiple devices.

Requires The corresponding MCU ports must be appropriately initialized for CF card. See

Cf_Init.

// enable compact flash
Example | - o p1e0);
Cf Disable

Prototype [void Cf Disable (void);

Returns Nothing.

Routine disables the device and frees the data lines for other devices. To enable
Description |the device again, call Cf_Enable. These two routines in conjunction allow you to
free/occupy data line when working with multiple devices.

The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.

// disable compact flash

Cf Disable();

Requires

Example

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 255

CHAPTER 6
Libraries mikroC PRO for AVR

Cf_Read_lInit

void Cf Read Init (unsigned long address, unsigned short
sector count);

Prototype

Returns Nothing.

Initializes CF card for reading.

Description Parameters :

- address: the first sector to be prepared for reading operation.

- sector count: number of sectors to be prepared for reading operation.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See

Cf_Init.

// initialize compact flash for reading from sector 590
Cf Read Init (590, 1);

Example

Cf_Read_Byte

Prototype [unsigned short Cf Read Byte (void);
Returns a byte read from Compact Flash sector buffer.
Returns
Note: Higher byte of the unsigned return value is cleared.
N Reads one byte from Compact Flash sector buffer location currently pointed to
Description : g i . . .
by internal read pointers. These pointers will be autoicremented upon reading.
The corresponding MCU ports must be appropriately initialized for CF card. See
. Cf_Init.
Requires
CF card must be initialized for reading operation. See Cf_Read_Init.
// Read a byte from compact flash:
Example char data;
aééa = Cf Read Byte();

256 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Cf_Write_Init

Prototype void Cf Write Init(unsigned long address, unsigned short sectcnt);

Returns Nothing.

Initializes CF card for writing.

Description Parameters :

- address: the first sector to be prepared for writing operation.
- sectcnt: number of sectors to be prepared for writing operation.

The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.

// initialize compact flash for writing to sector 590
Cf Write Init (590, 1);

Requires

Example

Cf_Write_Byte

Prototype void Cf Write Byte (unsigned short data);

Returns Nothing.

Writes a byte to Compact Flash sector buffer location currently pointed to by writ-
ing pointers. These pointers will be autoicremented upon reading. When sector
buffer is full, its contents will be transfered to appropriate flash memory sector.
Description
Parameters :

- data_: byte to be written.

The corresponding MCU ports must be appropriately initialized for CF card. See

Requires Cf_Init.
CF card must be initialized for writing operation. See Cf_Write_Init.
char data = 0xAA;

Example

Cf Write Byte(data);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 257

CHAPTER 6
Libraries mikroC PRO for AVR

Cf_Read_Sector

void Cf Read Sector (unsigned long sector number, unsigned short

Prototype |, buffer) ;

Returns Nothing.

Reads one sector (512 bytes). Read data is stored into buffer provided by the
buffer parameter.

Description |Parameters :

- sector number: sector to be read.
- buf fer: data buffer of at least 512 bytes in length.

The corresponding MCU ports must be appropriately initialized for CF card. See

Requires .
q Cf_Init.
// read sector 22
nsigned short datal 512] ;
Example |"7%9 atal 512

Cf Read Sector (22, data);

Cf_Write_Sector

void Cf Write Sector (unsigned long sector number, unsigned short

Prototype |, buffer) ;

Returns Nothing.

Writes 512 bytes of data provided by the buffer parameter to one CF sector.

Description Parameters :

- sector number: sector to be written to.
- buffer: data buffer of 512 bytes in length.

The corresponding MCU ports must be appropriately initialized for CF card. See

Requires .
q Cf_Init.
// write to sector 22
unsigned short datal 512] ;
Example g atal 512

Cf Write Sector (22, data);

258 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Cf_Fat_Init

Prototype |unsigned short Cf Fat Init();

- 0 - if CF card was detected and successfully initialized
Returns - 1 - if FAT16 boot sector was not found
- 255 - if card was not detected

Initializes CF card, reads CF FAT16 boot sector and extracts necessary data

Description needed by the library.

Requires Nothing.

// Init the FAT library

if (!Cf Fat Init // Init the FAT librar
Example (o Init()) | 1 1 y

}

Cf_Fat_QuickFormat

Prototype |unsigned char Cf Fat QuickFormat (char *cf fat label);

- 0 - if CF card was detected, successfully formated and initialized
Returns - 1 - if FAT16 format was unseccessful
- 255 - if card was not detected

Formats to FAT16 and initializes CF card.
Parameters :
- cf fat label: volume label (11 characters in length). If less than 11
characters are provided, the label will be padded with spaces. If null
Description string is passed, the volume will not be labeled.
Note: This routine can be used instead or in conjunction with Cf_Fat_Init routine.
Note: If CF card already contains a valid boot sector, it will remain unchanged

(except volume label field) and only FAT and ROOT tables will be erased. Also,
the new volume label will be set.

Requires Nothing.

//-—- format and initialize the FAT library -

Exanuﬂe if (!Cf Fat QuickFormat (&cf fat label)) {

}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 259

CHAPTER 6
Libraries mikroC PRO for AVR

Cf_Fat_Assign

Prototype unsigned short Cf Fat Assign(char *filename, char file cre attr);

- 0 if file does not exist and no new file is created.

Returns - 1 if file already exists or file does not exist but a new file is created.

Assigns file for file operations (read, write, delete...). All subsequent file operations
will be applied over the assigned file.

Parameters :

- filename: name of the file that should be assigned for file operations. The file name
should be in DOS 8.3 (file_name.extension) format. The file name and extension will
be automatically padded with spaces by the library if they have less than length
required (i.e. "mikro.tx" -> "mikro .tx "), so the user does not have to take care of that.
The file name and extension are case insensitive. The library will convert them to prop-
er case automatically, so the user does not have to take care of that.

Also, in order to keep backward compatibility with the first version of this library,
file names can be entered as UPPERCASE string of 11 bytes in length with no dot
character between the file name and extension (i.e. "MIKROELETXT" ->
MIKROELE.TXT). In this case the last 3 characters of the string are considered to
be file extension.

- file cre attr: file creation and attributs flags. Each bit corresponds to the
Description |appropriate file attribut:

Bit | Mask Description

0 0x01 [Read Only

1 0x02 |Hidden

2 0x04 |System

3 0x08 [Volume Label

4 0x10 |Subdirectory

5 0x20 [Archive

6 0x40 [Device (internal use only, never found on disk)

7 0x80 File cregtioq flag. If _the file does .not exist and this flag is set,
a new file with specified name will be created.

Note: Long File Names (LFN) are not supported.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.

// create file with archive attributes if it does not already
Example exist
Cf Fat Assign ("MIKROO0O07.TXT",O0xAO) ;

260 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Cf_Fat_Reset

Prototype |void Cf Fat Reset (unsigned long *size);

Returns Nothing.

Opens currently assigned file for reading.

Description Parameters :

size: buffer to store file size to. After file has been open for reading its size is
returned through this parameter.

CF card and CF library must be initialized for file operations. See Cf_Fat_|Init.

Requires
File must be previously assigned. See Cf_Fat_Assign.
unsigned long size;

Example e
Cf Fat Reset(size);

Cf_Fat_Read

Prototype |[void Cf Fat Read(unsigned short *Dbdata);

Returns Nothing.

Reads a byte from currently assigned file opened for reading. Upon function
execution file pointers will be set to the next character in the file.

Description |Parameters :

- bdata: buffer to store read byte to. Upon this function execution read
byte is returned through this parameter.

CF card and CF library must be initialized for file operations. See Cf_Fat_lInit.
Requires File must be previously assigned. See Cf_Fat_Assign.

File must be open for reading. See Cf_Fat Reset.

char character;
Example

Cf Fat Read(&character);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 261

CHAPTER 6
Libraries mikroC PRO for AVR

Cf_Fat_Rewrite

Prototype [void Cf Fat Rewrite();
Returns Nothing.
Description Opens currently assigned file for writing. If the file is not empty its content will be
erased.
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Requires
The file must be previously assigned. See Cf_Fat_Assign.
// open file for writing
Example Cf Fat Rewrite();

Cf_Fat_Append

Prototype |void Cf Fat Append();
Returns Nothing.
Opens currently assigned file for appending. Upon this function execution file
Description |pointers will be positioned after the last byte in the file, so any subsequent file
writing operation will start from there.
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Requires
File must be previously assigned. See Cf_Fat_Assign.
// open file for appending
Example Cf Fat Append();

Cf_Fat_Delete

Prototype [void Cf Fat Delete();
Returns Nothing.
Description |Deletes currently assigned file from CF card.
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Requires
File must be previously assigned. See Cf_Fat_Assign.
// delete current file
Example Cf Fat Delete();

262

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Cf_Fat_Write

Prototype |[void Cf Fat Write(char *fdata, unsigned data len);

Returns Nothing.

Writes requested number of bytes to currently assigned file opened for writing.

Description Parameters :

- fdata: data to be written.
- data len: number of bytes to be written.

CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Requires File must be previously assigned. See Cf_Fat_Assign.

File must be open for writing. See Cf_Fat_Rewrite or Cf_Fat_Append.

char file contents[42] ;

Example Cf_Fat_Write(file_contents, 42); // write data to the assigned

file

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 263

CHAPTER 6
Libraries mikroC PRO for AVR

Cf_Fat_Set_File_Date

void Cf Fat Set File Date(unsigned int year, unsigned short
Prototype month, unsigned short day, unsigned short hours, unsigned short
mins, unsigned short seconds);

Returns Nothing.

Sets the date/time stamp. Any subsequent file writing operation will write this
stamp to currently assigned file's time/date attributs.

Parameters :

Description - year: year attribute. Valid values: 1980-2107
- month: month attribute. Valid values: 1-12

- day: day attribute. Valid values: 1-31

- hours: hours attribute. Valid values: 0-23

- mins: minutes attribute. Valid values: 0-59

- seconds: seconds attribute. Valid values: 0-59

CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Requires File must be previously assigned. See Cf_Fat_Assign.

File must be open for writing. See Cf_Fat_Rewrite or Cf_Fat_Append.

Example Cf Fat Set File Date(2005,9,30,17,41,0);

264 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries

Cf_Fat_Get_File_Date

void Cf Fat Get File Date(unsigned int *year, unsigned short
Prototype *month, unsigned short *day, unsigned short *hours, unsigned
short *mins) ;

Returns Nothing.

Reads time/date attributes of currently assigned file.

Parameters :

- year: buffer to store year attribute to. Upon function execution year
attribute is returned through this parameter.

- month: buffer to store month attribute to. Upon function execution
month attribute is returned through this parameter.

- day: buffer to store day attribute to. Upon function execution day attrib-
ute is returned through this parameter.

- hours: buffer to store hours attribute to. Upon function execution hours
attribute is returned through this parameter.

- mins: buffer to store minutes attribute to. Upon function execution min-
utes attribute is returned through this parameter.

Description

CF card and CF library must be initialized for file operations. See Cf_Fat_lInit.

Requires
File must be previously assigned. See Cf_Fat_Assign.
unsigned year;
char month, da hours, mins;

Example ’ o gEse

Cf Fat Get File Date(&year, &month, &day, &hours, é&mins);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 265

CHAPTER 6
Libraries mikroC PRO for AVR

Cf_Fat_Get_File_Size

Prototype unsigned long Cf Fat Get File Size();

Returns Size of the currently assigned file in bytes.

Description | This function reads size of currently assigned file in bytes.

CF card and CF library must be initialized for file operations. See Cf _Fat_Init.
Requires
File must be previously assigned. See Cf_Fat_Assign.

unsigned long my file size;
Example

my file size = Cf Fat Get File Size();

266 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Cf_Fat_Get_Swap_File

unsigned long Cf Fat Get Swap File (unsigned long sectors cnt,
char *filename, char file attr);

Prototype

- Number of the start sector for the newly created swap file, if there was
Returns enough free space on CF card to create file of required size.
- 0 - otherwise.

This function is used to create a swap file of predefined name and size on the
CF media. If a file with specified name already exists on the media, search for
consecutive sectors will ignore sectors occupied by this file. Therefore, it is rec-
ommended to erase such file if it exists before calling this function. If it is not
erased and there is still enough space for a new swap file, this function will
delete it after allocating new memory space for a new swap file.

The purpose of the swap file is to make reading and writing to CF media as fast
as possible, by using the Cf_Read_Sector() and Cf_Write_Sector() functions
directly, without potentially damaging the FAT system. Swap file can be consid-
ered as a "window" on the media where the user can freely write/read data. It's
main purpose in the mikroC's library is to be used for fast data acquisition; when
the time-critical acquisition has finished, the data can be re-written into a "nor-
mal" file, and formatted in the most suitable way.

Parameters:

Description - sectors_cnt: number of consecutive sectors that user wants the
swap file to have.

- filename: name of the file that should be assigned for file operations.
The file name should be in DOS 8.3 (file_name.extension) format. The
file name and extension will be automatically padded with spaces by
the library if they have less than length required (i.e. "mikro.tx" ->
"mikro .tx "), so the user does not have to take care of that. The file
name and extension are case insensitive. The library will convert them
to proper case automatically, so the user does not have to take care of
that. Also, in order to keep backward compatibility with the first version
of this library, file names can be entered as UPPERCASE string of 11
bytes in length with no dot character between the file name and exten
sion (i.e. "MIKROELETXT" -> MIKROELE.TXT). In this case the last 3
characters of the string are considered to be file extension.

- file attr: file creation and attributs flags. Each bit corresponds to
the appropriate file attribut:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 267

CHAPTER 6

Libraries mikroC PRO for AVR

Bit | Mask Description

0 0x01 |Read Only

1 0x02 [Hidden

2 0x04 |System

3 0x08 |Volume Label

Description 4 0x10 |Subdirectory

5 0x20 |Archive

6 0x40 [Device (internal use only, never found on disk)

7 0x80 |Not used

Note: Long File Names (LFN) are not supported.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.

[/ Try to create a swap file with archive atribute,
whose size will be at least 1000 sectors.
// If it succeeds, it sends the No. of start sec-

tor over UART
unsigned long size;

size = Cf Fat Get Swap File (1000, "mikroE.txt", 0x20);
Example if (size) {

UART_Write OxAR) ;
UART Write (Lo (size));
UART Write (Hi(size));

UART Write (Highest (size));

(
(L
(H
UART Write (Higher (size));
(
(OxAA) ;

UART Write
y

268 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

Library Example

The following example is a simple demonstration of CF(Compact Flash) Library

which shows how to use CF card data accessing routines.

#include "built in.h"

// set compact flash pinout
char Cf Data Port at PORTD;
char Cf Data Port Direction at DDRD;

sfr
sfr

sfr
sfr
sfr
sfr
sfr
sfr
sfr
sfr

sfr
sfr
sfr
sfr
sfr
sfr
sfr
sfr

CF_RDY at PINB.B7;

CF_ WE at PORTB.B6;
CF_OE at PORTB.B5;
CF_CDl at PINB.B4;

CF_CEl at PORTB.B3;
CF_A2 at PORTB.B2;
CF_ Al at PORTB.B1;
CF_ A0 at PORTB.BO;

CF RDY direction
CF WE direction
CF_OE direction
CF _CD1 direction
CF _CEl direction
CF_A2 direction
CF Al direction
CF_ A0 direction

// end of cf pinout

char

at
at
at
at
at
at
at
at

DDRB.

DDRB
DDRB

B7;

.B6;
.B5;
DDRB.
DDRB.
DDRB.
DDRB.
DDRB.

B4;
B3;
B2;
B1;
BO;

fat txt[20] = "FAT16 not found",

fil

char
fil

e contents[50] =

ename[14] = "MIKROOOXTXT";

unsigned short

tmp, caracter, loop,

unsigned long

i,

char

size;

Buffer[512] ;

"XX CF FAT1l6 library by Anton Rieckertn";

loop2;

void I Write Str(char *ostr)
unsigned short i;

Writes string to USART
{

// File names

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 269

CHAPTER 6
Libraries mikroC PRO for AVR

i = 0;
while (ostr[i]) {
UART1 Write (ostr[i++]);
}
UART1 Write (0x0A);

S/ Creates new file and writes some data to 1t
void M Create New File() {
filename[7] = 'A';
Cf Fat Assign(&filename, 0x80); // Will not find file and then
create file
Cf Fat Rewrite(); // To clear file and start

with new data
for(loop = 1; loop <= 99; loop++) { // We want 5 files on the

MMC card
file contents[0] = loop / 10 + 48;
file contents[1] = loop % 10 + 48;
Cf_Fat Write(file contents, 38); // write data to the assigned
file
UART1 Write('.');
}
}
)= Creates many new files and writes data to them
void M Create Multiple Files() {
for(loop2 = 'B'; loop2 <= 'Z'; loop2++) {
UART1 Write (loop2);
filename[7] = loop2; // set filename
Cf Fat Assign(&filename, O0xAO0); // find existing file or cre-
ate a new one
Cf Fat Rewrite(); // To clear file and start

with new data
for(loop = 1; loop <= 44; loop++) {
file contents[0] = loop / 10 + 48;
file contents[1] = loop % 10 + 48;
Cf Fat Write(file contents, 38); // write data to the assigned
file

/) ==mm————————— Opens an existing file and rewrites it
void M Open File Rewrite() {

270 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

filename[7] = 'C';
Cf Fat Assign(&filename, 0);
Cf Fat Rewrite();
for(loop = 1; loop <= 55; loop+t+)

file contents[0] = loop / 10 + 64;
file contents[1] = loop % 10 + 64;
Cf_Fat Write(file_contents, 38); // write data to the assigned
file
}
}
J) e ————— Opens an existing file and appends data to it
// (and alters the date/time stamp)

void M Open File Append() {

filename[7] = 'B';

Cf Fat Assign(&filename, 0);

Cf Fat Set File Date(2005,6,21,10,35,0);

Cf Fat Append(); // Prepare
file for append

Cf Fat Write(" for mikroElektronika 2005n", 27); // Write data
to assigned file

}

)= Opens an existing file, reads data from it and puts
it to USART
void M Open File Read() ({

filename[7] = 'B';
Cf Fat Assign(&filename, 0);
Cf Fat Reset (&size); // To read file, procedure returns
size of file
for (1 = 1; 1 <= size; i++) {
Cf Fat Read(&caracter);
UART1 Write (caracter); // Write data to USART

S — Deletes a file. If file doesn't exist, it will first
be created
// and then deleted.
void M Delete File() {
filename[7] = 'F';
Cf Fat Assign(filename, O0);
Cf Fat Delete();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 271

CHAPTER 6

Libraries mikroC PRO for AVR
) mmm e Tests whether file exists, and 1f so sends its cre-
ation date
// and file size via USART

void M Test File Exist() {
unsigned long fsize;
unsigned int year;
unsigned short month, day, hour, minute;
unsigned char outstr[12] ;

filename[7] = 'B'; //uncomment this line to search for file
that DOES exists
// filename[7] = 'F'; //uncomment this line to search for file

that DOES NOT exist

if (Cf Fat Assign(filename, 0)) {
//--- file has been found - get its date
Cf Fat Get File Date (&year, &month, &day, &hour, &minute);
WordToStr (year, outstr);
I Write Str(outstr);
ByteToStr (month, outstr);
I Write Str(outstr);
WordToStr (day, outstr);
I Write Str(outstr);
WordToStr (hour, outstr);
I Write Str(outstr);
WordToStr (minute, outstr);
I Write Str(outstr);
//-—— get file size
fsize = Cf Fat Get File Size();
LongToStr ((signed long) fsize, outstr);
I Write Str(outstr);

}

else {
//--- file was not found - signal it
UART1 Write (0x55);
Delay ms (1000);
UART1 Write (0x55);

/) mmmmm e Tries to create a swap file, whose size will be at
least 100
// sectors (see Help for details)

void M Create Swap File() {
unsigned int i;

for (i=0; i<512; i++)
Buffer[i] = 1i;

272 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

size = Cf Fat Get Swap File (5000, "mikroE.txt", 0x20); // see help
on this function for details

o (size) {
LongToStr ((signed long)size, fat txt);
I Write Str(fat txt);

for (1=0; 1i<5000; 1i++) {
Cf Write Sector(size++, Buffer);
UART1 Write('.');

S ————— Main. Uncomment the function(s) to test the desired
operation(s)
void main () {

// we will use PORTC to signal test end

DDRC = 0OxFF;
PORTC = 0;
//--- set up USART for the file read

UART1 Init(19200);
Delay ms(100);
// use fatlé quick format instead of init routine if a format-
ting 1is needed
if (!Cf Fat Init()) { // Init the FAT library
//--- Test start
UART1 Write('s');
M Create New File();
M Create Multiple Files();
M Open File Rewrite();
M Open File Append();
M Open File Read();
M Delete File();
M Test File Exist();
M Create Swap File();
//-—- Test termination
UART1 Write('e');
}
else {
I Write Str(fat txt);
}
//--- Test termination
PORTC = 0xO0F;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 273

CHAPTER 6
Libraries

mikroC PRO for AVR

HW Connection

(¢]

rk-ﬂl I”}I‘EVCC
panooonanooononna

annonoona

ATmega128

PB.0
PB.1
PB.2
PB.3
PB.4
PB.5
PB.6

I
o
o

vce
GND
PD.O
PD.1
PD.2
PD.3

PD.4
PB.5
PD.6
PD.7

guounoouooooooom

aut

—_

e | XTALY

OSCILLATOR

wmégmi

PD.7

VCC
o

PD.6
PD.5
PD.4
PD.3

PD.2 J
PD.1

PD.0

PB.7

PB.6

PB.5

PB.4

PB.3

PB.2

PB.1
PB.0

[

[

Compact Flash
Card

me

10K

VCC

Pin diagram of CF memory card

274 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

EEPROM LIBRARY

EEPROM data memory is available with a number of AVR family. The mikroC PRO for AVR
includes a library for comfortable work with MCU's internal EEPROM.

Note: EEPROM Library functions implementation is MCU dependent, consult the appropriate
MCU datasheet for details about available EEPROM size and constrains.

Library Routines

- EEPROM_Read
- EEPROM_Write

EEPROM_Read

Prototype unsigned short EEPROM Read (unsigned int address);
Returns Byte from the specified address.

Reads data from specified address.
Description |Parameters :

- address: address of the EEPROM memory location to be read.

Requires Nothing.

unsigned int address = 2;
Example unsigned short temp;

temp = EEPROM Read (address);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 275

CHAPTER 6
Libraries mikroC PRO for AVR

EEPROM_Write

Prototype void EEPROM Write (unsigned address, unsigned short dbData);

Returns Nothing.

Writes wrdata to specified address.

Parameters :
Description - address: address of the EEPROM memory location to be written.
- wrdata: data to be written.

Note: Specified memory location will be erased before writing starts.

Requires Nothing.

unsigned address = 0x732;

unsigned short dData = 0x55;
Example

EEPROM Write (address, dbData);

276 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example
This example demonstrates using the EEPROM Library with ATMEGA16 MCU.

First, some data is written to EEPROM in byte and block mode; then the data is read
from the same locations and displayed on PORTA, PORTB and PORTC.

char dat[32], ii; // Data buffer, loop variable

void main (){

DDRA = OxFF; // set PORTA as output
DDRB = OxFF; // set PORTB as output
DDRC = OxFF; // set PORTC as output

for (ii = 31; dat[ii] = 1ii; 41i--) // Fill data buffer

EEPROM Write (2, 0xAA); // Write some data at address 2
EEPROM Write (0x732,0x55); // Write some data at address 0x732
EEPROM Write Block(0x100,dat); // Write 32 bytes block at

address 0x100

Delay ms(1000) ; // Blink PORTA and PORTB diodes
PORTA = OxFF; // to indicate reading start
PORTB = OXxFF;

Delay ms(1000);

PORTA = 0x00;

PORTB = 0x00;

Delay ms (1000);

PORTA = EEPROM Read(2); // Read data from address 2
and display it on PORTA
PORTB = EEPROM Read (0x732); // Read data from address

0x732 and display it on PORTB
Delay ms (1000);

for(ii = 0; 1ii < 32; 1ii++) { // Read 32 bytes block from
address 0x100
PORTC = EEPROM Read (0x100+ii); // and display data on PORTC

Delay ms (100);
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 277

CHAPTER 6
Libraries mikroC PRO for AVR

FLASH MEMORY LIBRARY

This library provides routines for accessing microcontroller Flash memory. Note that prototypes
differ for MCU to MCU due to the amount of Flash memory.

Note: Due to the AVR family flash specifics, flash library is MCU dependent. Since some AVR
MCU's have more or less than 64kb of Flash memory, prototypes may be different from chip to
chip.

Please refer to datasheet before using flash library.

Note: Currently, Write operations are not supported. See mikroC PRO for AVR specifics for
details.

Library Routines
- FLASH_Read_Byte
- FLASH_Read_Bytes

- FLASH_Read_Word
- FLASH_Read_Words

FLASH_Read_Byte

// for MCUs with 64kb of Flash memory or less
char FLASH Read Byte (unsigned int address);

Prototype
// for MCUs with Flash memory larger than 64kb
char FLASH Read Byte (unsigned long address);
Returns Returns data byte from Flash memory.

Description |Reads data from the specified address in Flash memory.

Requires Nothing.

// for MCUs with Flash memory larger than 64kb
unsigned long tmp;

Example e
tmp = Flash Read(0x0D00);

278

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

FLASH_Read_Bytes

// for MCUs with 64kb of Flash memory or less

void FLASH Read Bytes (unsigned int address, char *buffer,
unsigned NoBytes) ;

Prototype
// for MCUs with Flash memory larger than 64kb

void FLASH Read Bytes (unsigned long address, char *buffer,
unsigned NoBytes);

Returns Nothing.

Reads number of data bytes defined by NoBytes parameter from the specified

Description address in Flash memory to varibale pointed by buffer.

Requires Nothing.

// for MCUs with Flash memory larger than 64kb
const long F ADDRESS = 0x200;
Example unsigned int dat buff 32];

FLASH Read Bytes (F ADDRESS,dat buff, 64);

FLASH_Read_Word

// for MCUs with 64kb of Flash memory or less
char FLASH Read Word(unsigned int address);

Prototype
// for MCUs with Flash memory larger than 64kb
char FLASH Read Word(unsigned long address);
Returns Returns data word from Flash memory.

Description |Reads data from the specified address in Flash memory.

Requires Nothing.

// for MCUs with Flash memory larger than 64kb
unsigned long tmp;

Example ce
tmp = Flash Read(0x0D0O0) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 279

CHAPTER 6
Libraries mikroC PRO for AVR

FLASH_Read_Words

// for MCUs with 64kb of Flash memory or less

void FLASH Read wWrds (unsigned int address, char *buffer,
unsigned NoWords) ;

Prototype
// for MCUs with Flash memory larger than 64kb

void FLASH Read Words (unsigned long address, char *buffer,
unsigned NoWords) ;

Returns Nothing.

Reads number of data words defined by NoWords parameter from the specified

Description address in Flash memory to varibale pointed by buffer.

Requires Nothing.

// for MCUs with Flash memory larger than 64kb
const long F _ADDRESS = 0x200;
Example unsigned int dat buff[32] ;

FLASH Read Words (F_ADDRESS,dat buff, 32);

Library Example

The example demonstrates simple write to the flash memory for AVR, then reads the data and
displays it on PORTB and PORTD.

const long F ADDRESS = 0x200;

const unsigned int data [32] = { // constant table
0x0000,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0007,
0x0008,0x0009, 0x000A,0x000B, 0x000C, 0x000D, 0x000E, 0x000F,
0x0000,0x0100, 0x0200,0x0300, 0x0400,0x0500,0x0600,0x0700,
0x0800,0x0900, 0x0A00, 0x0B0O0O, 0x0C00, 0x0D0O0, Ox0E00, 0x0F0QO,

} absolute 0x200;

char i;
unsigned int word;
unsigned int dat buff[32];

void main () {
DDRD = OxFF; // set direction to be output
DDRB = OxFF; // set direction to be output
word = data [0] ; // 1link const table

280 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroC PRO for AVR

i<64 ; i+=2) // reading 32 words in loop

for (i = 0;
{
word = FLASH Read Word(F ADDRESS + 1i); // demonstration of
reading single word
PORTD = word; // output low byte to PORTD
// ~output higher byte to PORTB

PORTB = word >> 8;
Delay ms (200);
}
i = 0;
while (i < 64) //

{

PORTD = FLASH Read Byte(F ADDRESS + i++);
of reading single byte

PORTB = FLASH Read Byte(F ADDRESS + i++);
of reading single byte

Delay ms (200);

reading 64 bytes in loop

// demonstration

// demonstration

}
// ~demonstration of

FLASH Read Bytes (F_ADDRESS,dat buff, 64);
reading 64 bytes
for (i = 0; i<32 ; i++)
{
// output low byte to PORTD

PORTD = dat bufff i] ;
PORTB = dat buff[i] >> 8; output higher byte to PORTB

Delay ms (200);

/7

}
// demonstration of

FLASH Read Words (F_ADDRESS,dat buff, 32);
reading 64 bytes
for (i = 0; 1i<32 ; i++)
{
PORTD = dat buff[i] ; // output low byte to PORTD
// output higher byte to PORTB

PORTB = dat buff[i] >> 8;

Delay ms (200);

281

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroC PRO for AVR

GRAPHIC LCD LIBRARY

The mikroC PRO for AVR provides a library for operating Graphic LCD 128x64 (with
commonly used Samsung KS108/KS107 controller).

For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.

External dependencies of Graphic LCD Library

The following variables must
be defined in all projects
using Graphic LCD Library:

Description : Example :

extern sfr char
GLCD_DataPort;

Glcd Data Port.

char GLCD DataPort at
PORTC;

extern sfr char
GLCD DataPort Direction;

Direction of the Glcd
Data Port.

char
GLCD DataPort Directio
n at DDRC;

extern sfr sbit GLCD CS1;

Chip Select 1 line.

sbit GLCD CSl at

PORTD.B2;
extern sfr sbit GLCD CS2; [Chip Select 2 line. ;g;;Déég?_CSZ at
extern sfr sbit GLCD RS; [Register select line. ES;ED?;Z?_RS at
extern sfr sbit GLCD RW; [Read/Write line. ;S;ED?ES?*RW at
extern sfr sbit GLCD EN; [Enable line. ES;ED?EE?*EN at
extern sfr sbit GLCD RST; |Reset line. §2;5D§§S?*RST at

extern sfr sbit

Direction of the Chip

sbit LCD CSl1 Direction

GLCD_CS1 Direction; Select 1 Mn_ at DDRD.B2;
extern sfr sbit Direction of the Chip |sbit LCD CS2 Direction
GLCD CS2 Direction; Sebthlﬁn‘ at DDRD.B3;

extern sfr sbit
GLCD RS Direction;

Direction of the
Register select pin.

sbit GLCD RS Direction
at DDRD.B4;

extern sfr sbit
GLCD_RW_Direction;

Direction of the
Read/Write pin.

sbit GLCD RW Direction
at DDRD.B5;

extern sfr sbit
GLCD_EN Direction;

Direction of the
Enable pin.

sbit GLCD EN Direction
at DDRD.B6;

extern sfr sbit
GLCD _RST Direction;

Direction of the
Reset pin.

sbit LCD RST Direction
at DDRD.B7;

282

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Routines
Basic routines:

- Glcd_Init

- Glcd_Set_Side

- Glcd_Set_X

- Glcd_Set_Page
- Glcd_Read_Data
- Glcd_Write_Data

Advanced routines:

- Gled_Fill

- Glcd_Dot

- Glcd_Line

- Gled_V_Line

- Gled_H_Line

- Glcd_Rectangle
- Glcd_Box

- Glcd_Circle

- Glcd_Set_Font

- Glcd_Write_Char
- Glcd_Write_Text
- Glcd_Image

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 283

CHAPTER 6
Libraries mikroC PRO for AVR

Glcd_Init

Prototype |void Glcd Init();

Returns Nothing.

Initializes the Glcd module. Each of the control lines is both port and pin config-

Description urable, while data lines must be on a single port (pins <0:7>).

Global variables :

- GLCD_cs1 : Chip select 1 signal pin
- GLCD_cs2 : Chip select 2 signal pin
- GLCD_RS : Register select signal pin
- cLcp_Rw : Read/Write Signal pin

- cLcp EN : Enable signal pin

- GLCD_RST : Reset signal pin

- GLCD_DataPort : Data port

Requires
- GLCD CS1 Direction : Direction of the Chip select 1 pin
- GLCD_CS2 Direction : Direction of the Chip select 2 pin
- GLCD_RS Direction : Direction of the Register select signal pin
- GLCD_RW Direction : Direction of the Read/Write signal pin
- GLCD_EN Direction : Direction of the Enable signal pin
- GLCD RST Direction : Direction of the Reset signal pin
- GLCD DataPort Direction : Direction of the Data port
must be defined before using this function.
// glcd pinout settings
char GLCD DataPort at PORTC;
char GLCD:DataPort_Direction at DDRC;
sbit GLCD CS1 at PORTD.B2;
sbit GLCD CS2 at PORTD.B3;
sbit GLCD RS at PORTD.B4;
sbit GLCD RW at PORTD.B5;
sbit GLCD RST at PORTD.B6;
sbit GLCD EN at PORTD.B7;
Example -

sbit GLCD CS1 Direction at DDRD.B2;
sbit GLCD CS2 Direction at DDRD.B3;
sbit GLCD RS Direction at DDRD.B4;
sbit GLCD RW Direction at DDRD.B5;
sbit GLCD EN Direction at DDRD.B6;
sbit GLCD RST Direction at DDRD.B7;

Gled Tnit();

284 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Glcd_Set_Side

Prototype |[void Glcd Set Side (unsigned short x pos);

Returns Nothing.

Selects Glcd side. Refer to the Glcd datasheet for detailed explaination.
Parameters :

- x_pos: position on x-axis. Valid values: 0..127
Description
The parameter x_pos specifies the Glcd side: values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side.

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires Glcd needs to be initialized, see Glcd_Init routine.

The following two lines are equivalent, and both of them select the left side of

Gled:
Example
Glcd Select Side(0);
Glcd Select Side(10);
Glcd_Set_X

Prototype |void Glcd Set X (unsigned short x pos);

Returns Nothing.

Sets x-axis position to x pos dots from the left border of Glcd within the select-
ed side.

Parameters :
Description
- x_pos: position on x-axis. Valid values: 0..63

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example Glcd Set X(25);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 285

CHAPTER 6
Libraries mikroC PRO for AVR

Glcd_Set_Page

Prototype |void Glcd Set Page (unsigned short page);

Returns Nothing.

Selects page of the Glcd.

Parameters :

Description - page: page number. Valid values: 0..7

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example Glcd Set Page(5);

Glcd_Read_Data

Prototype |unsigned short Glcd Read Data();

Returns One byte from Glcd memory.

Reads data from from the current location of Glcd memory and moves to the

Description next location.

Glcd needs to be initialized, see Glcd_Init routine.

Requires Glcd side, x-axis position and page should be set first. See functions
Glcd_Set_Side, Gled_Set X, and Glcd_Set _Page.
unsigned short data;

Example

data = Glcd Read Data();

286 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Glcd_Write_Data

Prototype |void Glcd Write Data(unsigned short ddata);

Returns Nothing.

Writes one byte to the current location in Glcd memory and moves to the next
location.

Description Parameters :

- ddata: data to be written

Glcd needs to be initialized, see Glcd_Init routine.

Requires Glcd side, x-axis position and page should be set first. See functions
Glcd_Set_Side, Gled_Set_X, and Glcd_Set_Page.
unsigned short data;

Example ..
Glcd Write Data(data);

Glcd_Fill

Prototype |[void Glcd Fill (unsigned short pattern);

Returns Nothing.

Fills Glcd memory with the byte pattern.
Parameters :

Description - pattern: byte to fill Glcd memory with
To clear the Glcd screen, use Glcd Fill (0).

To fill the screen completely, use Glcd Fill (OxEF).

Requires Glcd needs to be initialized, see Glcd_Init routine.

// Clear screen

Example Glcd Fill(0);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 287

CHAPTER 6

Libraries mikroC PRO for AVR
Glcd_Dot
Prototype void Glcd Dot (unsigned short x pos, unsigned short y pos,

unsigned short color);

Returns Nothing.

Draws a dot on Glcd at coordinates (x_pos, y pos).
Parameters :

- x_pos: X position. Valid values: 0..127

- y _pos: Yy position. Valid values: 0..63

Description - color: color parameter. Valid values: 0..2

The parameter color determines a dot state: O clears dot, 1 puts a dot, and 2
inverts dot state.

Note: For x and y axis layout explanation see schematic at the bottom of this
page.

Requires Glcd needs to be initialized, see Glcd_Init routine.

// Invert the dot in the upper left corner

Example 1) 4 pot (0, 0, 2);

288 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
Glcd_Line
Prototype void Glcd Line(int x start, int y start, int x end, int y end,

unsigned short color);

Returns Nothing.

Draws a line on Glcd.
Parameters :

- x_start: X coordinate of the line start. Valid values: 0..127
- y_start:y coordinate of the line start. Valid values: 0..63
- x_end: x coordinate of the line end. Valid values: 0..127

- y_end: y coordinate of the line end. Valid values: 0..63

- color: color parameter. Valid values: 0..2

Description

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires Glcd needs to be initialized, see Glcd_Init routine.
// Draw a line between dots (0,0) and (20,30)

Example 1) 4 Line(o, 0, 20, 30, 1);
Glcd_V_Line

void Glcd V Line (unsigned short start, unsigned short end,
Prototype - = (g Y g Y

unsigned short x pos, unsigned short color);

Returns Nothing.

Draws a vertical line on Glcd.
Parameters :

- y_start:y coordinate of the line start. Valid values: 0..63
Description - y_end: y coordinate of the line end. Valid values: 0..63

- x_pos: X coordinate of vertical line. Valid values: 0..127

- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires Glcd needs to be initialized, see Glcd_Init routine.

// Draw a vertical line between dots (10,5) and (10,25)

Example Gled V_Line(5, 25, 10, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 289

CHAPTER 6

Libraries mikroC PRO for AVR
Glcd_H_Line
void Glcd H Line (unsigned short x start, unsigned short x end,
Prototype - — -

unsigned short y pos, unsigned short color);

Returns Nothing.

Draws a horizontal line on Glcd.
Parameters :

- x_start: X coordinate of the line start. Valid values: 0..127
Description - x_end: X coordinate of the line end. Valid values: 0..127

- y_pos: Yy coordinate of horizontal line. Valid values: 0..63

- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires Glcd needs to be initialized, see Glcd_Init routine.

// Draw a horizontal line between dots (10,20) and (50,20)
Gled H Line (10, 50, 20, 1);

Example

Glcd_Rectangle

void Glcd Rectangle (unsigned short x upper left, unsigned short
Prototype y_upper left, unsigned short x bottom right, unsigned short
y _bottom right, unsigned short color);

Returns Nothing.

Draws a rectangle on Glcd.
Parameters :

- x_upper left: X coordinate of the upper left rectangle corner. Valid values: 0..127

-y upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63

- x_bottom right: X coordinate of the lower right rectangle corner. Valid values:
0.127

-y bottom right:y coordinate of the lower right rectangle cormner. Valid values:
0..63

- color: color parameter. Valid values: 0..2

Description

The parameter color determines the color of the rectangle border: 0 white, 1
black, and 2 inverts each dot.

Requires Glcd needs to be initialized, see Glcd_Init routine.

// Draw a rectangle between dots (5,5) and (40,40)

Example Glcd_Rectangle (5, 5, 40, 40, 1);

290 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroC PRO for AVR
Glcd_Box
void Glcd Box (unsigned short x upper left, unsigned short
Prototype y upper left, unsigned short x bottom right, unsigned short
y bottom right, unsigned short color);
Returns Nothing.
Draws a box on Glcd.
Parameters :
- x_upper left: X coordinate of the upper left box corner. Valid values: 0..127
o -y upper left:y coordinate of the upper left box corner. Valid values: 0..63
Description - - : :)
- x_bottom right: X coordinate of the lower right box corner. Valid values: 0..127
- v _bottom right:y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the box fill: 0 white, 1 black, and 2
inverts each dot.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Draw a box between dots (5,15) and (20,40)
P Gled Box (5, 15, 20, 40, 1);
Glcd_Circle
void Glcd Circle(int x center, int y center, int radius, unsigned
Prototype - - -
short color);
Returns Nothing.
Draws a circle on Glcd.
Parameters :
- x_center: X coordinate of the circle center. Valid values: 0..127
Description - y_center: y coordinate of the circle center. Valid values: 0..63
- radius: radius size
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the circle line: 0 white, 1 black,
and 2 inverts each dot.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Draw a circle with center in (50,50) and radius=10
P Gled Circle (50, 50, 10, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

291

CHAPTER 6
Libraries mikroC PRO for AVR

Glcd_Set_Font

void Glcd Set Font (const char *activeFont, unsigned short

PrOtOtype aFontWidth, unsigned short aFontHeight, unsigned int aFontOffs);

Returns Nothing.

Sets font that will be used with Glcd_Write_Char and Glcd_Write_Text routines.
Parameters :

- activeFont: font to be set. Needs to be formatted as an array of char
- aFontwidth: width of the font characters in dots.

- aFontHeight: height of the font characters in dots.

Description - aFontOffs: number that represents difference between the mikroC
PRO for AVR character set and regular ASCII set (eg. if 'A' is 65 in
ASCII character, and 'A' is 45 in the mikroC PRO for AVR character
set, aFontOffs is 20). Demo fonts supplied with the library have an off-
set of 32, which means that they start with space.

The user can use fonts given in the file “__Lib_ GLCDFonts” file located in the
Uses folder or create his own fonts.

Requires Glcd needs to be initialized, see Glcd_Init routine.

// Use the custom 5x7 font "myfont" which starts with space (32):

Exan“ﬂe Glcd Set Font (myfont, 5, 7, 32);

292 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Glcd_Write_Char

void Glcd Write Char (unsigned short chr, unsigned short x pos,
unsigned short page num, unsigned short color);

Prototype

Returns Nothing.

Prints character on the Glcd.
Parameters :

- chr: character to be written

- x_pos: character starting position on x-axis. Valid values: 0..(127-Font-
Width)

- page num: the number of the page on which character will be written.
Valid values: 0..7

- color: color parameter. Valid values: 0..2

Description

The parameter color determines the color of the character: 0 white, 1 black,
and 2 inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.

Glcd needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to specify
Requires the font for display; if no font is specified, then default 5x8 font supplied with the
library will be used.

// Write character 'C' on the position 10 inside the page 2:

Exan“ﬂe Glcd Write Char('C', 10, 2, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 293

CHAPTER 6
Libraries mikroC PRO for AVR

Glcd_Write_Text

void Glcd Write Text (char *text, unsigned short x pos, unsigned
short page num, unsigned short color);

Prototype

Returns Nothing.

Prints text on Glcd.
Parameters :

- text: text to be written

- x_pos: text starting position on x-axis.

- page num: the number of the page on which text will be written. Valid
Description values: 0..7

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the text: 0 white, 1 black, and 2
inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.

Glcd needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to specify
Requires the font for display; if no font is specified, then default 5x8 font supplied with the
library will be used.

// Write text "Hello world!" on the position 10 inside the page
Example 2:
Glcd Write Text ("Hello world!"™, 10, 2, 1);

294 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroC PRO for AVR

Glcd_Image

Prototype |[void Glcd Image (code const unsigned short *image);

Returns Nothing.
Displays bitmap on Glcd.
Parameters :

Description - image: image to be displayed. Bitmap array must be located in code

memory.

Use the mikroC PRO for AVR integrated Glcd Bitmap Editor to convert image to
a constant array suitable for displaying on Glcd.

Requires Glcd needs to be initialized, see Glcd_Init routine.
// Draw image my image on Glcd

Exan"ﬂe Glcd Image (my image);

Library Example

The following example demonstrates routines of the Glcd library: initialization, clear(pattern fill),

image displaying, drawing lines, circles, boxes and rectangles, text displaying and handling.

//Declaratio
—-const code

ns
char truck bmp[1024];

// Glcd module connections

char GLCD Da
char GLCD Da

sbit GLCD CS
sbit GLCD CS
sbit GLCD RS
sbit GLCD RW
sbit GLCD EN
sbit GLCD RS

sbit GLCD CS
sbit GLCD Cs
sbit GLCD RS
sbit GLCD RW
sbit GLCD EN
sbit GLCD RS
// End Glcd

taPort at PORTC;
taPort Direction at DDRC;

1 at PORTD.B2;
2 at PORTD.B3;
at PORTD.B4;
at PORTD.BS;
at PORTD.B6;
T at PORTD.B7;

1 Direction at DDRD.B2Z;
2 Direction at DDRD.B3;
_Direction at DDRD.B4;
~Direction at DDRD.B5;
_Direction at DDRD.B6;
T Direction at DDRD.B7;
module connections

MIKROELEKTRONI

KA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

295

CHAPTER 6
Libraries

mikroC PRO for AVR

void delay2S (){
Delay ms (2000);
}

void main () {
unsigned short ii;
char *someText;

Glcd Init();
Glcd Fill (0x00);

while (1) {
Glcd Image (truck bmp) ;
delay2S(); delay2S();

Glcd Fill (0x00);

Glcd Box(62,40,124,56,1);
Glcd Rectangle(5,5,84,35,1);
Glcd Line(0, 0, 127, 63, 1);
delay2S();

for (ii = 5;
vertical lines
Delay ms (250);
Glcd V Line(2, 54, 1ii, 1);
Glcd H Line(2, 120, ii, 1);

i1 < 60; ii+=5){

delay2S();
Glcd Fill (0x00);
Glcd Set Font (Character8x7, 8, 7,

_ Lib GLCDFonts.c in Uses folder
Glcd Write Text ("mikroE"™, 1, 7, 2);

for (ii = 1; ii <= 10; dii++)
Glcd Circle (63,32, 3*ii, 1);
delay2S();

Glcd Box (12,20,
delay2S();

70,57, 2);

Gled Fill (0xFF) ;

32);

// 2 seconds delay function

// Initialize Glcd
// Clear Glcd

// Draw image

// Clear Glcd

// Draw box

// Draw rectangle
// Draw line

// Draw horizontal and

// Clear Glcd

// Choose font, see

// Write string

// Draw circles

// Draw box

// Fill Glecd

296

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
Glcd Set Font (Character8x7, 8, 7, 32); // Change font
someText = "8x7 Font";
Glcd Write Text (someText, 5, 0, 2); // Write string
Glcd Write Text (someText, 5, 1, 2); // Write string
delay2S();
Glcd Set Font (System3x5, 3, 5, 32); // Change font
someText = "3X5 CAPITALS ONLY";
Glcd Write Text (someText, 60, 5, 2); // Write string
Glcd Write Text (someText, 60, 6, 2); // Write string
delay2S();
Glcd Set Font(font5x7, 5, 7, 32); // Change font
someText = "5x7 Font";
Glcd Write Text (someText, 5, 5, 2); // Write string
Glcd Write Text (someText, 5, 6, 2); // Write string
delay2S();

Glcd Set Font (FontSystem5x7 v2, 5, 7, 32); // Change font

someText = "5x7 Font (v2)";

Glcd Write Text (someText, 5, 3, 2); // Write string
Glcd Write Text (someText, 5, 2, 2); // Write string
delay2S();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 297

CHAPTER 6
Libraries mikroC PRO for AVR

HW Connection

o Leftside Rightside 1y X axXis

x=0 x=63 | x=0 x=63

04>
page0
8
page1
L
page2
24,
page3
32
page4
40
page5
4 page6
56 page7
—
y axis
SW i N]\
VCC O =~ Q [Il
= i]
I i
FN | VvCC
Contrast (&, o (] 1l
vce |Adjustment o] E > %
10R o
GLODBCK | |: q :|
& D Yo 1 =S
VCC o] vee GND
! OSCILLATOR GND m El‘jj*
. S0 @ pore
28 £EeRRRReRRR? HUS [x7AL1 > Pc_e];/
1 n s i A
M E - :g'i]m/
PD.2 o =
PD.3 PC.2]%/
PD.4 PC.1];/
PD.5 PC.0]R—ST/
PD.6 PD.7

Glcd HW connection

298 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

KEYPAD LIBRARY

The mikroC PRO for AVR provides a library for working with 4x4 keypad. The library
routines can also be used with 4x1, 4x2, or 4x3 keypad. For connections explana-
tion see schematic at the bottom of this page.

Note: Since sampling lines for AVR MCUs are activated by logical zero Keypad
Library can not be used with hardwares that have protective diodes connected with
anode to MCU side, such as mikroElektronika's Keypad extra board HW.Rev v1.20

External dependencies of Keypad Library

The following variable must

keypadPort;

be defined in all projects Description : Example :
using Keypad Library:
extern sfr char Keypad Port. sfr char keypadPort

at PORTB;

extern sfr char
keypadPort Direction;

Direction of the Key-
pad Port.

sfr char
keypadPort Direction
at DDRB;

Library Routines

- Keypad_Init
- Keypad_Key_ Press
- Keypad_Key_Click

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

299

CHAPTER 6
Libraries mikroC PRO for AVR

Keypad_lInit

Prototype |void Keypad Init (void);

Returns Nothing.

Description |[Initializes port for working with keypad.

Global variables :

keypadPort - Keypad port

keypadPort_Direction - Direction of the Keypad port
must be defined before using this function.

Requires

// Initialize PORTB for communication with keypad
sfr char keypadPort at PORTB;

// Port direction
sfr char keypadPort Direction at DDRB;

// LCD module connections
sbit LCD RS at PORTD.B2;
sbit LCD_EN at PORTD.B3;
sbit LCD D4 at PORTD.B4;
sbit LCD D5 at PORTD.BS;
Example sbit LCD D6 at PORTD.B6;
sbit LCD D7 at PORTD.B7;

sbit LCD RS Direction at DDRD.B2;
sbit LCD EN Direction at DDRD.B3;
sbit LCD D4 Direction at DDRD.B4;
sbit LCD D5 Direction at DDRD.BS5;
sbit LCD D6 Direction at DDRD.B6;
sbit LCD D7 Direction at DDRD.B7;
// End LCD module connections

Keypad Init();

300 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Keypad_Key_Press

Prototype char Keypad Key Press(void);

The code of a pressed key (1..16).
Returns
If no key is pressed, returns 0.

Description |Reads the key from keypad when key gets pressed.

Requires Port needs to be initialized for working with the Keypad library, see Keypad_Init.

char kp;
Example e
kp = Keypad Key Press();

Keypad_Key_ Click

Prototype |char Keypad Key Click(void);
The code of a clicked key (1..16).

Returns
If no key is clicked, returns 0.

Call to keypad Key Click is a blocking call: the function waits until some key is
pressed and released. When released, the function returns 1 to 16, depending
Description |on the key. If more than one key is pressed simultaneously the function will wait
until all pressed keys are released. After that the function will return the code of
the first pressed key.

Requires Port needs to be initialized for working with the Keypad library, see Keypad_Init.

char kp;
Example

kp = Keypad Key Click();

Library Example

This is a simple example of using the Keypad Library. It supports keypads with 1..4 rows and 1..4
columns. The code being returned by Keypad_Key_Click() function is in range from 1..16. In this
example, the code returned is transformed into ASCII codes [0..9,A..F] and displayed on LCD. In
addition, a small single-byte counter displays in the second LCD row number of key presses.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 301

CHAPTER 6
Libraries

mikroC PRO for AVR

unsigned short kp, oldstate = 0;

char txt[6] ;

cnt,

// Keypad module connections

sfr char keypadPort at PORTB;

sfr char keypadPort Direction at DDRB;
// End Keypad module connections

// LCD module connections
sbit LCD RS at PORTD.B2;
sbit LCDiEN at PORTD.B3;
sbit LCD D4 at PORTD.B4;
sbit LCD D5 at PORTD.B5;
sbit LCD D6 at PORTD.B6;
sbit LCD_D7 at PORTD.B7;

sbit
sbit
sbit
sbit

at
at
at
at

DDRD.
DDRD.
DDRD.
DDRD.BS5;

LCD_RS Direction
LCD_EN Direction
LCD D4 Direction
LCD D5 Direction
sbit LCD D6 Direction at DDRD.B6;
sbit LCD D7 Direction at DDRD.B7;
// End LCD module connections

B2;
B3;
B4;

void main () {
cnt = 0;
Keypad Init();
Led Init ()
Lcd Cmd (LCD _CLEAR) ;
Lcd Cmd (LCD_CURSOR_OFF) ;

// Reset counter
// Initialize Keypad
// Initialize LCD
// Clear display
// Cursor off

// Write message text on LCD

// Reset key code variable

// Store key code in kp variable
// Store key code in kp variable

transform key to it's ASCII value

! // Uncomment this block

o'
v#v

(
Lcd Out (1, 1, "1M);
Lced Out(l, 1, "Key :");
Lcd Out(2, 1, "Times:");
do {
kp = 0;
// Wait for key to be pressed and released
do
//kp = Keypad Key Press();
kp = Keypad Key Click();
while ('kp);
// Prepare value for output,
switch (kp) {
switch (kp) {
//case 10: kp = 42; break; // '*
for keypad4x3
//case 11: kp = 48; break; //
//case 12: kp = 35; break; //
//default: kp += 48;

302

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

case 1: kp = 49; break; // 1 // Uncomment this block
for keypaddx4
case 2: kp = 50; break; // 2
case 3: kp = 51; break; // 3
case 4: kp = 65; break; // A
case b5: kp = 52; break; // 4
case ©6: kp = 53; break; // 5
case 7: kp = 54; break; // 6
case 8: kp = 66; break; // B
case 9: kp = 55; break; // 7
case 10: kp = 56; break; // 8
case 11: kp = 57; break; // 9
case 12: kp = 67; break; // C
case 13: kp = 42; break; // *
case 14: kp = 48; break; // O
case 15: kp = 35; break; // #
case 16: kp = 68; break; // D
}
if (kp != oldstate) { // Pressed key differs from previous
cnt = 1;
oldstate = kp;
}
else { // Pressed key is same as previous
cnt++;
}
Lcd Chr (1, 10, kp); // Print key ASCII value on LCD
if (cnt == 255) { // If counter varialble overflow
cnt = 05
Lcd Out (2, 10, " ")
}
WordToStr (cnt, txt); // Transform counter value to string
Lcd Out (2, 10, txt); // Display counter value on LCD

}

while (1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 303

CHAPTER 6
Libraries mikroC PRO for AVR

HW Connection

c) C)\ {{PBO =
1 2 : (] rB.1
I ERERRY —] P82
“TH’IHIHI L——{]| P83
[1rB4
4 5 6 B lr: PB.5 >
PB.6
1 o P i
7 8 9 c i E=
»—o—.- »—o—.- »—o—.- '—0—.- [:
S e @
X . . = OSCILLATOR _,__E GND :] =
I I I I S [| XTALA >]
KEYPAD f py]
\O 4x4 O /) [07]
[]Po2]
[1rD3]
[1rp.a]
[]Pos]
Yele [l Po.6 PD.7 }]
vee 10K
- 3l |3 HEHE
al |e g

EEFEFEFEEEEEERE

LCD 2X16

4x4 Keypad connection scheme

304 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

LCD LIBRARY

The mikroC PRO for AVR provides a library for communication with Lcds (with
HD44780 compliant controllers) through the 4-bit interface. An example of Lcd con-

nections is given on the schematic at the bottom of this page.

For creating a set of custom Lcd characters use Lcd Custom Character Tool.

External dependencies of Lcd Library

The following variables
must be defined in all proj-
ects using Lcd Library :

Description :

Example :

extern sfr sbit LCD RS:

Register Select line.

sbit LCD RS at
PORTD.B2;

extern sfr sbit LCD EN:

Enable line.

sbit LCD EN at
PORTD.B3;

extern sfr sbit LCD D7;

Data 7 line.

sbit LCD D7 at
PORTD.BA4;

extern sfr sbit LCD D6;

Data 6 line.

sbit LCD D6 at
PORTD.B5;

extern sfr sbit LCD D5;

Data 5 line.

sbit LCD D5 at
PORTD.B6;

extern sfr sbit LCD D4;

Data 4 line.

sbit LCD D4 at
PORTD.B7;

extern sfr sbit

Register Select direc-

sbit

LCD D4 Direction;

DDRD.B7;

L.CD RS Direction: ti . LCD RS Direction at
RS ; ion pin. DDRD.B2;
bit
extern sfr sbit Enable direction pin ic; EN Direction at
LCD EN Direction; pin. _EN_
- - DDRD.B3;
bit
extern sfr sbit Data 7 direction pin ic; D7 Direction at
LCD D7 Direction; pin. P
- - DDRD.B4;
extern sfr sbit Data 6 direction pin ilé;t% Direction at
LCD D6 Direction; pin. — =
- = DDRD.B5;
extern sfr sbit Data 5 direction pin ilg;tDS Direction at
LCD D5 Direction; pin. o
- = DDRD.B6;
sbit
extern sfr sbit . . .))
Data 4 direction pin. LCD D4 Direction at

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

305

CHAPTER 6
Libraries mikroC PRO for AVR

Library Routines

- Led_Init

- Led_Out
-Lcd _Out Cp
- Led_Chr
-Led Chr Cp
- Led_Cmd

306 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

Lcd_Init

Prototype

void Lcd_Init();

Returns

Nothing.

Description

Initializes Lcd module.

Requires

Global variables:

- LCD_D7:
- LCD_D6:
- LCD_D5:
- LCD_D4:
- LCD_RS:
- LCD_EN:

- LCD_D7

- LCD_D6 _
- LCD D5
- LCD D4
- LCD_RS
- LCD_EN

Data bit 7

Data bit 6

Data bit 5

Data bit 4

Register Select (data/instruction) signal pin
Enable signal pin

Direction: Direction of the Data 7 pin
Direction: Direction of the Data 6 pin
Direction: Direction of the Data 5 pin
Direction: Direction of the Data 4 pin
Direction: Direction of the Register Select pin
Direction: Direction of the Enable signal pin

must be defined before using this function.

Example

// Lcd pinout settings

sbit LCD RS at
sbit LCD EN at
sbit LCD D7 at
sbit LCD D6 at
sbit LCD D5 at
sbit LCD D4 at

PORTD.B2;
PORTD.B3;
PORTD.B4;
PORTD.BS5;
PORTD.B6;
PORTD.B7;

// Pin direction

sbit LCD RS Direction at DDRD.B2;
sbit LCD EN Direction at DDRD.B3;
sbit LCD D7 Direction at DDRD.B4;
sbit LCD D6 Direction at DDRD.BS5;
sbit LCD D5 Direction at DDRD.B6;
sbit LCD D4 Direction at DDRD.B7;

Led Init ()

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 307

CHAPTER 6

Libraries mikroC PRO for AVR
Lcd_Out
Prototype |[void Lcd Out (char row, char column, char *text);
Returns Nothing.
Prints text on Lcd starting from specified position. Both string variables and liter-
als can be passed as a text.
Description Parameters :
- row: starting position row number
- column: starting position column number
- text: text to be written
Requires The Lcd module needs to be initialized. See Lcd_Init routine.
E I // Write text "Hello!" on Lcd starting from row 1, column 3:
xample 1.4 out(1, 3, "Hello!");
Lcd _Out Cp
Prototype |void Lcd Out Cp(char *text);
Returns Nothing.
Prints text on Lcd at current cursor position. Both string variables and literals
can be passed as a text.
Description Parameters :
- text: text to be written
Requires The Lcd module needs to be initialized. See Lcd_Init routine.
Example // Write text "Here!" at current cursor position:
P Lcd Out Cp("Here!");
308 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Led_Chr

Prototype |void Lcd Chr(char row, char column, char out char);

Returns Nothing.

Prints character on Lcd at specified position. Both variables and literals can be
passed as a character.

—r Parameters :
Description
- row: writing position row number
- column: writing position column number
- out char: character to be written

Requires The Lcd module needs to be initialized. See Lcd_Init routine.

// Write character "i" at row 2, column 3:

Example |, crhr2, 3, rin);

Lcd Chr_Cp

Prototype |[void Lcd Chr Cp(char out char);

Returns Nothing.

Prints character on Lcd at current cursor position. Both variables and literals can
be passed as a character.

Description Parameters :

- out char: character to be written

Requires The Lcd module needs to be initialized. See Lcd_Init routine.

// Write character "e" at current cursor position:

Example Lcd Chr Cp('e');

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 309

CHAPTER 6

Libraries mikroC PRO for AVR
Lcd_Cmd
Prototype [void Lcd Cmd(char out char);
Returns Nothing.
Sends command to Lcd.
Parameters :
Description - out char: command to be sent
Note: Predefined constants can be passed to the function, see Available Lcd
Commands.
Requires The Lcd module needs to be initialized. See Lcd_Init table.
// Clear Lcd display:
Example Led Cmd (LCD_CLEAR) ;

Available Lcd Commands

Lcd Command

Purpose

LCD FIRST ROW

Move cursor to the 1st row

LCD_SECOND ROW

Move cursor to the 2nd row

LCD_THIRD ROW

Move cursor to the 3rd row

LCD_FOURTH ROW

Move cursor to the 4th row

LCD_CLEAR

Clear display

LCD_RETURN HOME

Return cursor to home position, returns a shifted display to its
original position. Display data RAM is unaffected.

LCD_CURSOR OFF

Turn off cursor

LCD_UNDERLINE ON

Underline cursor on

LCD BLINK CURSOR ON

Blink cursor on

LCD _MOVE CURSOR LEFT

Move cursor left without changing display data RAM

LCD_MOVE CURSOR_RIGHT

Move cursor right without changing display data RAM

LCD_TURN ON

Turn Lcd display on

LCD_TURN_OFF

Turn Lcd display off

LCD SHIFT LEFT

Shift display left without changing display data RAM

LCD_SHIFT RIGHT

Shift display right without changing display data RAM

310

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example

The following code demonstrates usage of the Lcd Library routines:

// Lcd module connections
sbit LCD RS at PORTD.B2;
sbit LCD_EN at PORTD.B3;
sbit LCD_D4 at PORTD.B4;
sbit LCD D5 at PORTD.BS5;
sbit LCD_D6 at PORTD.B6;
sbit LCD D7 at PORTD.B7;

sbit LCD RS Direction at DDRD.B2;
sbit LCD EN Direction at DDRD.B3;
sbit LCD D4 Direction at DDRD.B4;
sbit LCD D5 Direction at DDRD.B5;
sbit LCD D6 Direction at DDRD.B6;
sbit LCD D7 Direction at DDRD.B7;
// End LCD module connections

char txtl[] = "mikroElektronika";
char txt2[] = "EasyAVR5A";
char txt3[] = "Lcd4bit";
char txt4[] = "example";
char i; // Loop variable
void Move Delay () { // Function used for text moving
Delay ms (500) ; // You can change the moving speed here
}
void main (){
Led Init () // Initialize Lcd
Lcd Cmd (LCD_CLEAR) ; // Clear display
Lcd Cmd (LCD_CURSOR OFF) ; // Cursor off
Lcd Out (1,6,txt3); // Write text in first row
Lcd Out (2,6, txtd); // Write text 1in second row
Delay ms (2000) ;
Lcd Cmd (LCD_CLEAR) ; // Clear display
Led Out (1,1, txtl); // Write text 1in first row
Lcd Out (2,4, txt2); // Write text 1in second row

Delay ms (2000) ;

// Moving text
for (1i=0; i<4; i++) { // Move text to the right 4 times
Led Cmd (LCD_SHIFT RIGHT) ;
Move Delay();
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 311

CHAPTER 6
Libraries mikroC PRO for AVR

while (1) { // Endless loop
for (i=0; i<7; 1i++) { // Move text to the left 7 times
Led Cmd (LCD_SHIFT LEFT) ;
Move Delay () ;
}

for (i=0; i<7; 1i++) { // Move text to the right 7 times
Led Cmd (LCD_SHIFT RIGHT) ;
Move Delay();

}

i \
1
1
1
1 >
E -
1 2=
veer|vee] eno
OSCILLATOR GND :] —
409
e[| XTALA >]
=
— | PD2 o i
—] Pp3 i
o —| P4 i
vce PD.5 N

LT

() EREFEEERERERED

9IND

LCD 2X16

Lcd HW connection
312 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

MANCHESTER CODE LIBRARY

The mikroC PRO for AVR provides a library for handling Manchester coded signals.
The Manchester code is a code in which data and clock signals are combined to
form a single self-synchronizing data stream; each encoded bit contains a transition
at the midpoint of a bit period, the direction of transition determines whether the bit
is 0 or 1; the second half is the true bit value and the first half is the complement of
the true bit value (as shown in the figure below).

Manchester RF_Send_Byte format

St1|St2(Ctr |B7 | B6|B5 (B4 | B3| B2|B1|B0

Bi-phase coding

1

1 O\

2ms Example of transmission

[

117000100011

Notes: The Manchester receive routines are blocking calls (Man Receive Init and
Man_ Synchro). This means that MCU will wait until the task has been performed
(e.g. byte is received, synchronization achieved, etc).

Note: Manchester code library implements time-based activities, so interrupts need
to be disabled when using it.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 313

CHAPTER 6
Libraries mikroC PRO for AVR

External dependencies of Manchester Code Library

The following variables must be
defined in all projects using Description: Example:
Manchester Code Library:
L it MANRXPIN
extern sfr sbit MANRXPIN; Receive line. sbit at
PINB.BO;
e sbit MANTXPIN at
£ it MANTXPIN;)
extern sfr sbit Transmit line PORTE.B1;
extern sfr sbit Direction of the sbit) .
MANRXPIN Direction: Receive pin MANRXPIN Direction
- ’ pin. at DDRB.BO;
. . sbit
f .
Sxtern sfr sbit Direction of the 1 awrxeTn_pi recton
_ ; ransmit pin. at DDRB.B1;

Library Routines

- Man_Receive_Init
- Man_Receive

- Man_Send_Init

- Man_Send

- Man_Synchro

- Man_Break

The following routines are for the internal use by compiler only:
- Manchester_0

- Manchester_1
- Manchester_Out

314 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Man_Receive_lInit

Prototype unsigned int Man Receive Init();

- 0 - if initialization and synchronization were successful.
Returns - 1 - upon unsuccessful synchronization.
- 255 - upon user abort.

The function configures Receiver pin and performs synchronization procedure in
order to retrieve baud rate out of the incoming signal.

Description
Note: In case of multiple persistent errors on reception, the user should call this
routine once again or Man_Synchro routine to enable synchronization.

Global variables :

- MANRXPIN : Receive line

Requires) C A . . .
- MANRXPIN Direction : Direction of the receive pin
must be defined before using this function.
// Initialize Receiver
sbit MANRXPIN at PORTB.BO;
Example sbit MANRXPIN Direction at DDRB.BO;

Man Receive Init();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 315

CHAPTER 6
Libraries mikroC PRO for AVR

Man_Receive

Prototype unsigned char Man Receive (unsigned char *error);

Returns A byte read from the incoming signal.

The function extracts one byte from incoming signal.

Description Parameters :

- error: error flag. If signal format does not match the expected, the
error flag will be set to non-zero.

To use this function, the user must prepare the MCU for receiving. See

Requires . .
9 Man_Receive_Init.
unsigned char data = 0, error = 0;
Example data = Man Receive (&error);

if (error)
{ /* error handling */ }

Man_Send_lInit

Prototype [void Man Send Init();

Returns Nothing.

Description | The function configures Transmitter pin.

Global variables :

- MANTXPIN : Transmit line

Requires o W
9 - MANTXPIN Direction : Direction of the transmit pin
must be defined before using this function.
// Initialize Transmitter:
sbit MANTXPIN at PORTB.BI;
Example sbit MANTXPIN Direction at DDRB.B1;

Man_Send_Init();

316 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroC PRO for AVR
Man_Send
Prototype |[void Man Send(unsigned char tr data);
Returns Nothing.
Sends one byte.
Parameters :
Description
- tr data: data to be sent
Note: Baud rate used is 500 bps.
. To use this function, the user must prepare the MCU for sending. See
Requires .
Man_Send_Init.
unsigned char msg;
Example e
Man Send (msg) ;

Man_Synchro

Prototype |unsigned char Man Synchro();
- 255 - if synchronization was not successful.
Returns - Half of the manchester bit length, given in multiples of 10us - upon
successful synchronization.
Description |[Measures half of the manchester bit length with 10us resolution.
Requi To use this function, you must first prepare the MCU for receiving. See
equires : .

Man_Receive_|nit.

unsigned int man_ half bit len;
Example ..

mangﬁhalfibitilen = Man_Synchro () ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

317

CHAPTER 6
Libraries mikroC PRO for AVR

Man_Break

Prototype |void Man Break();

Returns Nothing.

Man_Receive is blocking routine and it can block the program flow. Call this rou-
tine from interrupt to unblock the program execution. This mechanism is similar
i to WDT.

Description
Note: Interrupts should be disabled before using Manchester routines again
(see note at the top of this page).

Requires Nothing.

char datal, error, counter = 0;
void TimerOOverflow ISR() org O0x12 {

if (counter >= 20) {
Man Break() ;

counter = 0; // reset counter
}
else
counter++; // increment counter

}

void main () {

TOIEO bit = 1; // Timer0 overflow interrupt
enable
TCCRO bit = 5; // Start timer with 1024
Example prescaler
SREG I = 0; // Interrupt disable

Man Receive Init();

// try Man Receive with blocking prevention mechanism

SREG I = 1; // Interrupt enable
datal = Man Receive (&error);
SREG I = 0; // Interrupt disable

318

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example

The following code is code for the Manchester receiver, it shows how to use the
Manchester Library for receiving data:

// LCD module connections
sbit LCD RS at PORTD.B2;
sbit LCD EN at PORTD.B3;
sbit LCD D4 at PORTD.B4;
sbit LCD D5 at PORTD.BS;
sbit LCD D6 at PORTD.B6;
sbit LCD D7 at PORTD.B7;

sbit LCD RS Direction at DDRD.B2;
sbit LCD EN Direction at DDRD.B3;
sbit LCD D4 Direction at DDRD.B4;
sbit LCD D5 Direction at DDRD.B5;
sbit LCD D6 Direction at DDRD.B6;
sbit LCD D7 Direction at DDRD.B7;
// End LCD module connections

// Manchester module connections

sfr sbit MANRXPIN at PINB.BO;

sfr sbit MANRXPIN Direction at DDRB.BO;
sfr sbit MANTXPIN at PORTB.B1;

sfr sbit MANTXPIN_Direction at DDRB.B1;
// End Manchester module connections

char error, ErrorCount, temp;
void main () {

ErrorCount = 0;
Manchester Stop () ;

Led Init(); // Initialize LCD
Lcd Cmd (LCD_CLEAR) ; // Clear LCD display
Man Receive Init(); // Initialize Receiver
while (1) { // Endless loop
Lcd Cmd (LCD_FIRST ROW) ; // Move cursor to the 1st row
while (1) { // Wait for the "start" byte
temp = Man_ Receive (&error); // Attempt byte receive
if (temp == 0xO0B) // "Start" byte, see Transmitter example
break; // We got the starting sequence
if (error) // Exit so we do not loop forever
break;

}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 319

CHAPTER 6

Libraries mikroC PRO for AVR
do
{
temp = Man Receilve (&error); // Attempt byte receive
if (error) { // If error occured
Led Chr CP('2 ') ; // Write question mark on LCD
ErrorCount++; // Update error counter
if (ErrorCount > 20) { // In case of multiple errors
temp = Man_Synchro(); // Try to synchronize again
//Man_Receive Init(); // Alternative,
try to Initialize Receiver again
ErrorCount = 0; // Reset error counter
}
}
else { // No error occured
if (temp != O0xO0E) // If "End" byte was
received(see Transmitter example)
Lcd _Chr CP(temp); // do not write received

byte on LCD
}
Delay ms (25);
}
while (temp != 0xO0E) ; // If "End" byte was received
exit do loop

}

The following code is code for the Manchester transmitter, it shows how to use the
Manchester Library for transmitting data:

// Manchester module connections
sbit MANRXPIN at PORTB.BO;

sbit MANRXPIN Direction at DDRB.BO;
sbit MANTXPIN at PORTB.B1;

sbit MANTXPIN_DireCtion at DDRB.B1;
// End Manchester module connections

char index, character;
char sl1[] = "mikroElektronika";

void main () {

Man Send Init(); // Initialize transmitter
while (1) { // Endless loop
Man Send (0x0B) ; // Send "start" byte
Delay ms (100); // Wait for a while

320 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
character = sl1[0] ; // Take first char from string
index = 0; // Initialize index variable
while (character) { // String ends with zero
Man Send(character) ; // Send character
Delay ms(90); // Wait for a while
index++; // Increment index variable
character = sl[index] ; // Take next char from string
}
Man_ Send (0xO0E) ; // Send "end" byte

Delay ms(1000);

}

Connection Example

[U/
Transmitter RF [rs.1
module E
[
Antenna i >
1
VCC [
] =
\VVCC o] vece m GND
OSCILLATOR GND] —
.
VCC [XTAL1 >]
3
] © [
A RT4 i]
[I
[I
[I

GND

Simple Transmitter connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 321

CHAPTER 6
Libraries mikroC PRO for AVR

d

Receiver RF PB.O

module

Antenna
VCC

vCC
GND

il_ll_ll_ll_ll_ll_ll_ll_ll"l

VCC

OSCILLATOR

GND

g
g

| 1 o 1 s s s e N s e |

VCC XTAL1

91VO3INLVY

A RR4 out

GND

Simple Receiver connection

| SN | NNNN) SN SN SN S S— S— m—) m—

322 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

MULTI MEDIA CARD LIBRARY

The Multi Media Card (MMC) is a flash memory card standard. MMC cards are cur-
rently available in sizes up to and including 1 GB, and are used in cell phones, mp3
players, digital cameras, and PDA’s.

mikroC PRO for AVR provides a library for accessing data on Multi Media Card via

SPI communication.This library also supports SD(Secure Digital) memory cards.

Secure Digital Card

Secure Digital (SD) is a flash memory card standard, based on the older Multi Media

Card (MMC) format.

SD cards are currently available in sizes of up to and including 2 GB, and are used

in cell phones, mp3 players, digital cameras, and PDAs.

Notes:

- Routines for file handling can be used only with FAT16 file system.
- Library functions create and read files from the root directory only;

- Library functions populate both FAT1 and FAT2 tables when writing to files,

but the file data is being read from the FAT1 table only; i.e. there is no
recovery if FAT1 table is corrupted.

- Prior to calling any of this library routines, Spi_Rd_Ptr needs to be initial-

ized with the appropriate SPI_Read routine.

External dependecies of MMC Library

The following variables must be
defined in all projects using
Manchester Code Library:

Description:

Example:

extern sfr sbit
Mmc Chip Select;

Chip select pin.

sbit
Mmc Chip Select at
PORTG.B1;

extern sfr sbit
Mmc Chip Select Direction;

Direction of the chip
select pin.

sbit

Mmc Chip Select Di
rection at
DDRG.B1;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

323

CHAPTER 6
Libraries mikroC PRO for AVR

Library Routines

- Mmc_Init

- Mmc_Read_Sector
- Mmc_Write_Sector
- Mmc_Read_Cid

- Mmc_Read_Csd

Routines for file handling:

- Mmc_Fat_Init

- Mmc_Fat_QuickFormat

- Mmc_Fat_Assign

- Mmc_Fat_Reset

- Mmc_Fat_Read

- Mmc_Fat_Rewrite

- Mmc_Fat_Append

- Mmc_Fat_Delete

- Mmc_Fat_Write

- Mmc_Fat_Set File_Date
- Mmc_Fat _Get File_Date
- Mmc_Fat_Get_File_Size
- Mmc_Fat_Get_Swap_File

324 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
Mmc_Init
Prototype unsigned char Mmc Init();
- 1 - if MMC/SD card was detected and successfully initialized
Returns .
- 0 - otherwise
Initializes hardware SPI communication; The function returns 1 if MMC card is
... present and successfully initialized, otherwise returns 0.
Description
Mmc_Init needs to be called before using other functions of this library.
Global variables :
. -Mmc Chip Select: Chip Select line
Requires - = , N . .
- Mmc Chip Select Direction: Direction of the Chip Select pin
must be defined before using this function.
// MMC module connections
sfr sbit Mmc Chip Select at PORTG.BI;
sfr sbit Mmc Chip Select Direction at DDRG.BI;
// MMC module connections
Example SPI1 Init Advanced(SPI MASTER, SPI FCY DIV2, SPI CLK LO LEAD-
ING) ;
Spi Rd Ptr = SPI1 Read;
error = Mmc_Init(); // Init with CS line at PORTB.B2

Mmc_Read_Sector

Prototype |unsigned char Mmc Read Sector (unsigned long sector, char* dbuff);

Returns Returns 0O if read was successful, or 1 if an error occurred.

Function reads one sector (512 bytes) from MMC card at sector address
Description |sector. Read data is stored in the array data. Function returns 0 if read was
successful, or 1 if an error occurred.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc Read Sector (sector, data);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 325

CHAPTER 6
Libraries

mikroC PRO for AVR

Mmc_Write_Sector

Prototvpbe unsigned char Mmc Write Sector (unsigned long sector, char

YPe Liapurs);

Returns Returns 0 if write was successful; returns 1 if there was an error in sending write
command; returns 2 if there was an error in writing.
Function writes 512 bytes of data to MMC card at sector address sector. Func-

Description [tion returns O if write was successful, or 1 if there was an error in sending write
command, or 2 if there was an error in writing.

Requires Library needs to be initialized, see Mmc_Init.

Example error := Mmc Write Sector (sector, data);

Mmc_Read_Cid

Prototype |unsigned char Mmc Read Cid(char * data for registers);
Returns Returns 0 if read was successful, or 1 if an error occurred.
oy Function reads CID register and returns 16 bytes of content into data for reg-
Description | - =
isters.
Requires Library needs to be initialized, see Mmc_lInit.
Example error = Mmc Read Cid(data);

Mmc_Read_Csd

Prototype |unsigned char Mmc Read Csd(char * data for registers);
Returns Returns 0 if read was successful, or 1 if an error occurred.

... Function reads CSD register and returns 16 bytes of content into
Description ,

data for registers.
Requires Library needs to be initialized, see Mmc_Init.
Example error = Mmc Read Csd(data);
326 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Mmc_Fat_lInit

Prototype [unsigned short Mmc Fat Init();

- 0 - if MMC/SD card was detected and successfully initialized
Returns - 1 - if FAT16 boot sector was not found
- 255 - if MMC/SD card was not detected

Initializes MMC/SD card, reads MMC/SD FAT16 boot sector and extracts neces-
sary data needed by the library.

Description
Note: MMC/SD card has to be formatted to FAT16 file system.

Global variables :

- Mmc Chip select: Chip Select line

. -Mmc Chip Select Direction: Direction of the Chip Select pin
Requires - - -
must be defined before using this function.

The appropriate hardware SPI module must be previously initialized. See the
SPI1_Init, SPI1_Init_Advanced routines.

// MMC module connections

sfr sbit Mmc Chip Select at PORTG.B1;

sfr sbit Mmc Chip Select Direction at DDRG.BI;
// MMC module connections

// Pointer to appropriate SPI Read function

SPT1 Init Advanced(SPT MASTER, SPI FCY DIV128, SPI CLK LO_ LEAD-
ING) ;

Spi Rd Ptr = SPI1 Read;

Example
// use fatl6 quick format instead of init routine if a formatting
is needed

if (!Mmc Fat Init()) {

// reinitialize spi at higher speed

SPI1 Init Advanced(SPI MASTER, SPI FCY DIV2, SPI CLK LO LEAD-
ING) ;

}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 327

CHAPTER 6
Libraries mikroC PRO for AVR

Mmc_Fat_QuickFormat

unsigned char Mmc Fat QuickFormat (unsigned char *port, unsigned
char pin, char * mmc fat label)

Prototype

- 0 - if MMC/SD card was detected, successfully formated and initialized
Returns - 1 - if FAT16 format was unseccessful
- 255 - if MMC/SD card was not detected

Formats to FAT16 and initializes MMC/SD card.
Parameters:

- port: chip select signal port address.

- pin: chip select pin.

-mmc_fat label: volume label (11 characters in length). If less than 11

.. characters are provided, the label will be padded with spaces. If null

Description o .
string is passed volume will not be labeled

Note: This routine can be used instead or in conjunction with Mmc_Fat_Init rou-

tine.

Note: If MMC/SD card already contains a valid boot sector, it will remain
unchanged (except volume label field) and only FAT and ROOT tables will be
erased. Also, the new volume label will be set.

Requires The appropriate hardware SPI module must be previously initialized.

// Pointer to appropriate SPI Read function

SPI1 Init Advanced(SPI MASTER, SPI FCY DIV128, SPI CLK LO_LEAD-
ING) ;

Spi Rd Ptr = SPI1 Read;

// Format and initialize MMC/SD card and MMC FAT16 library glob-
als

if (!Mmc Fat QuickFormat (émmc fat label)) {

Example
// Reinitialize the SPI module at higher speed (change primary
prescaler) .
SPI1 Init Advanced(SPI MASTER, SPI FCY DIV2, SPI CLK LO LEAD-
ING) ;

}

328 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Mmc_Fat_Assign

unsigned short Mmc Fat Assign(char * filename, char
file cre attr);

Prototype

- 1 - if file already exists or file does not exist but new file is created.

Returns - 0 - if file does not exist and no new file is created.

Assigns file for file operations (read, write, delete...). All subsequent file opera-
tions will be applied over the assigned file.

Parameters:

- filename: name of the file that should be assigned for file operations.
File name should be in DOS 8.3 (file_name.extension) format. The file
name and extension will be automatically padded with spaces by the
library if they have less than length required (i.e. "mikro.tx" ->
"mikro .tx "), so the user does no have to take care of that. The file
name and extension are case insensitive. The library will convert them
to proper case automatically, so the user does not have to take care of
that. Also, in order to keep backward compatibility with first version of
this library, file names can be entered as UPPERCASE string of 11
bytes in length with no dot character between file name and extension
(i.e. "MIKROELETXT" -> MIKROELE.TXT). In this case last 3 charac-
ters of the string are considered to be file extension.

- file cre attr: file creation and attributs flags. Each bit corresponds

Description
P to appropriate file attribut:

Bit | Mask Description
0 0x01 [Read Only

1 0x02 [Hidden

2 0x04 |System

3 0x08 |Volume Label
4

5

6

0x10 [Subdirectory
0x20 |Archive

0x40 [Device (internal use only, never found on disk)

File creation flag. If the file does not exist and this flag is set,

7 0x80 a new file with specified name will be created.

Note: Long File Names (LFN) are not supported.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 329

CHAPTER 6

Libraries mikroC PRO for AVR
. MMC/SD card and MMC library must be initialized for file operations. See
Requires .
Mmc_Fat_Init.
Example //Create file with archive attribut if it does not already exists
P Mmc Fat Assign ('MIKROELE.TXT', 0xAQ);

Mmc_Fat_Reset

Prototype |void Mmc Fat Reset (unsigned long * size);
Returns Nothing.
Procedure resets the file pointer (moves it to the start of the file) of the assigned
.. file, so that the file can be read.
Description
Parameter size stores the size of the assigned file, in bytes.
Requires The file must be assigned, see Mmc_Fat_Assign.
Example Mmc_Fat Reset (size);

Mmc_Fat_Rewrite

Prototype void Mmc Fat Rewrite();
Returns Nothing.
. L. Procedure resets the file pointer and clears the assigned file, so that new data
Description . .)
can be written into the file.
Requires The file must be assigned, see Mmc_Fat_Assign.
Example Mmc Fat Rewrite;

Mmc_Fat_Append

Prototype [void Mmc Fat Append();
Returns Nothing.
.. The procedure moves the file pointer to the end of the assigned file, so that data
Description ,
can be appended to the file.
Requires The file must be assigned, see Mmc_Fat_Assign.
Example Mmc_Fat Append;
330 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

Mmc_Fat_Read

Prototype |[void Mmc Fat Read(unsigned short * bdata);
Returns Nothing.
Procedure reads the byte at which the file pointer points to and stores data into
Description |parameter data. The file pointer automatically increments with each call of
Mmc Fat Read.
Reaqui The file must be assigned, see Mmc_Fat_Assign. Also, file pointer must be ini-
equires R
tialized; see Mmc_Fat_Reset.
Example Mmc Fat Read(mydata) ;

Mmc_Fat_Delete

Prototype |void Mmc Fat Delete();
Returns Nothing.
Description |Deletes currently assigned file from MMC/SD card.
MMC/SD card and MMC library must be initialized for file operations. See
. Mmc_Fat_|Init.
Requires - =
The file must be previously assigned. See Mmc_Fat_Assign.
Example // delete current file

Mmc Fat Delete();

Mmc_Fat_Write

Prototype |[void Mmc Fat Write(char * fdata, unsigned data len);
Returns Nothing.

s Procedure writes a chunk of bytes (fdata) to the currently assigned file, at the
Description o : .

position of the file pointer.
Requires The file must be assigned, see Mmc_Fat_Assign. Also, file pointer must be ini-
a tialized; see Mmc_Fat_Append or Mmc_Fat_Rewrite.
E I Mmc Fat Write (txt,255);
xample Mmc Fat Write('Hello world',6255);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

331

CHAPTER 6
Libraries mikroC PRO for AVR

Mmc_Fat_Set_File_Date

void Mmc Fat Set File Date(unsigned int year, unsigned short
Prototype |month, unsigned short day, unsigned short hours, unsigned short
mins, unsigned short seconds);

Returns Nothing.

Writes system timestamp to a file. Use this routine before each writing to file;

Description otherwise, the file will be appended an unknown timestamp.

The file must be assigned, see Mmc_Fat_Assign. Also, file pointer must be ini-
tialized; see Mmc_Fat_Reset.

// April 1lst 2005, 18:07:00
Mmc Fat Set File Date (2005, 4, 1, 18, 7, 0);

Requires

Example

Mmc_Fat_Get_File_Date

void Mmc Fat Get File Date (unsigned int *year, unsigned short
Prototype *month, unsigned short *day, unsigned short *hours, unsigned
short *mins);

Returns Nothing.

Retrieves date and time for the currently selected file. Seconds are not being

Description . : . . .
P retrieved since they are written in 2-sec increments.

Requires The file must be assigned, see Mmc_Fat_Assign.

// get Date/time of file
unsigned yr;

char mnth, dat, hrs, mins;
Example e
file Name = "MYFILEABTXT";

Mmc Fat Assign(file Name) ;

Mmc Fat Get File Date(yr, mnth, dat, hrs, mins);

332 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

Mmc_Fat_Get_File_Size

Prototype unsigned long Mmc Fat Get File Size();
Returns This function returns size of active file (in bytes).
Description |Retrieves size for currently selected file.
Requires The file must be assigned, see Mmc_Fat_Assign.

// get Date/time of file

unsigned vyr;

char mnth, dat, hrs, mins;
Example -

file name = "MYFILEXXTXT";

Mmc Fat Assign(file name);

mmc_size = Mmc Fat Get File Size;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 333

CHAPTER 6
Libraries mikroC PRO for AVR

Mmc_Fat_Get_Swap_File

unsigned long Mmc Fat Get Swap File(unsigned long sectors cnt,
char* filename, char file attr);

Prototype

- Number of the start sector for the newly created swap file, if there was
Returns enough free space on the MMC/SD card to create file of required size.
- 0 - otherwise.

This function is used to create a swap file of predefined name and size on the
MMC/SD media. If a file with specified hame already exists on the media,
search for consecutive sectors will ignore sectors occupied by this file. There-
fore, it is recomended to erase such file if it exists before calling this function. If
it is not erased and there is still enough space for new swap file, this function
will delete it after allocating new memory space for new swap file.

The purpose of the swap file is to make reading and writing to MMC/SD media
as fast as possible, by using the Mmc_Read_Sector() and Mmc_Write_Sector()
functions directly, without potentially damaging the FAT system. Swap file can be
considered as a "window" on the media where user can freely write/read the
data. It's main purpose in mikroC's library is to be used for fast data acquisition;
when the time-critical acquisition has finished, the data can be re-written into a
"normal" file, and formatted in the most suitable way.

Parameters:

Description - sectors_cnt: number of consecutive sectors that user wants the
swap file to have.

- filename: name of the file that should be assigned for file operations.
File name should be in DOS 8.3 (file_name.extension) format. The file
name and extension will be automatically padded with spaces by the
library if they have less than length required (i.e. "mikro.tx" ->
"mikro .tx "), so the user does no have to take care of that. The file
name and extension are case insensitive. The library will convert them
to proper case automatically, so the user does not have to take care of
that. Also, in order to keep backward compatibility with first version of
this library, file names can be entered as UPPERCASE string of 11
bytes in length with no dot character between file name and extension
(i.e. "MIKROELETXT" -> MIKROELE.TXT). In this case last 3 charac
ters of the string are considered to be file extension.

- file attr: file creation and attributs flags. Each bit corresponds to
appropriate file attribut:

334 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

Description

o
-

Mask Description

0x01 [Read Only

0x02 [Hidden

0x04 |[System

0x08 [|Volume Label

0x10 |Subdirectory

0x20 [Archive

0x40 [Device (internal use only, never found on disk)
0x80 [Not used

N|jo|loa|lbh]|wW|IDN]|—~]O

Note: Long File Names (LFN) are not supported.

Requires

MMC/SD card and MMC library must be initialized for file operations. See
Mmc_Fat_Init.

Example

/)= Tries to create a swap file, whose size will be
at least 100 sectors.
//If it succeeds, i1t sends the No. of start sector over UART
void M Create Swap File (){
size = Mmc Fat Get Swap File(100);
if (size <> 0) {
UART Write (OxAA);
UART Write (Lo(size));
UART_Write(Hi(size));
UART Write (Higher (size));
UART Write (Highest (size));
UART Write (OxAA);

Library Example

MMC library test. Upon flashing, insert a MMC/SD card into the module, when you
should receive the "Init-OK" message. Then, you can experiment with MMC read
and write functions, and observe the results through the terminal Receive Panel win-
dow.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

335

CHAPTER 6
Libraries mikroC PRO for AVR

// if defined, we have a debug messages on PC terminal
#define RS232 debug 1

sbit Mmc Chip Select at PORTG.B1;
sbit Mmc Chip Select Direction at DDRG.B1;

// universal variables
unsigned int px, k; // universal for loops and other stuff

// Variables for MMC routines

unsigned char dData[512] ; // Buffer for MMC sector reading/writing
unsigned char data for registers[16] ; // buffer for CID and CSD reg-
isters

// RS232 communication variables

unsigned char received character;

unsigned long sector address;

unsigned char first byte, second byte, third byte, fourth byte;
unsigned char serial buffer| 2] ;

unsigned char serial pointer;

// Display byte in hex
void printhex (unsigned char i) {
unsigned char hi,lo;

hi = i & O0xFO; // High nibble
hi = hi >> 4;

hi = hi + '0';

if (hi>'9') hi = hi + 7;

lo = (1 & OxOF) + '0'; // Low nibble

if (lo>'9') lo=lo+7;
UART1 Write(hi);
UART1 Write(lo);

char (*Spi Rd Ptr) (char) = SPI1 Read;

void main ()

{

unsigned int i;

PORTC = 0;

#ifdef RS232 debug
UART1 Init (19200);

#endif

Delay ms (10);

336 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

#ifdef RS232 debug
UART1 Write Text ("PIC-Started"); // 1If PIC present report
UART1 Write(13);
UART1 Write (10);
#endif

// Before all, we must initialize a MMC card

SPI1 Init Advanced(SPI MASTER, SPI FCY DIV2, SPI CLK LO LEAD-

ING) ;
Spi Rd Ptr = SPI1 Read;
i = Mmc_ Init();
#ifdef RS232 debug
if(i == 0)
{
UART1 Write Text ("MMC Init-OK"); // If MMC present report
UART1 Write(13);
UART1 Write (10);
}
if (1)
{
UART1 Write Text ("MMC Init-error"); // If error report
UART1 Write(13);
UART1 Write (10);
}
fendif

for (i=0; i<=511; i++)
dbatal 1] = 'E'; // Fill MMC buffer with same characters
i = Mmc Write Sector (55, dbata);

#ifdef RS232 debug
if (i == 0)
{
UART1 Write Text ("Write-OK");
}
else // if there are errors.....
{
UART1 Write Text ("Write-Error");
}
UART1 Write(13);
UART1 Write(10);
#endif
// Reading of CID and CSD register on MMC card.....
#ifdef RS232 debug
i = Mmc Read Cid(data for registers);
if(i == 0)
{
for (k=0; k<=15; k++)
{
printhex (data for registers[k]);
if (k!=15) UART1 Write('-"');

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

337

CHAPTER 6
Libraries mikroC PRO for AVR

UART1 Write(13);
}
else
{
UART1 Write Text ("CID-error");
}
i == Mmc Read Csd(data for registers);
if(i == 0)
{
for (k=0; k<=15; k++)
{
printhex (data for registers[k]);
if (k!=15) UART1 Write('-");
}
UART1 Write (13);
UART1 Write(10);
}
else
{
UART1 Write Text ("CSD-error");

}
#endif

// Variables initialisation
serial pointer = 0;

// MAIN loop
while (1)
{
if (UART1 Data Ready())
{
serial buffer[serial pointer] = UART1 Read(); // Get the
received character
serial pointer++;
if (serial pointer>1)
{

serial pointer = 0;
// Collecting four bytes of the address!
if (serial buffer[0] == 'S') first byte = serial buffer{ 1];
if (serial buffer[0] == 's') second byte = serial buffer| 1] ;
if (serial buffer[0] 'E') third byte = serial buffer| 1] ;
if (serial buffer[0] == 'e') fourth byte = serial buffer[1] ;
if (serial buffer[0] == 'R') // Command: Read memmory
{
if (serial buffer[1] == 'r')
{
sector address = ((long)first byte << 24) + ((long)second byte << 16)

+
((long) third byte << 8) +
((long) fourth byte);

1 = Mmc Read Sector(sector address, dData);
//UART1 Write(0x30 + i); //
if (i == 0)

338 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

for (k=0; k<512; k++)
{ //UART1 Write(dDatal k]); // send 512 bytes from MMC
card via usart
printhex (dDatal k]) ;
UART1 Write(' ');
if(((k+1) % 16)==
{

0)

UART1 Write(' '");
//printhex (k) ;
for (px=(k-15); px<=k; px++)
{
if ((dDatal px] >33) && (dDatal px]<126))
{
UART1 Write (dDatal px]);
}
else
{
UARTL Write('.');
}
}
UART1 Write (13);
}
}
UARTl_Write(l3);
UART1 Write (10);
}
else
{
UART1 Write Text ("Read-error");
UART1 Write (13);
UARTI_Write (10) ;
}
}
}
if (serial buffer[0] == 'W') // Command: Write
{
if (serial buffer[1] == 'w')
{
// Generating 32-bit address of the sector out of four received bytes
sector address = ((long)first byte << 24) + ((long)sec-
ond byte << 16) +
((long)third byte << 8) +
((long) fourth byte);
for (k=0; k<512; k++)
dDatal k] = received_character;// fill RAM baffer
i = Mmc Write Sector (sector address, dbData); // write
buffer tou MMC
if(i !'= 0)

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 339

CHAPTER 6
Libraries

mikroC PRO for AVR

UART1 Write Text ("Write-error");

UART1 Write (13);
UART1 Write(10);
}
else
{
UART1 Write Text ("Write-Ok");
UART1 Write(13);
UART1 Write(10);
}
}
}
if (serial buffer[0] == 'C")
{

received character = serial buffer[1] ;

}

340 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

The next program tests MMC FAT routines. First, we create 5 different files in the
root of MMC card, and fill with some information. Then, we read the files and send
them via UART for a check.

#include <built in.h>

sbit Mmc Chip Select at PORTG.B1;
sbit Mmc Chip Select Direction at DDRG.B1;

char

fat txt[20] = "FAT16 not found",

file contents[50] = "XX MMC/SD FAT16 library by Anton Rieckertn";
char

filename[14] = "MIKROOOXTXT"; // File names

unsigned short

tmp, caracter, loop, loop2;
unsigned long

i, size;

char Buffer[512] ;

//I-I-I-———————- Writes string to USART
void I Write Str(char *ostr) f{
unsigned short i;

i = 0;
while (ostr[i]) {
UART1 Write (ostr[i++]);
}
UART1 Write (0xOA);
}

//M-M-M—-———————— Creates new file and writes some data to it
void M Create New File() {
filename[7] = 'A';
Mmc_Fat Assign(&filename, OxA0); // Will not find file and
then create file
Mmc_ Fat Rewrite () ; // To clear file and start
with new data
for(loop = 1; loop <= 99; loop++) { // We want 5 files on the
MMC card
UART1 Write('.');
file contents[0] = loop / 10 + 48;
file contents[1] = loop % 10 + 48;
Mmc Fat Write(file contents, 42); // write data to the assigned
file

}
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 341

CHAPTER 6

Libraries mikroC PRO for AVR
//M-M-M-—=—————~ Creates many new files and writes data to them
void M Create Multiple Files() {
for (loop2 = 'B'; loop2 <= 'Z'; loop2++) {

UART1 Write (loop2); // signal the progress

filename[7] = loop2; // set filename

Mmc _Fat Assign(&filename, O0xA0); // find existing file or
create a new one

Mmc Fat Rewrite(); // To clear file and start

with new data
for (loop = 1; loop <= 44; loop++) f{

file contents[0] = loop / 10 + 48;
file contents[1] = loop % 10 + 48;
Mmc Fat Write(file contents, 42); // write data to the assigned
file
}
}
}
//M=-M-M=======—~ Opens an existing file and rewrites it
void M Open File Rewrite() {
filename[7] = 'C';

Mmc Fat Assign(&filename, 0);
Mmc Fat Rewrite();
for(loop = 1; loop <= 55; loop+t+) {

file contents[0] = loop / 10 + 64;
file contents[1] = loop % 10 + 64;
Mmc Fat Write(file contents, 42); // write data to the assigned
file
}
}
//M=-M-M-=————-——- Opens an existing file and appends data to it
// (and alters the date/time stamp)
void M Open File Append() {
filename[7] = 'B';
Mmc Fat Assign(&filename, 0);
Mmc Fat Set File Date (2005,6,21,10,35,0);
Mmc_Fat Append () ; // Prepare
file for append
Mmc Fat Write (" for mikroElektronika 2005n", 27); // Write
data to assigned file
Yy //~
//M-M-M-———————~ Opens an existing file, reads data from it and puts

it to USART
void M Open File Read() ({

filename[7] = 'B';
Mmc Fat Assign(&filename, 0);
Mmc Fat Reset (&size); // To read file, procedure

returns size of file

342 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

for (i = 1; i <= size; i++) {
Mmc Fat Read(&caracter);
UART1 Write (caracter); // Write data to USART

}

//M-M-M-—-——————-— Deletes a file. If file doesn't exist, it will first
be created
// and then deleted.
void M Delete File() {
filename[7] = 'F';
Mmc Fat Assign(filename, O0);
Mmc Fat Delete();
}

//M-M-M-———————— Tests whether file exists, and if so sends its cre-
ation date
// and file size via USART

volid M Test File Exist () {
unsigned long fsize;
unsigned int year;
unsigned short month, day, hour, minute;
unsigned char outstr[12] ;

filename[71 = 'B'; //uncomment this line to search for file
that DOES exists
// filename[7] = 'F'; //uncomment this line to search for file

that DOES NOT exist
if (Mmc Fat Assign(filename, 0)) {
//--- file has been found - get its date
Mmc Fat Get File Date (&year, &month, &day, &hour, &minute);

WordToStr (year, outstr);
I Write Str(outstr);
ByteToStr (month, outstr);
I Write Str(outstr);
WordToStr (day, outstr);
I Write Str(outstr);
WordToStr (hour, outstr);
I Write Str(outstr);
WordToStr (minute, outstr);
I Write Str(outstr);
//-—- get file size
fsize = Mmc Fat Get File Size();
LongToStr ((signed long) fsize, outstr);
I Write Str(outstr);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 343

CHAPTER 6

Libraries mikroC PRO for AVR

else {
//--- file was not found - signal it
UART1 Write (0x55);
Delay ms (1000);
UART1 Write(0x55);

[/ == Tries to create a swap file, whose size will be at
least 100
// sectors (see Help for details)

void M Create Swap File() {
unsigned int i;

for (i=0; 1<512; i++)
Buffer[1] = 1i;

size = Mmc Fat Get Swap File (5000, "mikroE.txt", 0x20); // see
help on this function for details

if (size) {
LongToStr ((signed long)size, fat txt);
I Write Str(fat txt);

for (i=0; i<5000; i++) {
Mmc Write Sector (size++, Buffer);
UART1 Write('.');

/) ———————————— Main. Uncomment the function(s) to test the desired
operation (s)

void main () {
// we will use PORTC to signal test end

DDRC = OxFF;
PORTC 0;

Spi Rd Ptr = SPI1 Read;
// use fatlé quick format instead of init routine if a format-
ting 1is needed
if (!Mmc Fat Init()) {
// reinitialize spi at higher speed
SPI1 Init Advanced(SPI_MASTER, _ SPI FCY DIV2,

_SPI_CLK LO_LEADING) ;

//--— Test start
//--- Test routines. Uncomment them one-by-one to test cer-

tain features

344 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

M Create New File();
M Create Multiple Files();

M Open File Rewrite();
M Open File Append();
M Open File Read();
M Delete File();
M Test File Exist();
M Create Swap File();
UART1 Write('e');
}
else {
I Write Str(fat txt);
}
//—--— Test termination
PORTC = 0x0F;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 345

CHAPTER 6
Libraries mikroC PRO for AVR

HW Connection

SPI-MISO

MMC-CS#
SPI-MOSI

SPI-SCK
H] H VCC3
2K2 2K2 2K2 4

MMC/SD

' Dout CARD
3K3 3K3 3K3
L)

nﬁnnnnnnnnnﬂnnn

qnnaonnnnon

ATmega128

qooomoorurooooom

PG.2

ann

Back view

MMC back view

346 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

ONEWIRE LIBRARY

The OneWire library provides routines for communication via the Dallas OneWire
protocol, e.g. with DS18x20 digital thermometer. OneWire is a Master/Slave proto-
col, and all communication cabling required is a single wire. OneWire enabled
devices should have open collector drivers (with single pull-up resistor) on the
shared data line.

Slave devices on the OneWire bus can even get their power supply from data line.
For detailed schematic see device datasheet.

Some basic characteristics of this protocol are:

- single master system,

- low cost,

- low transfer rates (up to 16 kbps),

- fairly long distances (up to 300 meters),
- small data transfer packages.

Each OneWire device has also a unique 64-bit registration number (8-bit device
type, 48-bit serial number and 8-bit CRC), so multiple slaves can co-exist on the
same bus.

Note: Oscillator frequency Fosc needs to be at least 8MHz in order to use the rou-
tines with Dallas digital thermometers.

External dependencies of OneWire Library

The following variables must be
defined in all projects using Description: Example:
Manchester Code Library:

sbit OW Bit Read

£ i W Bit R ; i ine.
extern sfr sbit OW Bit Read; |OneWire read line at DINE.B2;

extern sfr sbit sbit OW Bit Write

OneWire write line.

OW Bit Write; at PORTB.B2;
. . . sbit
extern sfr sbit Direction of the R .
OW Bit Direction: OneWi . OW_Bit Direction
L B ; nevvire pin. at DDRB.B2;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 347

CHAPTER 6
Libraries

mikroC PRO for AVR

Library Routines

- Ow_Reset
- Ow_Read
- Ow_Write
Ow_Reset
Prototype |unsigned short Ow Reset();
- 0 if the device is present
Returns . o
- 1 if the device is not present
Issues OneWire reset signal for DS18x20.
Description |Parameters :
- None.
Devices compliant with the Dallas OneWire protocol.
Global variables :
Requires -OW_Bit Read: OneWire read line
-0W Bit Write: OneWire write line.
-OW_Bit Direction: Direction of the OneWire pin
must be defined before using this function.
// Issue Reset signal on One-Wire Bus
Example Ow Reset () ;

348

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Ow_Read

Prototype |unsigned short Ow Read();

Returns Data read from an external device over the OneWire bus.

Description |Reads one byte of data via the OneWire bus.

Devices compliant with the Dallas OneWire protocol.
Global variables :

Requires -OW Bit Read: OneWire read line
-owW _Bit Write: OneWire write line.
-OW Bit Direction: Direction of the OneWire pin

must be defined before using this function.

// Read a byte from the One-Wire Bus
unsigned short read data;

Example

read data = Ow _Read();

Ow_Write

Prototype |void Ow Write (char data);

Returns Nothing.

Writes one byte of data via the OneWire bus.
Description |Parameters :

- data : data to be written

Devices compliant with the Dallas OneWire protocol.
Global variables :

Requires -OW_Bit Read: OneWire read line

-owW_Bit wWrite: OneWire write line.

-OW_Bit Direction: Direction of the OneWire pin

must be defined before using this function.

// Send a byte to the One-Wire Bus

Example |, write (oxco)

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 349

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example

This example reads the temperature using DS18x20 connected to pin PORTB.2.
After reset, MCU obtains temperature from the sensor and prints it on the LCD.
Make sure to pull-up PORTB.2 line and to turn off the PORTB leds.

// LCD module connections
sbit LCD RS at PORTD.B2;
sbit LCD _EN at PORTD.B3;

sbit LCD D4 at PORTD.B4;
sbit LCD D5 at PORTD.B5;
sbit LCD D6 at PORTD.B6;
sbit LCD D7 at PORTD.B7;

sbit LCD RS Direction at DDRD.B2;
sbit LCD EN Direction at DDRD.B3;
sbit LCD D4 Direction at DDRD.B4;
sbit LCD D5 Direction at DDRD.B5;
sbit LCD D6 Direction at DDRD.B6;
sbit LCD D7 Direction at DDRD.B7;
// End LCD module connections

// OneWire pinout

sbit OW Bit Write at PORTB.B2;
sbit OW Bit Read at PINB.B2;
sbit OW Bit Direction at DDRB.B2;

// end OneWire definition

// Set TEMP RESOLUTION to the corresponding resolution of used
DS18x20 sensor:

// 18S20: 9 (default setting,; can be 9,10,11,or 12)

// 18B20: 12

const unsigned short TEMP RESOLUTION = 9;

char *text = "000.0000";
unsigned temp;

void Display Temperature (unsigned int temp2write) {
const unsigned short RES SHIFT = TEMP RESOLUTION - 8;
char temp whole;
unsigned int temp fraction;

// check if temperature is negative
if (temp2write & 0x8000) {
text[0] = '-';
temp2write = ~temp2write + 1;

}

350 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR

Libraries
// extract temp whole
temp whole = temp2write >> RES SHIFT ;
// convert temp whole to characters
if (temp whole/100)
text[0] = temp whole/100 + 48;
text[1] = (temp whole/10)%10 + 48; // Extract tens digit
text[2] = temp whole%10 + 48; // Extract ones digit
// extract temp fraction and convert it to unsigned int
temp fraction = temp2write << (4-RES SHIFT);
temp fraction &= 0x000F;
temp fraction *= 625;
// convert temp fraction to characters
text[4] = temp fraction/1000 + 48; // Extract thousands digit
text[5] = (temp fraction/100)%10 + 48; // Extract hundreds digit
text[6] = (temp fraction/10)%10 + 48; // Extract tens digit
text[7] = temp fraction%1l0 + 48; // Extract ones digit
// print temperature on LCD
Lcd Out (2, 5, text);
}
void main () {
Led Init(); // Initialize LCD
Lcd Cmd (LCD_CLEAR) ; // Clear LCD
Lcd Cmd (LCD _CURSOR _OFF) ; // Turn cursor off
Lcd Out(l, 1, " Temperature: "y
// Print degree character, 'C' for Centigrades
Led Chr(2,13,223);
Led Chr(2,14,'C');
//--- main loop
do {
//-—— perform temperature reading
Ow_Reset () ; // Onewire reset signal
Ow_Write (0xCC) ; // Issue command SKIP ROM
Ow_Write (0x44); // Issue command CONVERT T
Delay us(120);
Ow Reset () ;
Ow_Write (0xCC) ; // Issue command SKIP ROM
Ow_Write (0xBE) ; // Issue command READ SCRATCHPAD
temp = Ow Read();
temp = (Ow_Read() << 8) + temp;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 351

CHAPTER 6
Libraries mikroC PRO for AVR

//-=-- Format and display result on Lcd
Display Temperature (temp) ;

Delay ms (500);

} while (1);
}

HW Connection

1 125°C

VCC
i N\
1
Il P2
i
N i
| 3
] =
vee] vee m GND
OSCILLATOR GND] —
s 2 I
0 xaL1 > i
] = |
——] PD.2 o 1
——] PD3 1
PD.4 1
PD.5 1
PD.6 PD.7

LT

() EREEEREREREERR

9IND

LCD 2X16

Example of DS1820 connection

352 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

PORT EXPANDER LIBRARY

The mikroC PRO for AVR provides a library for communication with the Microchip’s
Port Expander MCP23S17 via SPI interface. Connections of the AVR compliant
MCU and MCP23S17 is given on the schematic at the bottom of this page.

Note: Library uses the SPI module for communication. The user must initialize SPI
module before using the Port Expander Library.

Note: Library does not use Port Expander interrupts.

External dependencies of Port Expander Library

The following variables must be
defined in all projects using Description: Example:
Manchester Code Library:

extern sfr sbit Reset line sbit SPExpanderRST
SPExpanderRST;) at PORTB.RO;

extern sfr sbit sbit SPExpanderCS

Chip Select line.

SPExpanderCS; at PORTB.B1;
_ — bit
extern sfr sbit Direction of the sbi .
SPExpanderRST Direction: R t bi SPExpanderRST Dire
*p FhRes_brrection; eset pin. ction at DDRB.BO;
. . . . bit
extern sfr sbit Direction of the Chip [5°* .
SPExpanderCS Direction; Select pi SPExpanderCS_Direc
p — ’ elect pin. tion at DDRB.BI;

Library Routines

- Expander_Init

- Expander_Read_Byte

- Expander_Write_Byte

- Expander_Read_ PortA

- Expander_Read_PortB

- Expander_Read_PortAB

- Expander_Write_PortA

- Expander_Write_PortB

- Expander_Write_PortAB

- Expander_Set_DirectionPortA
- Expander_Set_DirectionPortB
- Expander_Set_DirectionPortAB
- Expander_Set_PullUpsPortA
- Expander_Set_PullUpsPortB
- Expander_Set_PullUpsPortAB

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 353

CHAPTER 6
Libraries mikroC PRO for AVR

Expander_lInit

Prototype void Expander Init (char ModuleAddress) ;

Returns Nothing.

Initializes Port Expander using SPI communication.
Port Expander module settings :

- hardware addressing enabled

- automatic address pointer incrementing disabled (byte mode)
Description - BANK O register adressing

- slew rate enabled

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

Global variables :

- sPExpanderCS: Chip Select line

- SPExpanderRST: Reset line

. - SPExpanderCS Direction: Direction of the Chip Select pin
Requires - TR X
- SPExpanderRST Direction: Direction of the Reset pin

must be defined before using this function.

SPI module needs to be initialized. See SPI_Init and SPI_Init_Advanced routines.

// Port Expander module connections

sbit SPExpanderRST at PORTB.BO;

sbit SPExpanderCS at PORTB.B1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.B1;
// End Port Expander module connections

// Pointer to appropriate SPI Read function

char (*SPI Rd Ptr) (char);
Example (_Rd_Pre))

// If Port Expander Library uses SPI1 module

SPI Rd Ptr = &SPI1 Read; // Pass pointer to SPI
Read function of used SPI module

SPI1 Init(); // Initialize SPI module
used with PortExpander

Expander Init(0); // Initialize Port Expander

354 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

Expander_Read_Byte

Prototype char Expander Read Byte (char ModuleAddress, char RegAddress);
Returns Byte read.
The function reads byte from Port Expander.
Parameters :
Description
- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page
- RegAddress: Port Expander's internal register address
Requires Port Expander must be initialized. See Expander_Init.
// Read a byte from Port Expander's register
char read data;
Example -
read data = Expander Read Byte (0,1);

Expander_Write_Byte

void Expander Write Byte (char ModuleAddress,char RegAddress, char

Prototype Data) ;
Returns Nothing.
Routine writes a byte to Port Expander.
Parameters :
Description - ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page
- RegAddress: Port Expander's internal register address
- Data: data to be written
Requires Port Expander must be initialized. See Expander_Init.
Example // Write a byte to the Port Expander's register

Expander Write Byte (0,1, S$FF);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

355

CHAPTER 6
Libraries mikroC PRO for AVR

Expander_Read_PortA

Prototype |char Expander Read PortA(char ModuleAddress);

Returns Byte read.

The function reads byte from Port Expander's PortA.

Description Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

Port Expander must be initialized. See Expander_Init.

Requires .) . .
q Port Expander's PortA should be configured as input. See Expander_Set_Direc-
tionPortA and Expander_Set_DirectionPortAB routines.
// Read a byte from Port Expander's PORTA
char read data;
Example Expander Set DirectionPortA (0, 0xFF); // set expander's

porta to be input

read data = Expander Read PortA(0);

Expander_Read_PortB

Prototype |char Expander Read PortB(char ModuleAddress);

Returns Byte read.

The function reads byte from Port Expander's PortB.

L. Parameters :
Description

- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

Port Expander must be initialized. See Expander_Init.

Requires . , . .
q Port Expander's PortB should be configured as input. See Expander_Set_Direc-
tionPortB and Expander_Set_DirectionPortAB routines.
// Read a byte from Port Expander's PORTB
char read data;
Example Expander Set DirectionPortB (0, 0xFF); // set expander's

portb to be input

read data = Expander Read PortB(0);

356 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Expander_Read_PortAB

Prototype |unsigned int Expander Read PortAB(char ModuleAddress);

Returns Word read.

The function reads word from Port Expander's ports. PortA readings are in the
higher byte of the result. PortB readings are in the lower byte of the result.

Description |Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

Port Expander must be initialized. See Expander_Init.

Requires Port Expander's PortA and PortB should be configured as inputs. See
Expander_Set_DirectionPortA, Expander_Set_DirectionPortB and
Expander_Set DirectionPortAB routines.

// Read a byte from Port Expander's PORTA and PORTB
unsigned int read data;

Example Expander Set DirectionPortAB (0, OXFFFF); // set expander's
porta and portb to be input

read data = Expander Read PortAB(0);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 357

CHAPTER 6
Libraries mikroC PRO for AVR

Expander_Write _PortA

Prototype void Expander Write PortA(char ModuleAddress, char Data);

Returns Nothing.

The function writes byte to Port Expander's PortA.

Parameters :

Description

- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

- Data: data to be written

Port Expander must be initialized. See Expander_Init.

Requires Port Expander's PortA should be configured as output. See
Expander_Set_DirectionPortA and Expander_Set_DirectionPortAB routines.
// Write a byte to Port Expander's PORTA

Example Expander Set DirectionPortA(0,0x00); // set expander's

porta to be output

Expander Write PortA (0, OxAA);

358 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Expander_Write_PortB

Prototype |void Expander Write PortB(char ModuleAddress, char Data);

Returns Nothing.

The function writes byte to Port Expander's PortB.

Parameters :

Description

- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

- Data: data to be written

Port Expander must be initialized. See Expander_Init.

Requires Port Expander's PortB should be configured as output. See
Expander_Set DirectionPortB and Expander_Set_DirectionPortAB routines.
// Write a byte to Port Expander's PORTB

Example Expander Set DirectionPortB(0,0x00); // set expander's

portb to be output

Expander Write PortB(0, 0x55);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 359

CHAPTER 6
Libraries mikroC PRO for AVR

Expander_Write_PortAB

void Expander Write PortAB(char ModuleAddress, unsigned int

Prototype Data) ;

Returns Nothing.

The function writes word to Port Expander's ports.
Parameters :

Description - ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

- Data: data to be written. Data to be written to PortA are passed in
Data's higher byte. Data to be written to PortB are passed in Data's
lower byte

Port Expander must be initialized. See Expander_Init.

Requires Port Expander's PortA and PortB should be configured as outputs. See
Expander_Set_DirectionPortA, Expander_Set_DirectionPortB and
Expander_Set DirectionPortAB routines.

// Write a byte to Port Expander's PORTA and PORTB

Example Expander Set DirectionPortAB(0,0x0000); // set expander's
porta and portb to be output

Expander Write PortAB (0, OxAA55);

360 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Expander_Set_DirectionPortA

Prototype void Expander Set DirectionPortA (char ModuleAddress, char Data);

Returns Nothing.

The function sets Port Expander's PortA direction.
Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

- Data: data to be written to the PortA direction register. Each bit corre-
sponds to the appropriate pin of the PortA register. Set bit designates
corresponding pin as input. Cleared bit designates corresponding pin
as output.

Description

Requires Port Expander must be initialized. See Expander_Init.

// Set Port Expander's PORTA to be output

Example Expander Set DirectionPortA (0, 0x00);

Expander_Set_DirectionPortB

Prototype void Expander Set DirectionPortB(char ModuleAddress, char Data);

Returns Nothing.

The function sets Port Expander's PortB direction.
Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page

- Data: data to be written to the PortB direction register. Each bit corre-
sponds to the appropriate pin of the PortB register. Set bit designates
corresponding pin as input. Cleared bit designates corresponding pin
as output.

Description

Requires Port Expander must be initialized. See Expander_Init.

// Set Port Expander's PORTB to be input

Example Expander Set DirectionPortB (0, 0xFF);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 361

CHAPTER 6
Libraries

mikroC PRO for AVR

Expander_Set_DirectionPortAB

void Expander Set DirectionPortAB(char ModuleAddress, unsigned int

PrOtOtype Direction) ;
Returns Nothing.
The function sets Port Expander's PortA and PortB direction.
Parameters :
- ModuleAddress: Port Expander hardware address, see schematic at
Describtion the bottom of this page
P - Direction: data to be written to direction registers. Data to be written
to the PortA direction register are passed in pirection's higher byte.
Data to be written to the PortB direction register are passed in
Direction's lower byte. Each bit corresponds to the appropriate pin of
the PortA/PortB register. Set bit designates corresponding pin as input.
Cleared bit designates corresponding pin as output.
Requires Port Expander must be initialized. See Expander_Init.
E I // Set Port Expander's PORTA to be output and PORTB to be input
Xample Expander Set DirectionPortAB(0,0x00FF) ;
Expander_Set_PullUpsPortA
Prototype void Expander Set PullUpsPortA(char ModuleAddress, char Data);
Returns Nothing.
The function sets Port Expander's PortA pull up/down resistors.
Parameters :
Description - ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page
- Data: data for choosing pull up/down resistors configuration. Each bit
corresponds to the appropriate pin of the PortA register. Set bit
enables pull-up for corresponding pin.
Requires Port Expander must be initialized. See Expander_Init.
// Set Port Expander's PORTA pull-up resistors
Exan““e Expander Set PullUpsPortA (0, OxFF);
362 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

Expander_Set_PullUpsPortB

Prototype void Expander Set PullUpsPortB(char ModuleAddress, char Data);
Returns Nothing.
The function sets Port Expander's PortB pull up/down resistors.
Parameters :
Description - ModuleAddress: Port Expander hardware address, see schematic at
the bottom of this page
- Data: data for choosing pull up/down resistors configuration. Each bit
corresponds to the appropriate pin of the PortB register. Set bit
enables pull-up for corresponding pin.
Requires Port Expander must be initialized. See Expander_Init.
E I // Set Port Expander's PORTB pull-up resistors
Xample Expander_Set_PullUpsPortB(O, OxXFF) ;
Expander_Set PullUpsPortAB
Prounype ;oid Exp?nder_Set_PullUpsPortAB(char ModuleAddress, unsigned int
ullUps) ;
Returns Nothing.
The function sets Port Expander's PortA and PortB pull up/down resistors.
Parameters :
- ModuleAddress: Port Expander hardware address, see schematic at
Description |the bottom of this page
- pullUps: data for choosing pull up/down resistors configuration. PortA
pull up/down resistors configuration is passed in Pul1Ups's higher
byte. PortB pull up/down resistors configuration is passed in pullups's
lower byte. Each bit corresponds to the appropriate pin of the
PortA/PortB register. Set bit enables pull-up for corresponding pin.
Requires Port Expander must be initialized. See Expander_Init.
Example // Set Port Expander's PORTA and PORTB pull-up resistors

OXFFFF) ;

Expander Set PullUpsPortAB (O,

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

363

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example
The example demonstrates how to communicate with Port Expander MCP23S17.

Note that Port Expander pins A2 A1 AO are connected to GND so Port Expander
Hardware Address is 0.

// Port Expander module connections

sbit SPExpanderRST at PORTB.RO;

sbit SPExpanderCS at PORTB.BI1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.B1;
// End Port Expander module connections

// Pointer to appropriate SPI Read function
char (*SPI Rd Ptr) (char);

unsigned char i = 0;

void main () {

DDRC = OxFF; // Set PORTC as output
// If Port Expander Library uses SPI1 module

SPI1 Init(); // Initialize SPI module used with PortExpander
SPI Rd Ptr = &SPI1 Read; // Pass pointer to SPI Read function

of used SPI module

// // If Port Expander Library uses SPI2 module

// SPI2 Init(); // Initialize SPI module used with PortExpander

// SPI _Rd Ptr = &SPI2 Read; // Pass pointer to SPI Read function
of used SPI module

Expander Init (0); // Initialize Port Expander

Expander_ Set DirectionPortA(0, 0x00); // Set Expander's PORTA to
be output

Expander Set DirectionPortB(0,0xFF); // Set Expander's PORTB to
be input

Expander Set PullUpsPortB (0, 0xFF) ; // Set pull-ups to all of

the Expander's PORTB pins

while (1) { // Endless loop
Expander Write PortA(0, i++); // Write 1 to expander's PORTA
PORTC = Expander Read PortB(0); // Read expander's PORTB

and write it to LEDs
Delay ms (100);

}

364 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
HW Connection
MCP23S17
' epBo ~ [N
21 GPB1 GPAG]277 i L\
3 GPB2 GPAS5]267 ‘-E gs'?
4::' GPB3 GPA4]257 i '
: GPB4 GPA3]247 i
-{] opes GPA2 |7:Z 1
5L ePB6 GPA1 [|———— — | P85 >
vee S epe7 cPao]::)— —— | PB6 —l
<ol vep INTA]T E PB.7 g
I—rg7ml vss ﬂ;!?pg_o vCcCod]vec JT] oo
PB7 124 ©° RESEN | pr= _ OSCILLATOR _|__E GND =
PB5 134 oK A2} 16 r { = [O]
PB6 1AL o Al]T [| XTAL >]
: so Ao [}— 1 N]
- 1 © |
1]
[]
[]
[]
e T ER
5 =H = 6 5 =H = 6
7 = = 3 7 = = 8
3D B
vcc PORTB = V((L;C_PORTA =

Port Expander HW connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

365

CHAPTER 6
Libraries mikroC PRO for AVR

PS/2 LIBRARY

The mikroC PRO for AVR provides a library for communication with the common
PS/2 keyboard.

Note: The library does not utilize interrupts for data retrieval, and requires the oscil-
lator clock to be at least 6MHz.

Note: The pins to which a PS/2 keyboard is attached should be connected to the
pull-up resistors.

Note: Although PS/2 is a two-way communication bus, this library does not provide
MCU-to-keyboard communication; e.g. pressing the Caps Lock key will not turn on
the Caps Lock LED.

External dependencies of PS/2 Library

The following variables must be
defined in all projects using Description: Example:
Manchester Code Library:
. sbit PS2 Data at
£ it PS2 D ;) _
extern sfr sbit PS2 Data PS/2 Data line BINC.BO;
extern sfr sbit . . sbit PS2 In Clock
PS2 In Clock; PS/2 Clock line in. at PINC.B1;
extern sfr sbit . sbit PS2 Out Clock
PS2 Out Clock; PS/2 Clock line out. at PORTC.B1;
. . bit
extern sfr sbit Direction of the PS/2 ;S; ets Direction
PS2 D Di ion; i — -
S2 Data Direction Data pin. at DDRC.B0;
. . bit
extern sfr sbit Direction of the PS/2 ;S; ook Direction
PS2 Clock Di ion; i - -
S2 Clock Direction Clock pin. at DDRC.BO:

Library Routines

- Ps2_Config
- Ps2_Key Read

366 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroC PRO for AVR
Ps2_Config
Prototype |[void Ps2 Config();
Returns Nothing.
Description |Initializes the MCU for work with the PS/2 keyboard.
Global variables :
- PS2_Data: Data signal line
- Ps2_In Clock: Clock signal line in
Requires - ps2 out Clock: Clock signal line out
- PS2 Data Direction: Direction of the Data pin
- PS2 Clock Direction: Direction of the Clock pin
must be defined before using this function.
sbit PS2 Data at PINC.BO;
sbit PS2 In Clock at PINC.BI1;
sbit PS2 Out Clock at PORTC.B1;
Example sbit PS2 Data Direction at DDRC.BO;
P sbit PS2 Clock Direction at DDRC.BI1;
Ps2 Config(); // Init PS/2 Keyboard

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 367

CHAPTER 6
Libraries mikroC PRO for AVR

Ps2_Key_Read

unsigned short Ps2 Key Read(unsigned short *value, unsigned short

Prokﬂype *special, unsigned short *pressed);
- 1 if reading of a key from the keyboard was successful
Returns .
- 0 if no key was pressed
The function retrieves information on key pressed.
Parameters :
- value: holds the value of the key pressed. For characters, numerals,
s punctuation marks, and space value will store the appropriate ASCII
Description

code. Routine “recognizes” the function of Shift and Caps Lock, and
behaves appropriately. For special function keys see Special Function
Keys Table.

- special: is a flag for special function keys (F1, Enter, Esc, etc). If key
pressed is one of these, special will be set to 1, otherwise 0.

- pressed: is set to 1 if the key is pressed, and O if it is released.

Requires PS/2 keyboard needs to be initialized. See Ps2_Config routine.

unsigned short value, special, pressed;

// Press Enter to continue:
do {
if (Ps2 Key Read(&value, é&special, &pressed)) f{
if ((value == 13) && (special == 1)) break;

Example

}
} while (1);

368 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Special Function Keys

Key Value returned | |Scroll Lock 28
F1 1 Num Lock 29
F2 2 Left Arrow 30
F3 3 Right Arrow 31
F4 4 Up Arrow 32
F5 5 Down Arrow 33
F6 6 Escape 34
F7 7 Tab 35
F8 8

F9 9

F10 10

F11 11

F12 12

Enter 13

Page Up 14

Page Down 15

Backspace 16

Insert 17

Delete 18

Windows 19

Ctrl 20

Shift 21

Alt 22

Print Screen 23

Pause 24

Caps Lock 25

End 26

Home 27

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 369

CHAPTER 6

Libraries mikroC PRO for AVR

Library Example

This simple example reads values of the pressed keys on the PS/2 keyboard and
sends them via UART.

unsigned short keydata = 0, special = 0, down = O0;
sbit PS2 Data at PINC.BO;
sbit PS2 In Clock at PINC.B1;

sbit PS2 Out Clock at PORTC.B1;

sbit PS2 Data Direction at DDRC.BO;
sbit PS2 Clock Direction at DDRC.BI1;

void main () {

ACSR.B7 = 1; // Disable analog comparators
SREG.B7 = 0; // Disable all interrupts
UART1 Init(19200);
Ps2 Config(); // Init PS/2 Keyboard on PORTC
Delay ms (100); // Wait for keyboard to finish
UART1 Write('R'); // Ready
do {

if (Ps2 Key Read(&keydata, &special, &down)) |

if (down && (keydata == 16)) { // Backspace

UART1 Write (0x08);
}

else if (down && (keydata == 13)) { // Enter
UART1 Write('r'); // send carriage return
to usart terminal
//UART1 Write('n'"); // uncomment this line

if usart terminal also expects line feed
// for new line transition

}
else if (down && !special && keydata) {
UART1 Write (keydata);

}
Delay ms (10); // debounce

} while (1);

370 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

HW Connection

VCC VCC

+5V
EéTA -|- [U
w2 i
PS2 T L
CONNECTOR t - E
NC CLK [>
- 1 =
+5V 1 i
7 N [g
NC DATA VC@_[VCC m GND]
OSCILLATOR GND —
o
............................ 0 xTAL1 > i
-
[o i
! I
[Pco]
[pc.1 [—
! I

Example of PS2 keyboard connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 371

CHAPTER 6
Libraries mikroC PRO for AVR

PWM LIBRARY

CMO module is available with a number of AVR MCUs. mikroC PRO for AVR pro-
vides library which simplifies using PWM HW Module.

Note: For better understanding of PWM module it would be best to start with the
example provided in Examples folder of our mikroC PRO for AVR compiler. When
you select a MCU, mikroC PRO for AVR automaticaly loads the correct PWM library
(or libraries), which can be verified by looking at the Library Manager. PWM library
handles and initializes the PWM module on the given AVR MCU, but it is up to user
to set the correct pins as PWM output, this topic will be covered later in this section.
mikroC PRO for AVR does not support enhanced PWM modules.

Library Routines

- PWM_Init

- PWM_Set Duty
- PWM_ Start

- PWM_Stop

- PWM1_Init

- PWM1_Set_Duty
- PWM1_Start

- PWM1_Stop

Predefined constants used in PWM library

The following variables are used

in PWM library functions: Description:

Selects Phase Correct PWM mode on first
_PWM_PHASE CORRECT MODE

PWM library.
Selects Phase Correct PWM mode on sec-
_PWM1_PHASE_CORRECT_MODE ond PWM library (if it exists in Library Man-
ager.
DUM FAST MODE $elects Fast PWM mode on first PWM
- - - library.

Selects Fast PWM mode on second PWM

~FWML_FAST_MODE library (if it exists in Library Manager.

PWM PRESCALER 1 Sets prescaler value to 1 (No prescaling).

_PWM_PRESCALER 8 Sets prescaler value to 8.

372

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

_PWM_PRESCALER 32

Sets prescaler value to 32 (this value is not
available on every MCU. Please use Code
Assistant to see if this value is available for
the given MCU.

_PWM_PRESCALER 64

Sets prescaler value to 64.

_PWM_PRESCALER 128

Sets prescaler value to 128 (this value is not
available on every MCU. Please use Code
Assistant to see if this value is available for
the given MCU.

_PWM_PRESCALER 256

Sets prescaler value to 256.

_PWM_PRESCALER 1024

Sets prescaler value to 1024.

_PWM1 PRESCALER 1

Sets prescaler value to 1 on second PWM
library (if it exists in Library Manager).

_PWM1 PRESCALER 8

Sets prescaler value to 8 on second PWM
library (if it exists in Library Manager).

PWM1 PRESCALER 32

Sets prescaler value to 32 on second PWM
library (if it exists in Library Manager). This
value is not available on every MCU. Please
use Code Assistant to see if this value is
available for the given MCU.

_PWM1 PRESCALER 64

Sets prescaler value to 64 on second PWM
library (if it exists in Library Manager).

_PWM1 PRESCALER 128

Sets prescaler value to 128 on second PWM
library (if it exists in Library Manager). This
value is not available on every MCU. Please
use Code Assistant to see if this value is
available for the given MCU.

_PWM1 PRESCALER 256

Sets prescaler value to 256 on second PWM
library (if it exists in Library Manager).

_PWM1 PRESCALER 1024

Sets prescaler value to 1024 on second
PWM library (if it exists in Library Manager).

_PWM_INVERTED

Selects the inverted PWM mode.

_PWM1_INVERTED

Selects the inverted PWM mode on second
PWM library (if it exists in Library Manager).

_PWM_NON_INVERTED

Selects the normal (non inverted) PWM mode.

_PWM1_NON INVERTED

Selects the normal (non inverted) PWM
mode on second PWM library (if it exists in
Library Manager).

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

373

CHAPTER 6
Libraries mikroC PRO for AVR

Note: Not all of the MCUs have both PWM and PWM1 library included. Sometimes, like its the
case with ATmega8515, MCU has only PWM library. Therefore constants that have in their name
PWM1 are invalid (for ATmega8515) and will not be visible from Code Assistant. It is highly advis-
able to use this feature, since it handles all the constants (available) nad eliminates any chance
of typing error.

PWM_Init

void PWM Init (unsigned short wave mode, unsigned short prescaler,
unsigned short inverted, unsigned short duty);

Prototype

Returns Nothing.

Initializes the PWM module. Parameter wave mode is a desired PWM mode.
There are two modes: Phase Correct and Fast PWM. Parameter prescaler
chooses prescale value N = 1,8,64,256 or 1024 (some modules support 32 and
128, but for this you will need to check the datasheet for the desired MCU).
Paremeter inverted is for choosing between inverted and non inverted PWM
signal. Parameter duty sets duty ratio from 0 to 255. PWM signal graphs and
formulas are shown below.

PHASE f - fclk i/o
MODE T N 510

255 A X .
\ . N / "\
Duty Ratio AN ¥ % : ~ N AN

N) s ’ 9
/ \,/ 4 N\
* |

Description 0 trm: Ot 3t At Stowss Glown 7o

Non Inverted

Inverted

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024). Some
modules also support 32 and 128 prescaler value, but for this you will need to
check the datasheet for the desired MCU)

374 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

FAST f — fclk ifo
MODE PN - 256

255 /
5 / /
Duty Ratio - ; ﬂ ~ Z 5 £
3 ; l// / ¢
0 tPV/ ™ 2 tP‘-‘n ™M 3 t:'WH 4t°'/l ™ St"-’l M 6t}"\\'H 7 tp\'l 2]

Description ' *
Non Inverted ‘

Inverted ’

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024). Some
modules also support 32 and 128 prescaler value, but for this you will need to
check the datasheet for the desired MCU)

PWM_Init must be called before using other functions from PWM Library.

You need a CMO on the given MCU (that supports PWM).

Before calling this routine you must set the output pin for the PWM (according to
Requires the datasheet):

DDRB.3 = 1; // set PORTB pin 3 as output for the PWM

This code oxample is for ATmega16, for different MCU please consult datasheet
for the correct pinout of the PWM module or modules.

Initialize PWM module:

Example .
PWM Init(PWM FAST MODE, PWM PRESCALER 8, PWM NON INVERTED,

127);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 375

CHAPTER 6
Libraries

mikroC PRO for AVR

PWM_Set_Duty

Prototype |[void PWM Set Duty (unsigned short duty);
Returns Nothing.
Changes PWM duty ratio. Parameter duty takes values from 0 to 255, where 0
Description |is 0%, 127 is 50%, and 255 is 100% duty ratio. Other specific values for duty
ratio can be calculated as (percent*255) /100.
. PWM module must to be initialised (PWM _Init) before using PWM_Set Duty
Requires .
function.
For example lets set duty ratio to 75%:
Example
PWM_Set Duty(192);
PWM_Start
Prototype [void PWM Start();
Returns Nothing.
Description |Starts PWM.
MCU must have CMO module to use this library. PWM_Init must be called
Requires before
using this routine.
Example PWM_Start();
PWM_Stop
Prototype |void PWM Stop();
Returns Nothing.
Description |Stops the PWM.
MCU must have CMO module to use this library. PWM_Init and PWM_Start
Requires must be called before
q using this routine using this routine, otherwise it will have no effect as the PWM
module is not running.
Example PWM_Stop () ;

376

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Note: Not all the AVR MCUs support both PWM and PWM1 library. The best way to verify this is
by checking the datasheet for the desired MCU. Also you can check this by selecting a MCU in
mikroC PRO for AVR looking at the Library Manager. If library manager loads both PWM and
PWMH1 library (you are able to check them) then this MCU supports both PWM libraries. Here you
can take full advantage of our Code Assistant and Parameter Assistant feature of our compiler.

PWM1_lInit

void PWMl Init (unsigned short wave mode, unsigned short
prescaler, unsigned short inverted, unsigned short duty);

Prototype

Returns Nothing.

Initializes the PWM module. Parameter wave mode is a desired PWM mode.
There are two modes: Phase Correct and Fast PWM. Parameter prescaler
chooses prescale value N = 1,8,64,256 or 1024 (some modules support 32 and
128, but for this you will need to check the datasheet for the desired MCU).
Paremeter inverted is for choosing between inverted and non inverted PWM
signal. Parameter duty sets duty ratio from 0 to 255. PWM signal graphs and
formulas are shown below.

PHASE f - fclk i/o
MODE TN 510

255 A 3 A
Duty Ratio Z : /\ : —~ N\ < g AR
, / / N\ / \\ /,/ \\\
Description 4 D ; - N : ,
0 tl»"h ™M 2tV-'-‘H 3t»'wv 4t'>"h‘1 St'-"ll" 6tku 7t-'wr4

Non Inverted

Inverted

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024). Some
modules also support 32 and 128 prescaler value, but for this you will need to
check the datasheet for the desired MCU)

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 377

CHAPTER 6
Libraries mikroC PRO for AVR

FAST f _ fclk i/o
MODE P N . 256

255+ 4 /
/ / A
Duty Ratio —
7 / /| S/

0 tovm 2tewm 3tewm 4t;w~' Stewn 6tewn 7tewn

Description
Non Inverted

Inverted

>t

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024). Some
modules also support 32 and 128 prescaler value, but for this you will need to
check the datasheet for the desired MCU)

PWM1_Init must be called before using other functions from PWM Library.

You need a CMO on the given MCU (that supports PWM).

Before calling this routine you must set the output pin for the PWM (according to
Requires the datasheet):

DDRD.7 = 1; // set PORTD pin 7 as output for the PWMI1

This code oxample is for ATmega16 (second PWM module), for different MCU
please consult datasheet for the correct pinout of the PWM module or modules.

Initialize PWM module:

Example
P PWMl Init(PWMl FAST MODE, PWM1 PRESCALER 8, PWMl NON INVERTED,

127);

378 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

PWM1_Set_Duty

Prototype |[void PWM1 Set Duty(unsigned short duty);

Returns Nothing.

Changes PWM duty ratio. Parameter duty takes values from 0 to 255, where 0
Description |is 0%, 127 is 50%, and 255 is 100% duty ratio. Other specific values for duty
ratio can be calculated as (percent*255)/100.

PWM module must to be initialised (PWM1 _Init) before using PWM_Set Duty

Requires function.

For example lets set duty ratio to 75%:
Example

PWM1 Set Duty(192);
PWM1_Start

Prototype |void PWM1 Start();

Returns Nothing.
Description |Starts PWM.

MCU must have CMO module to use this library. PWM1 _Init must be called
Requires before
using this routine.

Example PWMl Start();

PWM1_Stop

Prototype [void PWM1 Stop();

Returns Nothing.
Description |Stops the PWM.

MCU must have CMO module to use this library. PWM1 _Init and PWM1_Start
must be called before

Requires using this routine using this routine, otherwise it will have no effect as the PWM
module is not running.
Example PWM1_Stop () ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 379

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example

The example changes PWM duty ratio on pin PB3 continually. If LED is connected
to PB3, you can observe the gradual change of emitted light.

char current duty;
char current dutyl;

void main (){

DDBO = O0; // Set PORTB pin 0 as input
DDB1 = O0; // Set PORTB pin 1 as input
DDCO = O0; // Set PORTC pin 0 as input
DDC1 = O0; // Set PORTC pin 1 as input
current duty = 127; // initial value for current duty
current dutyl = 127; // initial value for current duty
DDRB.B3 = 1; // Set PORTB pin 3 as output pin
for the PWM (according to datasheet)
DDRD.B7 = 1; // Set PORTD pin 7 as output pin

for the PWM (according to datasheet)

PWM Init(PWM FAST MODE, PWM PRESCALER 8, PWM NON INVERTED,
127) ;

PWM1 Init(PWM1 FAST MODE, PWM1 PRESCALER 8, PWMl NON INVERTED,

127);
do {
if (PINB.BO) { // Detect if PORTB pin 0 is pressed
Delay ms (40); // Small delay to avoid deboucing effect
current duty++; // Increment duty ratio
PWM_Set Duty(current duty); // Set incremented duty
}
else
if (PINB.B1) { // Detect if PORTB pin 1 is pressed
Delay ms (40); // Small delay to avoid deboucing effect
current duty--; // Decrement duty ratio
PWM Set Duty(current duty); // Set decremented duty ratio
}
else
if (PINC.BO) { // Detect if PORTC pin 0 is pressed
Delay ms (40); // Small delay to avoid deboucing effect
current dutyl++; // Increment duty ratio
PWM1 Set Duty (current dutyl); // Set incremented duty

}

380

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
else
if (PINC.B1) { // Detect if PORTC pin 1 is pressed
Delay ms (40); // Small delay to avoid deboucing effect
current dutyl--; // Decrement duty ratio
PWM1 Set Duty(current dutyl); // Set decremented

duty ratio
}

} while(1); // Endless loop
}

HW Connection

— E \
@® !
NI 7N PB3
1
-+ 1
L L E :EI
1 =
vVCCo{jvec [T] ono
OSCILLATOR GND] —
U
............................ [XTAL1 >]
E N %
[I
[I
[I
1 po.7 ——

PWM demonstration

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 381

CHAPTER 6

Libraries mikroC PRO for AVR

PWM 16 BIT LIBRARY

CMO module is available with a number of AVR MCUs. mikroC PRO for AVR pro-
vides library which simplifies using PWM HW Module.

Note: For better understanding of PWM module it would be best to start with the
example provided in Examples folder of our mikroC PRO for AVR compiler. When
you select a MCU, mikroC PRO for AVR automaticaly loads the correct PWM-16bit
library, which can be verified by looking at the Library Manager. PWM library han-
dles and initializes the PWM module on the given AVR MCU, but it is up to user to
set the correct pins as PWM output, this topic will be covered later in this section.

Library Routines
- PWM16bit_Init
- PWM16bit_Change_Duty
- PWM16bit_Start
- PWM16bit_Stop

Predefined constants used in PWM-16bit library

The following variables are used in

PWM library functions: Description:

PWM16 PHASE CORRECT MODE 8BIT

Selects Phase Correct, 8-bit mode.

_PWM16 PHASE CORRECT MODE 9BIT

Selects Phase Correct, 9-bit mode.

_PWM16 PHASE CORRECT MODE 10BIT

Selects Phase Correct, 10-bit mode.

_PWM16 FAST MODE 8BIT

Selects Fast, 8-bit mode.

_PWM16 FAST MODE 9BIT

Selects Fast, 9-bit mode.

_PWM16_FAST MODE 10BIT

Selects Fast, 10-bit mode.

_PWM16 PRESCALER 16bit 1

Sets prescaler value to 1 (No prescal-
ing).

_PWM16 PRESCALER 16bit 8

Sets prescaler value to 8.

_PWM16 PRESCALER 16bit 64

Sets prescaler value to 64.

_PWM16 PRESCALER 16bit 256

Sets prescaler value to 256.

382

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
_PWM16 PRESCALER 16bit 1024 Sets prescaler value to 1024.
PWM16 INVERTED Selects the inverted PWM-16bit mode.

Selects the normal (non inverted) PWM-
16bit mode.

Selects the Timer/Counter1 (used with
PWM16bit_Start and PWM16bit_Stop.

Selects the Timer/Counter3 (used with
PWM16bit_Start and PWM16bit_Stop.

Selects the channel A on Timer/Counter1
(used with PWM16bit_Change_Duty).

Selects the channel B on Timer/Counter1
(used with PWM16bit_Change_Duty).

Selects the channel C on Timer/Counter1
(used with PWM16bit_Change_Duty).

Selects the channel A on Timer/Counter3
(used with PWM16bit_Change_Duty).

Selects the channel B on Timer/Counter3
(used with PWM16bit_Change_Duty).

Selects the channel C on Timer/Counter3
(used with PWM16bit_Change_Duty).

PWM16 NON_ INVERTED

_TIMER1

_TIMER3

_TIMER1 CH A

_TIMERL CH B

_TIMER1 CH C

_TIMER3 CH A

_TIMER3 CH B

_TIMER3 CH C

Note: Not all of the MCUs have 16bit PWM, and not all of the MCUs have both
Timer/Counter1 and Timer/Counter3. Sometimes, like its the case with ATmega168,
MCU has only Timer/Counter1 and channels A and B. Therefore constants that have
in their name Timer3 or channel C are invalid (for ATmega168) and will not be visi-
ble from Code Assistant. It is highly advisable to use this feature, since it handles all
the constants (available) and eliminates any chance of typing error.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 383

CHAPTER 6

Libraries mikroC PRO for AVR
PWM16bit_Init
Protot void PWMl6bit Init (unsigned short wave mode, unsigned short
rototype prescaler, unsigned short inverted, unsigned short duty);
Returns Nothing.
Initializes the PWM module. Parameter wave mode is a desired PWM-16bit
mode.
There are several modes included :
- PWM, Phase Correct, 8-bit
- PWM, Phase Correct, 9-bit
- PWM, Phase Correct, 10-bit
- Fast PWM, 8-bit
- Fast PWM, 9-bit
- Fast PWM, 10-bit
Parameter prescaler chooses prescale value N = 1,8,64,256 or 1024 (some
modules support 32 and 128, but for this you will need to check the datasheet
for the desired MCU). Paremeter inverted is for choosing between inverted
and non inverted PWM signal. Parameter duty sets duty ratio from 0 to TOP
value (this value varies on the PWM wave mode selected). PWM signal graphs
and formulas are shown below.
D ioti FAST f — fclk i/o
escription m—
MODE P N «(1+TOP)
.
TOP /\\ \ / "\
Duty Ratio AN N\ N\ £ N\
, 7 LY p \
/ \\ / \\
0 ti"lh\\ Zt:’-'-'ﬂ 3t‘-"-‘l"‘ 4ti"h"" st:'ll“' 6{?\\"4 7t;\'414 t
Non Inverted
t
Inverted
.t
The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).
384 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

PHASE f - fclk ifo
MODE P 5N TOP

P T | / N s o f

Duty Ratio 1
/ | 72

0 tvvm thn‘m 3t?wrl 4t°wv 5t°w" 6t}'\\'r4 7thv4

Description

Non Inverted ’

Inverted

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

PWM16bit_Init must be called before using other functions from PWM Library.

You need a CMO on the given MCU (that supports PWM-16bit).

Before calling this routine you must set the output pin for the PWM (according to

Requires the datasheet):
DDRB.B1 = 1; // set PORTB pin 1 as output for the PWM-16bit

This code example is for ATmega168, for different MCU please consult
datasheet for the correct pinout of the PWM module or modules.

Initialize PWM-16bit module:

Exampl
ample PWM16bit Init(PWM16 PHASE CORRECT MODE 8BIT,

_PWM16 PRESCALER 16bit 8, PWM16 NON INVERTED, 255, TIMER1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 385

CHAPTER 6
Libraries mikroC PRO for AVR

PWM16bit_Change_Duty

Prototype void PWMl6bit Change Duty(unsigned duty, unsigned short channel);

Returns Nothing.

Changes PWM duty ratio. Parameter duty takes values shown on the table
below. Where 0 is 0%, and TOP value is 100% duty ratio. Other specific values
for duty ratio can be calculated as (Percent*TOP) /100.

TimerlCountt_er Mode TOP - Update of TOVn Flag Set
of Operation : OCRNnX at : on:

g\gli'tv" Phase Correct, |, 00FF TOP BOTTOM
Description g‘g’i'tv" Phase Correct, |4, 01FF TOP BOTTOM

Tgvm’ Phase Correct, |4, 03FF TOP BOTTOM

Fast PWM, 8 bit OXOOFF TOP TOP

Fast PWM, 9 bit 0x01FF TOP TOP

Fast PWM, 10 bit OX03FF TOP TOP

PWM module must to be initialised (PWM16bit_Init) before using

Requires PWM_Set_Duty function.

Example lets set duty ratio to :
Example

PWM16bit Change Duty(300, TIMERL CH A);

386 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

PWM16bit_Start

Prototype |void PWMlé6bit Start (unsigned int timer);

Returns Nothing.

Starts PWM-16bit module with alredy preset values (wave mode, prescaler,
inverted and duty) given in the PWM16bit_Init.

MCU must have CMO module to use this library. PWM16bit_Init must be called
Requires before using this routine, otherwise it will have no effect as the PWM module is
not initialised.

Description

PWMl6bit Start(TIMERL); // Starts the PWM-16bit module
on Timer/Counterl

Example or

PWMl6bit75tart(7TIMER3) ; // Starts the PWM-16bit module
on Timer/Counter3

PWM16bit_Stop

Prototype |void PWM16 Stop (unsigned int timer);

Returns Nothing.

Description | Stops the PWM-16bit module, connected to Timer/Counter set in this stop function.

MCU must have CMO module to use this library. Like in PWM16bit_Start before,
Requires PWM16bit_Init must be called before using this routine , otherwise it will have
no effect as the PWM module is not running.

PWMlé6bit Stop(_TIMERL); // Stops the PWM-16bit module on
Timer/Counterl

Example or
PWMl6bit Stop(_TIMER3); // Stops the PWM-16bit module on
Timer/Counter3

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 387

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example

The example changes PWM duty ratio continually by pressing buttons on PORC (0-
3). If LED is connected to PORTB.1 or PORTB.2 ,you can observe the gradual
change of emitted light. This example is written for ATmega168. This AVR MCU has
only Timer/Counter1 split over two channels A and B. In this example we are chang-
ing the duty ratio on both of these channels.

char current duty;
char current dutyl;

void main (){

DDCO _bit = 0; // Set PORTC pin 0 as input
DDC1 bit = 0; // Set PORTC pin 1 as input
DDC2 bit = 0; // Set PORTC pin 2 as input
DDC3 bit = 0; // Set PORTC pin 3 as input
current duty = 255; // initial value for current duty
current dutyl = 255; // initial value for current duty
DDRB.B1 = 1; // Set PORTB pin 1 as output pin
for the PWM (according to datasheet)
DDRB.B2 = 1; // Set PORTB pin 2 as output pin
for the PWM (according to datasheet)

PWM16bit Init(PWM16 FAST MODE 9BIT, PWM16 PRESCALER 16bit 1,
_PWM16 INVERTED, 255, 1);

do {
if (PINC.BO) { // Detect if PORTC pin 0 is pressed
Delay ms (40); // Small delay to avoid deboucing effect
current duty++; // Increment duty ratio

PWMl6bit Change Duty(current duty, TIMER1 CH A);
// Set incremented duty
}

else
if (PINC.B1) { // Detect if PORTC pin 1 is pressed
Delay ms (40); // Small delay to avoid deboucing effect
current duty--; // Decrement duty ratio

PWMl6bit Change Duty (current duty, TIMER1 CH A);
// Set decremented duty ratio
}

else
if (PINC.B2) { // Detect if PORTC pin 2 is pressed
Delay ms (40); // Small delay to avoid deboucing effect
current dutyl++; // Increment duty ratio

PWMlo6bit Change Duty(current dutyl, TIMER1 CH B);
// Set incremented duty
}

388 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
else
if (PINC.B3) { // Detect if PORTC pin 3 is pressed
Delay ms (40); // Small delay to avoid deboucing effect
current dutyl--; // Decrement duty ratio

PWMl6bit Change Duty (current dutyl, TIMER1 CH B);
// Set decremented duty ratio
}
} while(1); // Endless loop
}

HW Connection

1K
—_
1K
1 ~ B
NA - ZN E %
] = f
OSCILLATOR VCOC_[VCC m GND]1
IHleno @) 1=
............................ a >]
i - 1
[(o)) I
] o [
[} xTAL1 PB2 [}—
i PB1 [——

PWM demonstration

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 389

CHAPTER 6
Libraries mikroC PRO for AVR

RS-485 LIBRARY

RS-485 is a multipoint communication which allows multiple devices to be connect-
ed to a single bus. The mikroC PRO for AVR provides a set of library routines for
comfortable work with RS485 system using Master/Slave architecture. Master and
Slave devices interchange packets of information. Each of these packets contains
synchronization bytes, CRC byte, address byte and the data. Each Slave has
unique address and receives only packets addressed to it. The Slave can never ini-
tiate communication.

It is the user’s responsibility to ensure that only one device transmits via 485 bus at
a time.

The RS-485 routines require the UART module. Pins of UART need to be attached
to RS-485 interface transceiver, such as LTC485 or similar (see schematic at the
bottom of this page).

Library constants:

- START byte value = 150
- STOP byte value = 169
- Address 50 is the broadcast address for all Slaves (packets containing
address 50 will be received by all Slaves except the Slaves with
addresses 150 and 169).
Note:

- Prior to calling any of this library routines, UART_Wr_Ptr needs to be ini-
tialized with the appropriate UART_Write routine.

- Prior to calling any of this library routines, UART_Rd_Ptr needs to be ini-
tialized with the appropriate UART_Read routine.

- Prior to calling any of this library routines, UART_Rdy_Ptr needs to be ini-
tialized with the appropriate UART_Ready routine.

- Prior to calling any of this library routines, UART_TX_Idle_Ptr needs to be
initialized with the appropriate UART_TX_Idle routine.

External dependencies of RS-485 Library

The following variable

must be defined in all

projects using RS-485
Library:

Description: Example :

Control RS-485 Trans-

. . . sbit RS485 rxtx pin
mit/Receive operation = P

at PORTD.B2;

extern sfr sbit
RS485 rxtx pin;

mode
t fr sbit . . bit
extern stz Sbit Direction of the RS-485 [5°* o
RS485 rxtx pin direc- T it/R . . RS485 rxtx pin direc-
tion; ransmiveceive pin tion at DDRD.B2;

390 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Routines

- RS485Master_Init

- RS485Master_Receive
- RS485Master_Send

- RS485Slave_Init

- RS485Slave Receive
- RS485Slave_Send

RS485Master_Init

Prototype [void Rs485Master Init();

Returns Nothing.

Description |Initializes MCU as a Master for RS-485 communication.

Global variables :

- RS485 rxtx pin - this pin is connected to RE/DE input of RS-485
transceiver(see schematic at the bottom of this page). RE/DE signal

. controls RS-485 transceiver operation mode.

Requires

- RS485 rxtx pin direction - direction of the RS-485
Transmit/Receive pin must be defined before using this function.

UART HW module needs to be initialized. See UARTx_Init.

// RS485 module pinout
sbit RS485 rxtx pin direction at PORTC.B2; // transmit/receive
control set to PORTC.Bit2

// Pin direction
sbit RS485 rxtx pin direction at DDRD.B2; // RxTx pin direction
set as output
// Pass pointers to UART functions of used UART module
Example UART Wr Ptr = UART1 Write;
UART Rd Ptr = UARTL Read;
UART Rdy Ptr = UART1 Data Ready;
UART TX Idle Ptr = UART1 TX Idle;

UARTlAInit(96OO); // initialize UART1 module
RS485Master Init(); // intialize MCU as
a Master for RS-485 communication

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 391

CHAPTER 6
Libraries

mikroC PRO for AVR

RS485Master_Receive

Prototype

void RS485Master Receive (char *data buffer);

Returns

Nothing.

Description

Receives messages from Slaves. Messages are multi-byte, so this routine must

be called for each byte received.

Parameters :

- data_buffer: 7 byte buffer for storing received data, in the following
manner:
..2] : message content
: number of message bytes received, 1-3
. is set to 255 when message is received
. is set to 255 if error has occurred
: address of the Slave which sent the message

The function automatically adjusts data[4] and datal 5] upon every received

message. These flags need to be cleared by software.

Requires

MCU must be initialized as a Master for RS-485 communication. See
RS485Master_Init.

Example

char msq[8] ;

RS485Master Receive (msqg);

392

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

RS485Master_Send

void RS485Master Send(char *data buffer, char datalen, char
Slave address) ;

Prototype

Returns Nothing.

Sends message to Slave(s). Message format can be found at the bottom of this
page.

Description Parameters :

- data buffer: data to be sent
- datalen: number of bytes for transmition. Valid values: 0...3.
- Slave address: Slave(s) address

MCU must be initialized as a Master for RS-485 communication. See
RS485Master_Init.

Requires
It is the user’s responsibility to ensure (by protocol) that only one device sends
data via 485 bus at a time.
char msql 8] ;

Example // send 3 bytes of data to Slave with address 0x12

RS485Master Send(msg, 3, 0x12);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 393

CHAPTER 6
Libraries mikroC PRO for AVR

RS485Slave_Init

Prototype void RS485Slave Init(char Slave address);

Returns Nothing.

Initializes MCU as a Slave for RS-485 communication.
Description |Parameters :

- Slave address: Slave address

Global variables :

- RS485 rxtx pin - this pin is connected to RE/DE input of RS-485
transceiver(see schematic at the bottom of this page). RE/DE signal
controls RS-485 transceiver operation mode. Valid values: 1 (for trans-
mitting) and o (for receiving)

Requires

- RS485 rxtx pin direction - direction of the RS-485
Transmit/Receive pin

must be defined before using this function.

UART HW module needs to be initialized. See UARTx_Init.

// RS485 module pinout
sbit RS485 rxtx pin at PORTD.B2; // transmit/receive control
set to PORTC.Bit2

// Pin direction
sbit RS485 rxtx pin direction at DDRD.B2; // RxTx pin direction
set as output
// Pass pointers to UART functions of used UART module
Example UART Wr Ptr = UART1 Write;
UART Rd Ptr = UART1 Read;
UART Rdy Ptr = UART1 Data Ready;
UART TX Idle Ptr = UART1 TX Idle;

UART1 Init(9600); // initialize UART1 module
RS485Slave Init (160); // intialize MCU as a Slave
for RS-485 communication with address 160

394 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

RS485Slave_Receive

Prototype |void RS485Slave Receive (char *data buffer);

Returns Nothing.

Receives messages from Master. If Slave address and Message address field
don't match then the message will be discarded. Messages are multi-byte, so
this routine must be called for each byte received.

Parameters :

- data_buffer: 6 byte buffer for storing received data, in the following

Description manner.
- datal 0..2] : message content
- datal 3] : number of message bytes received, 1-3
- data[4] : is set to 255 when message is received
- datal 5] : is set to 255 if error has occurred

The function automatically adjusts data[4] and datal 5] upon every received
message. These flags need to be cleared by software.

MCU must be initialized as a Slave for RS-485 communication. See
RS485Slave_Init.

char msq[8] ;

Requires

Example e
RS485Slave Read (msg) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 395

CHAPTER 6
Libraries mikroC PRO for AVR

RS485Slave_Send

Prototype void RS485Slave Send(char *data buffer, char datalen);

Returns Nothing.

Sends message to Master. Message format can be found at the bottom of this
page.

Description |Parameters :

- data buffer: data to be sent
- datalen: number of bytes for transmition. Valid values: 0...3.

MCU must be initialized as a Slave for RS-485 communication. See
Requires RS485Slave_Init. It is the user’s responsibility to ensure (by protocol) that only
one device sends data via 485 bus at a time.

char msq[8] ;

// send 2 bytes of data to the Master

Exan“ﬂe RS485Slave Send(msg, 2);

Library Example

Library Example
This is a simple demonstration of RS485 Library routines usage.

Master sends message to Slave with address 160 and waits for a response. The Slave accepts
data, increments it and sends it back to the Master. Master then does the same and sends incre-
mented data back to Slave, etc.

Master displays received data on PO, while error on receive (OxAA) and number of consecutive
unsuccessful retries are displayed on P1. Slave displays received data on PO, while error on
receive (0xAA) is displayed on P1. Hardware configurations in this example are made for the
EasyAVRS5 board and ATMEGA16.

RS485 Master code:

396 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
char dat[10] ; // buffer for receving/send-
ing messages
char i,7;
sbit RS485 rxtx pin at PORTD.B2; // set transcieve pin
sbit RS485 rxtx pin direction at DDRD.B2; // set transcieve pin
direction

// Interrupt routine

void interrupt() org 0x1l6 {
RS485Master Receive (dat);

}

void main (){

long cnt = 0;

PORTA = 0; // clear PORTA

PORTB = 0; // clear PORTB

PORTC = 0; // clear PORTC

DDRA = OxFF; // set PORTA as output
DDRB = OxFF; // set PORTB as output
DDRC = OxFF; // set PORTB as output

// Pass pointers to UART functions of used UART module
UART Wr Ptr = UART1 Write;

UART Rd Ptr = UART1 Read;

UART Rdy Ptr = UART1 Data Ready;

UART TX TIdle = UART1 TX Idle;

UART1 Init (9600); // initialize UARTI1 module
Delay ms (100);

RS485Master Init(); // initialize MCU as Master
dat[0] = OxAA;

dat[1] = O0xFO;

dat[2] = 0xO0F;

dat[4] = O; // ensure that message received flag is 0
dat[5] = 0; // ensure that error flag is 0
dat[6] = 0;

RS485Master Send(dat,1,160);

SREG I = 1; // enable global interrupt
RXCIE = 1; // enable interrupt on usart receive
while (1){
// upon completed valid message receiving
// data[4] 1is set to 255
cnt++;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 397

CHAPTER 6
Libraries

mikroC PRO for AVR

if (dat[5]) { // 1f an error detected, signal it
PORTC = dat[5] ; // by setting PORTC

}

if (dat[4]) { // 1if message received successfully
cnt = 05
dat[4] = 0; // clear message received flag
3 = dat[3] ;

for (1 = 1; 1 <= dat[3]; i++) { // show data on PORTB

PORTB = dat[i-1] ;
} // increment received dat[0]
dat[0] = dat[0] +1; // send back to Slave
Delay ms (1) ;
RS485Master Send(dat,1,160);

if (cnt > 100000) { // 1if in 100000 poll-cycles the answer
PORTA++; // was not detected, signal
cnt = 0; // failure of send-message
RS485Master Send(dat,1,160);
if (PORTA > 10){ // 1f sending failed 10 times
PORTA = 0O;
RS485Master Send(dat,1,50); // send message on broad-

cast address
}
}

RS485 Slave code:

char dat[9] ; // buffer for receving/sending messages
char i,7;

sbit RS485 rxtx pin at PORTD.B2; // set transcieve pin
sbit RS485 rxtx pin direction at DDRD.B2; // set transcieve pin
direction

// Interrupt routine

void interrupt() org 0x16 {
RS4855lave Receive (dat);

}

void main () {

PORTB = 0; // clear PORTB
PORTC = O0; // clear PORTC
DDRB = OxFF; // set PORTB as output
DDRC = OxFF; // set PORTB as output

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

// Pass pointers to UART functions of used UART module
UART Wr Ptr = UARTL Write;

UART Rd Ptr = UART1 Read;

UART Rdy Ptr = UART1 Data Ready;

UART TX TIdle = UART1 TX Idle;

UART1 Init(9600);
Delay ms(100);
RS485Slave Init (160);

// initialize UARTI module

// Intialize MCU as Slave, address 160

dat[4] = 0; // ensure that message received flag is 0
dat[5] = 0; // ensure that message received flag is 0
dat[6] = 0; // ensure that error flag is 0
SREG I = 1; // enable global interrupt
RXCIE = 1; // enable interrupt on usart receive
while (1) {
if (dat[5]) | // if an error detected, signal it by
PORTC = dat[5] ; // setting PORTC
dat[5] = 0;
}
if (dat[4]) { // upon completed valid message receive
dat[4] = 0; // data[4] 1is set to OxFF
j = dat[3];

for (1 = 1; 1 <= dat[3] ;it++){
PORTB = dat[i-1];

}

dat[0] = dat[0] +1;

Delay_ms(l);

RS485Slave Send(dat,1); //

}

// show data on PORTB

// increment received dat/[0]

and send it back to Master

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 399

CHAPTER 6
Libraries mikroC PRO for AVR

HW Connection

Shielded pair
no longer than 300m
Hp q o
= 56R [:
| S
| S [:
vce O S6R o 4K7] E
1 - 8 I >
H RO Vee [: 4
2 f— q7 [:
3 RE B JG g
1 oe A]5 [
—{: o eND 4K7 OSCILLATOF}/CC“O':E{: \(;?\lg m GND :] “
LTC485 i () i
— 0 xvact > i
— Il po.o i
E PD.1 o i
Il PD.2 o 1
[]
[]
VCC o . 1 i
H4K7 56R 56R [: :]
1 N 8
H RO Vce
2 q7
RE B ||
3 A 6
[1 DE A]
4[DI GND]i
4K7
LTC485 J
4.7uF
4{’—¢ _
Iy
I
PC
]]
I
[
[

Example of interfacing PC to AVR MCU via RS485 bus with LTC485 as RS-485
transceiver

400 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Message format and CRC calculations
Q: How is CRC checksum calculated on RS485 Master side?

START BYTE = 0x96; // 10010110
STOP_BYTE = O0xA9; // 10101001
PACKAGE :

START BYTE 0x96

ADDRESS

DATALEN

[DATA1] // 1f exists
[DATA2] // 1if exists
[DATA3] // if exists
CRC

STOP BYTE 0xA9

DATALEN bits
bit7 = 1 MASTER SENDS
0 SLAVE SENDS
bité = 1 ADDRESS WAS XORed with 1, IT WAS EQUAL TO START BYTE or

0 ADDRESS UNCHANGED
bit5 = 0 FIXED
bitd = 1 DATA3 (if exists) WAS XORed with 1, IT WAS EQUAL TO
START BYTE or STOP BYTE

0 DATA3 (if exists) UNCHANGED
bit3 = 1 DATA2 (if exists) WAS XORed with 1, IT WAS EQUAL TO
START BYTE or STOP BYTE

0 DATA2 (if exists) UNCHANGED
bit2 = 1 DATAl (if exists) WAS XORed with 1, IT WAS EQUAL TO
START BYTE or STOP BYTE

0 DATAl (if exists) UNCHANGED
bitlbit0 = 0 to 3 NUMBER OF DATA BYTES SEND

CRC generation

crc_send = datalen ”~ address;

crc_send "= datal 0] ; // 1if exists

crc_send "= data[1] ; // 1if exists

crc_send "= data[2] ; // 1if exists

crc_send = ~crc_send;

if ((crc send == START BYTE) || (crc send == STOP BYTE))

crc_send++;

NOTE: DATALEN<4..0> can not take the START BYTE<4..0> or
STOP BYTE<4..0> values.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 401

CHAPTER 6

Libraries mikroC PRO for AVR
Software I>C Library
The mikroC PRO for AVR provides routines for implementing Software | C commu-
nication. These routines are hardware independent and can be used with any MCU.
The Software | C library enables you to use MCU as Master in | C communication.
Multi-master mode is not supported.
Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Software | C.
Note: All Software | C Library functions are blocking-call functions (they are waiting
for 1 C clock line to become logical one).
Note: The pins used for | C communication should be connected to the pull-up resis-
tors. Turning off the LEDs connected to these pins may also be required.
External dependecies of Soft_I2C Library
The following variable
must be defined in all Describtion: Examble :
projects using RS-485 P) ple :
Library:
extern sbit sbit
Soft T2C Scl output; |SOft I2C Clock output line. |Soft_I2C_Scl Output
=TT at PORTC.BO;
extern sbit sbit
. |Soft 12C Data output line. [Soft_12C_sda_Output
Soft I2C Sda Output; P at PORTC.BI:
sbit
t bit
zzfir?; gcl Input; |Soft I2C Clock input line. |Soft_I2C_Scl Input at
— T PINC.BO;
sbit
extern sbit
2 i i ft_I2C sd t
Soft 12C sda Input; |SOft 1C Datainput line. iithfélffs a_Input a
extern sbit X X sbit
Soft I2C Scl Pin Dire Dlrectlop of the Soft |2C Soft I2C Scl Pin Dire
ction; Clock pin. ction at DDRC.BO;
extern sbit i i sbit
Soft T2C Sda Pin Dire |Direction of the Soft 12C Soft I2C Sda Pin Dire
ction; Data pin. ction at DDRC.BO;
402 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

Library Routines

- Soft_12C_Init

- Soft_12C_Start
- Soft_12C_Read
- Soft_12C_Write
- Soft_12C_Stop
- Soft_12C_Break

Soft_I2C_lInit

Prototype

void

Soft TI2C Tnit();

Returns

Nothing.

Description

Configures the software 12C module.

Global variables :

- Soft _12C scl: Soft | C clock line
- Soft_I2C sda: Soft | C data line

sbit

Requires N .
a - Soft I2C scl Pin Direction: Direction of the Soft | C clock pin
- Soft I2C sda Pin Direction: Direction of the Soft I C data pin
must be defined before using this function.
// Software I2C connections
sbit Soft I2C Scl Output at PORTC.BO;
sbit Soft I2C Sda Output at PORTC.B1;
sbit Soft I2C Scl Input at PINC.BO;
sbit Soft I2C Sda Input at PINC.BI;
Example sbit Soft I2C Scl Direction at DDRC.BO;

Soft I2C Sda Direction at DDRC.BI;

// End Software I2C connections

Soft I2C Init();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

403

CHAPTER 6
Libraries mikroC PRO for AVR

Soft_I2C_Start

Prototype [void Soft I2C Start (void);

Returns Nothing.

Description |Determines if the 12C bus is free and issues START signal.

Requires Sof;[_ware 12C must be configured before using this function. See Soft_|12C_Init
routine.

// Issue START signal

Exan““e Soft I2C Start();

Soft_I12C_Read

Prototype |unsigned short Soft I2C Read(unsigned int ack);

Returns One byte from the Slave.

Reads one byte from the slave.

Parameters :

Description

- ack: acknowledge signal parameter. If the ack==0 not acknowledge
signal will be sent after reading, otherwise the acknowledge signal will
be sent.

Soft | C must be configured before using this function. See Soft_I12C_Init routine.

Requires
q Also, START signal needs to be issued in order to use this function. See
Soft_12C_Start routine.
unsigned short take;
Example // Read data and send the not_ acknowledge signal

take = Soft I2C Read(0);

404 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Soft_12C_Write

Prototype |unsigned short Soft I2C Write (unsigned short Data);b

- 0 if there were no errors.

Returns - 1 if write collision was detected on the | C bus.

Sends data byte via the | C bus.
Description |Parameters :

- Data: data to be sent

Soft | C must be configured before using this function. See Soft_I12C_Init routine.

Requires Also, START signal needs to be issued in order to use this function. See
Soft_12C_Start routine.
unsigned short data, error;

Example error Soft I2C Write(data);
error = Soft I2C Write (0xA3);

Soft_I2C_Stop

Prototype |[void Soft I2C Stop(void);

Returns Nothing.

Description |Issues STOP signal.

Requires | Soft 2C must be configured before using this function. See Soft_I2C_Init routine.

// Issue STOP signal
Soft I2C Stop():;

Example

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 405

CHAPTER 6
Libraries mikroC PRO for AVR

Soft_I2C_Break

Prototype |void Soft I2C Break(void);

Returns Nothing.

All Software 12C Library functions can block the program flow (see note at the
top of this page). Call this routine from interrupt to unblock the program execu-

L. tion. This mechanism is similar to WDT.
Description

Note: Interrupts should be disabled before using Software 12C routins again
(see note at the top of this page).

Requires Nothing.

// Software I2C connections

sbit Soft I2C Scl Output at PORTC.BO;
sbit Soft I2C Sda Output at PORTC.BI;
sbit Soft I2C Scl Input at PINC.RO;
sbit Soft I2C Sda Input at PINC.B1;

sbit Soft I2C Scl Direction at DDRC.BO;
sbit Soft I2C Sda Direction at DDRC.BI1;
// End Software I2C connections

char counter = 0;

void TimerOOverflow ISR() org 0x12 f{

if (counter >= 20) {
Soft I2C Break();

counter = 0; // reset counter
}
else
counter++; // increment counter

Example }

void main () {

TOIEO bit = 1; // Timer0O overflow interrupt
enable

TCCRO _bit = 5; // Start timer with 1024 prescaler

SREG I bt = 0; // Interrupt disable

// try Soft I2C Init with blocking prevention mechanism

SREG I bit = 1; // Interrupt enable
Soft _I2C Init();
SREG I bit = 0; // Interrupt disable

}

406 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example

The example demonstrates Software | C Library routines usage. The AVR MCU is
connected (SCL, SDA pins) to PCF8583 RTC (real-time clock). Program reads date
and time are read from the RTC and prints it on LCD.

char seconds, minutes, hours, day, month, year; // Global date/time
variables

// Software I2C connections

sbit Soft I2C Scl Output at PORTC.BO;
sbit Soft I2C Sda Output at PORTC.BI1;
sbit Soft I2C Scl Input at PINC.BO;
sbit Soft I2C Sda Input at PINC.B1;

sbit Soft I2C Scl Direction at DDRC.BO;
sbit Soft I2C Sda Direction at DDRC.B1;
// End Software I2C connections

// LCD module connections

sbit ILCD RS at PORTD.B2;

sbit LCD _EN at PORTD.RB3;

sbit LCD D4 at PORTD.B4;

sbit LCD D5 at PORTD.BS5;

sbit LCD7D6 at PORTD.B6;

sbit LCD D7 at PORTD.B7;

sbit LCD RS Direction at DDRD.B2;
sbit LCD EN Direction at DDRD.B3;
sbit LCD D4 Direction at DDRD.B4;
sbit LCD D5 Direction at DDRD.B5;
sbit LCD D6 Direction at DDRD.B6;
sbit LCD D7 Direction at DDRD.B7;
// End LCD module connections

e Reads time and date information from RTC
(PCF8583)
void Read Time () {
Soft I2C Start(); // Issue start signal
Soft I2C Write (0xAOQ); // Address PCF8583, see PCF8583 datasheet
Soft_I2C_Write(2); // Start from address 2
Soft_I2C_Start(); // Issue repeated start signal
Soft I2C Write (OxAl); // Address PCF8583 for reading R/W=1
seconds = Soft I2C Read(1l); // Read seconds byte
minutes = Soft I2C Read(l); // Read minutes byte
hours = Soft I2C Read(1l); // Read hours byte
day = Soft I2C Read(l); // Read year/day byte
month = Soft I2C Read(0); // Read weekday/month byte
Soft I2C Stop(); // Issue stop signal

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 407

CHAPTER 6

Libraries mikroC PRO for AVR

}
/)= e e e Formats date and time
void Transform Time () {

seconds = ((seconds & OxFO0) >> 4)*10 + (seconds & OxO0F); //
Transform seconds

minutes = ((minutes & OxFO0) >> 4)*10 + (minutes & OxOF); //
Transform months

hours = ((hours & O0xFO0) >> 4)*10 + (hours & O0xOF); //
Transform hours

year = (day & 0xCO) >> 6; //
Transform year

day = ((day & 0x30) >> 4)*10 + (day & OxOF); //
Transform day

month = ((month & 0x10) >> 4)*10 4+ (month & O0xOF); //

Transform month

}

- Output values to LCD
void Display Time () {

Lcd Chr(l, 6, (day / 10) + 48); // Print tens digit of day
variable

Led Chr (1, 7, (day % 10) + 48); // Print oness digit of day
variable

Lcd Chr(l, 9, (month / 10) + 48);

Lcd Chr (1,10, (month % 10) + 48);

Lcd Chr (1,15, year + 56); // Print year vaiable + 8
(start from year 2008)

Lced Chr(2, 6, (hours / 10) + 48)
Led Chr(2, 7, (hours % 10) + 48);
Lcd Chr (2, 9, (minutes / 10) + 48);
Lcd Chr(2,1 (minutes % 10) + 48);
Lcd Chr (2, 12 (seconds / 10) + 48);
Lcd Chr (2,13, (seconds % 10) + 48);
}
) e Performs project-wide init
void Init Main () {
Soft I2C Init(); // Initialize Soft I2C communication
Led Init(); // Initialize LCD
Lcd Cmd (LCD_CLEAR) ; // Clear LCD display
Lcd Cmd (LCD_CURSOR_OFF) ; // Turn cursor off

408 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
LchQut(l,l,"Date:“); // Prepare and output static text on LCD
Led Chr (1,8,);
Led Chr(l,11,':');
Lcd Out (2, 1 "Tlme-)
Led Chr (2,) ;
Lcd Chr (2, ll ')
Lcd Out (1,12, "200") ;
}
) Main procedure
void main () {
Init Main(); // Perform initialization
while (1) { // Endless loop
Read Time(); // Read time from RTC(PCF8583)
Transform Time () ; // Format date and time
Display Time () ; // Prepare and display on LCD
Delay ms (1000) ; // Wait 1 second

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 409

CHAPTER 6

Libraries mikroC PRO for AVR

SOFTWARE SPI LIBRARY

The mikroC PRO for AVR provides routines for implementing Software SPI commu-
nication. These routines are hardware independent and can be used with any MCU.
The Software SPI Library provides easy communication with other devices via SPI:
A/D converters, D/A converters, MAX7219, LTC1290, etc.

Library configuration:

- SPI to Master mode

- Clock value = 20 kHz.

- Data sampled at the middle of interval.
- Clock idle state low.

- Data sampled at the middle of interval.
- Data transmitted at low to high edge.

Note: The Software SPI library implements time-based activities, so interrupts need
to be disabled when using it.

External dependencies of Software SPI Library

The following variables
must be defined in all
projects using Software
SPI Library:

Description:

Example :

extern sfr sbit
Chip Select;

Chip select line.

sbit Chip Select at
PORTB.BO;

extern sfr sbit

sbit SoftSpi SDI at

SoftSpi CLK;

SoftSpi SDI; Data In line. PINB.B6;

extern sfr sbit . sbit SoftSpi SDO at

SoftSpi SDO; Data Out line. PORTB.B5;

extern sfr sbit . sbit SoftSpi CLK at
Clock line. -

PORTB.B7;

extern sfr sbit
Chip Select;

Direction of the Chip
select pin.

sbit Chip Select at
PINB.B6;

extern sfr sbit
Chip Select Direction;

Direction of the Data In
pin.

sbit
Chip Select Direction
at DDRB.BO;

extern sfr sbit
SoftSpi SDO Direction;

Direction of the Data Out
pin

sbit
SoftSpi SDO Direction
at DDRB.B5;

extern sfr sbit
SoftSpi CLK Direction;

Direction of the Clock pin.

sbit
SoftSpi CLK Direction
at DDRB.B7;

410

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Routines
- Soft_SPI_Init
- Soft_SPI_Read
- Soft_SPI_Write

Soft_SPI_Init

Prototype |void Soft SPI Init();

Returns Nothing.

Description |Configures and initializes the software SPI module.

Global variables:

- Chip_select: Chip_Select line
- Softspi spI: Data in line

- Softspi spo: Data out line

- Softspi cLk: Data clock line

Requires o . L .
q - Chip Select Direction: Direction of the Chip_Select Direction pin
- SoftSpi SDI Direction: Direction of the Data in pin
- SoftSpi SDO Direction: Direction of the Data out pin
- SoftSpi CLK Direction: Direction of the Data clock pin
must be defined before using this function.
// Software SPI module connections
sbit Chip Select at PORTB.BO;
sbit SoftSpi CLK at PORTB.B7;
sbit SoftSpi SDI at PINB.B6; // Note: Input signal
sbit SoftSpi SDO at PORTB.B5;
Example sbit Chip Select Direction at DDRB.BO;

sbit SoftSpi CLK Direction at DDRB.B7;
sbit SoftSpi SDI Direction at DDRB.B6;
sbit SoftSpi SDO Direction at DDRB.B5;
// End Software SPI module connections

Soft_SPI_Init(); // Init Soft_SPI

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 411

CHAPTER 6
Libraries mikroC PRO for AVR

Soft_SPI_Read

Prototype |unsigned short Soft SPI Read(char sdata);

Returns Byte received via the SPI bus.

This routine performs 3 operations simultaneously. It provides clock for the Soft-
ware SPI bus, reads a byte and sends a byte.

Description Parameters :

- sdata: data to be sent.

Requires Soft SPI must be initialized before using this function. See Soft_SPI_Init routine.

unsigned short data read;
char data send;

Example // Read a byte and assign it to data read variable
// (data_send byte will be sent via SPI during the Read opera-
tion)

data read = Soft SPI Read(data send);

Soft_SPI_Write

Prototype void Soft SPI Write (char sdata);

Returns Nothing.

This routine sends one byte via the Software SPI bus.
Description |Parameters :

- sdata: data to be sent.

Requires Soft SPI must be initialized before using this function. See Soft_SPI_Init routine.

// Write a byte to the Soft SPI bus

Example Soft SPI Write (0xAR);

412 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

Library Example

This code demonstrates using library routines for Soft. SPI communication. Also, this
example demonstrates working with Microchip's MCP4921 12-bit D/A converter.

// DAC module connections

sbit
sbit
sbit
sbit

sbit
sbit
sbit
sbit

Chip Select
SoftSpi CLK
SoftSpi SDI
SoftSpi SDO

Chip Select .

at
at
at
at

PORTB.BO;
PORTB.B7;
PINB.B6;

PORTB.B5;

Direction at

SoftSpi CLK Direction at
SoftSpi SDI Direction at
SoftSpi SDO Direction at
// End DAC module connections

unsigned int value;

void InitMain ()
DDAO = 0;
DDAl = 0;

Chip Select =
Chip Select Direction = 1;
Soft SPI Init();

// DAC increments (0..4095)

{

1;

// Note: Input signal

DDRB.BO;
DDRB.B7;
DDRB.B6;
DDRB.B5;

// Set PAQ pin as input
// Set PAl pin as input
// Deselect DAC
// Set CS# pin as Output
// Initialize Soft SPI

--> output voltage (0..Vref)

void DAC Output (unsigned int valueDAC) {
char temp;

Chip Select =

// Send High Byte
temp = (valueDAC >> 8)

to temp[3..0]
temp |= 0x30;

see MCP4921 datasheet
Soft SPI Write (temp);

0;

// Send Low Byte
temp = valueDAC;
to temp[7..0]
Soft SPI Write (temp);

Chip Select =

1;

// Select DAC chip

& O0xOF; // Store valueDAC[11..8]

// Define DAC setting,

// Send high byte via Soft SPI

// Store valueDAC[7..0]
// Send low byte via Soft SPI

// Deselect DAC chip

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

413

CHAPTER 6
Libraries mikroC PRO for AVR

void main () {
InitMain () ; // Perform main initialization

value = 2048; // When program starts, DAC gives
// the output in the mid-range

while (1) { // Endless loop
if ((PINA.BO) && (value < 4095)) { // If PAO button is pressed
value++; // increment value
}
else {
if ((PINA.Bl) && (value > 0)) { // If PAl button is pressed
value--; // decrement value
}
}
DAC Output (value); // Send value to DAC chip
Delay ms(1); // Slow down key repeat pace

}

414 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries

SOFTWARE UART LIBRARY

The mikroC PRO for AVR provides routines for implementing Software UART com-
munication. These routines are hardware independent and can be used with any
MCU. The Software UART Library provides easy communication with other devices
via the RS232 protocol.

Note: The Software UART library implements time-based activities, so interrupts
need to be disabled when using it.

External dependencies of Software UART Library

The following variables
must be defined in all

Soft UART Rx Pin;

. . Description: Example :
projects using Software P P
UART Library:
extern sfr sbit . . sbit Soft UART Rx Pin
Receive line. - - =

at PIND.BO;

extern sfr sbit
Soft UART Tx Pin;

Transmit line.

sbit Soft UART Tx Pin
at PORTD.BI;

extern sfr sbit
Soft UART Rx Pin Dire
ction;

Direction of the Receive
pin.

sbit
Soft UART Rx Pin Dire
ction at DDRD.RBO;

extern sfr sbit
Soft UART Tx Pin Dire
ction;

Direction of the Transmit
pin.

sbit
Soft UART Tx Pin Dire
ction at DDRD.B1;

Library Routines

- Soft_UART _Init

- Soft UART_Read
- Soft UART_Write
- Soft_UART_Break

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 415

CHAPTER 6
Libraries mikroC PRO for AVR

Soft_UART _Init

Prototype char Soft UART Init (unsigned long baud rate, char inverted);

- 2 - error, requested baud rate is too low
Returns - 1 - error, requested baud rate is too high
- 0 - successfull initialization

Configures and initializes the software UART module.
Parameters :

- baud_rate: baud rate to be set. Maximum baud rate depends on the
MCU'’s clock and working conditions.

- inverted: inverted output flag. When set to a non-zero value, inverted

Description logic on output is used.

Software UART routines use Delay_Cyc routine. If requested baud rate is too
low then calculated parameter for calling pelay Cyc exceeeds Delay Cyc argu-
ment range.

If requested baud rate is too high then rounding error of belay Cyc argument
corrupts Software UART timings.

Global variables:

- Soft UART Rx_ Pin: Receiver pin

- Soft UART Tx Pin: Transmiter pin

- Soft UART Rx Pin Direction: Direction of the Receiver pin

- Soft UART Tx Pin Direction: Direction of the Transmiter pin

Requires

must be defined before using this function.

// Soft UART connections

sbit Soft UART Rx Pin at PIND.BO;

sbit Soft UART Tx Pin at PORTD.BI;

sbit Soft UART Rx Pin Direction at DDRD.BO;
Exanuﬂe sbit Soft UART Tx Pin Direction at DDRD.BI;
// End Soft UART connections

// Initialize Software UART communication at 9600 bps.
Soft UART Init (9600, 0);

416 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Soft UART_Read

Prototype |[char Soft UART Read(char * error);

Returns Byte received via UART.

The function receives a byte via software UART.

This is a blocking function call (waits for start bit). Programmer can unblock it by
calling Soft. UART_Break routine.

Description |Parameters :

- error: Error flag. Error code is returned through this variable.
0 - no error
1 - stop bit error
255 - user abort, Soft UART_Break called

Software UART must be initialized before using this function. See the

Requires . .
q Soft_ UART _Init routine.
char data, error;
// wait until data is received
do
Exanuﬂe data = Soft UART Read(&error);

while (error);

// Now we can work with data:
if (data) { ...}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 417

CHAPTER 6
Libraries mikroC PRO for AVR

Soft UART_Write

Prototype |[void Soft UART Write (char udata);

Returns Nothing.

This routine sends one byte via the Software UART bus.
Description |Parameters :

- udata: data to be sent.

Software UART must be initialized before using this function. See the
Soft_ UART _Init routine.

Requires . L . o
a Be aware that during transmission, software UART is incapable of receiving
data — data transfer protocol must be set in such a way to prevent loss of infor-
mation.
char some byte = 0x0A;
Example // Write a byte via Soft Uart

Soft UART Write(some byte);

418 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Soft_UART_Break

Prototype |void Soft UART Break();

Returns Nothing.

Soft UART_Read is blocking routine and it can block the program flow. Call this
routine from interrupt to unblock the program execution. This mechanism is simi-
i lar to WDT.

Description
Note: Interrupts should be disabled before using Software UART routines again
(see note at the top of this page).

Requires Nothing.

char datal, error, counter = 0;
void TimerOOverflow ISR() org O0x12 {

if (counter >= 20) {
Soft UART Break();

counter = 0; // reset counter
}
else
counter++; // increment counter

}

void main () {

TOIEO bit = 1; // TimerO overflow inter-
rupt enable
TCCRO bit = 5; // Start timer with 1024
Example prescaler
SREG I = 0; // Interrupt disable

Soft UART Init (9600);
Soft UART Write (0x55);

// try Soft UART Read with blocking prevention mechanism

SREG I bit = 1; // Interrupt enable
datal = Soft UART Read(&error);
SREG_I bit = 0; // Interrupt disable

}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 419

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example

This example demonstrates simple data exchange via software UART. If MCU is
connected to the PC, you can test the example from the mikroC PRO for AVR
USART Terminal Tool.

// Soft UART connections

sbit Soft UART Rx Pin at PIND.BO;

sbit Soft UART Tx Pin at PORTD.BI;

sbit Soft UART Rx Pin Direction at DDRD.BO;
sbit Soft UART Tx Pin Direction at DDRD.B1;
// End Soft UART connections

char i, error, byte read; // Auxiliary variables

void main (){

DDRB = OxFF; // Set PORTB as output
(error signalization)
PORTB = O0; // No error
error = Soft UART Init (9600, 0); // Initialize Soft UART at
9600 bps
if (error > 0) {
PORTB = error; // Signalize Init error
while (1) ; // Stop program

}
Delay ms(100);

for (i = 'z'; 1 >= 'A'; i--) { // Send bytes from 'z'
downto 'A'
Soft UART Write(i);
Delay ms (100);

while (1) { // Endless loop
byte read = Soft UART Read(&error); // Read byte, then test
error flag
if (error) // If error was detected
PORTB = error; // signal it on PORTB
else
Soft UART Write (byte read); // If error was not detect-

ed, return byte read

}

420 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries

SOUND LIBRARY

The mikroC PRO for AVR provides a Sound Library to supply users with routines
necessary for sound signalization in their applications. Sound generation needs
additional hardware, such as piezo-speaker (example of piezo-speaker interface is
given on the schematic at the bottom of this page).

External dependencies of Sound Library

The following variables
must be defined in all
projects using Sound

Library:

extern sfr sbit

Description: Example :

sbit Sound Play Pin

Sound output pin. at

Sound Play Pin;

PORTC.B3;

extern sfr sbit
Sound Play Pin Direct

Direction of the Sound out-

sbit
Sound Play Pin Direct

put pin.

ion; ion at DDRC.B3;

Library Routines

- Sound_Init
- Sound_Play

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 421

CHAPTER 6

Libraries mikroC PRO for AVR
Sound_lInit
Prototype [void Sound Init();
Returns Nothing.
Description |Configures the appropriate MCU pin for sound generation.
Global variables:
Requires - Sound Play Pin: Sound output pin
a - Sound Play Pin Direction: Direction of the Sound output pin
must be defined before using this function.
// Sound library connections
sbit Sound Play Pin at PORTC.B3;
sbit Sound Play Pin direction at DDRC.B3;
Example // End of Sound library connections
éél‘mdilnit ()
Sound_Play
Prototype |[void Sound Play(unsigned freq in hz, unsigned duration ms);
Returns Nothing.
Generates the square wave signal on the appropriate pin.
Description Parameters :
- freq in hz: signal frequency in Hertz (Hz)
- duration ms: signal duration in miliseconds (ms)
In order to hear the sound, you need a piezo speaker (or other hardware) on
Requires designated port. Also, you must call Sound_|Init to prepare hardware for output
before using this function.
E I // Play sound of 1KHz in duration of 100ms
xample 1s,und play (1000, 100);
422 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example

The example is a simple demonstration of how to use the Sound Library for playing
tones on a piezo speaker.

// Sound connections

sbit Sound Play Pin at PORTC.B3;

sbit Sound Play Pin direction at DDRC.B3;
// End Sound connections

void Tonel () {

Sound Play (500, 200); // Frequency = 500Hz, Duration = 200ms
}
void Tone2 () {
Sound Play (555, 200); // Frequency = 555Hz, Duration = 200ms
}
void Tone3 () {
Sound Play (625, 200); // Frequency = 625Hz, Duration = 200ms
}
void Melody () { // Plays the melody "Yellow house"
Tonel (); Tone2(); Tone3(); Tone3();
Tonel (); Tone2(); Tone3(); Tone3();
Tonel (); Tone2(); Tone3();
Tonel (); Tone2(); Tone3(); Tone3();
Tonel (); Tone2(); Tone3();
Tone3(); Tone3(); Tone2(); Tone2(); Tonel();
}
void ToneA () { // Tones used in Melody? function

Sound Play (1250, 20);
}
void ToneC () {

Sound Play (1450, 20);
}
void ToneE () {

Sound Play (1650, 80);
}

void Melody2 () { // Plays Melody2
unsigned short i;
for (i = 9; 1 > 0; 1i--) {
ToneA () ;
ToneC () ;
ToneE () ;

}
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 423

CHAPTER 6
Libraries

mikroC PRO for AVR

void main () {

DDRB = 0x00;
Sound Init();

Sound Play (500, 1000);
while (1) {

if (PINB.B7)
Tonel () ;
while (PINB.B7) ;

if (PINB.B6)
Tone2 () ;
while (PINB.B6) ;

if (PINB.BS)
Tone3 () ;
while (PINB.B5) ;

if (PINB.B4)
Melody?2 () ;
while (PINB.B4) ;

if (PINB.B3)
Melody () ;
while (PINB.B3) ;

// Configure PORTB as input
// Initialize sound pin

// Play starting sound, 2kHz, 1 second
// endless loop

// If PORTB.7 is pressed play Tonel
//
// Wait for button to be released

// If PORTB.6 is pressed play Tone2
//
// Wait for button to be released

// If PORTB.5 is pressed play Tone3
//
// Wait for button to be released

// If PORTB.4 is pressed play Melody?2
//
// Wait for button to be released

// If PORTB.3 is pressed play Melody
//
// Wait for button to be released

424 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

HW Connection

)l

PIEZO —
SPEAKER
£
VCC
@)
IO_I_C. PORTE.B3 10K[] 10K[]10K[]10K[] 10K[] [: U
[
' 1
'o_l_c' PORTB.B4 EE:j
— 0re: :E|
o_l_c PORTB.B5 EPBJ g
VCCEE[m GND:]
- - OSCILLATOR GND _
—L_ PORTB.B6 =
W E XTAL1 G)? %
5, PORTB.B7 E (o] Pc'si_
1]
[]
1 1

Example of Sound Library connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 425

CHAPTER 6
Libraries mikroC PRO for AVR

SPI LIBRARY

mikroC PRO for AVR provides a library for comfortable with SPI work in Master mode. The AVR
MCU can easily communicate with other devices via SPI: A/D converters, D/A converters,
MAX7219, LTC1290, etc.

Note: Some AVR MCU's have alternative SPI ports, which SPI signals can be redirected to by
setting or clearing SPIPS (SPI Pin Select) bit of the MCUCR register. Please consult the appro-
priate datasheet.

Library Routines
- SPI1_Init
- SPI1_Init_ Advanced
- SPI1_Read
- SPI1_Write

SPI1_Init

Prototype |[void SPI1 Init();

Returns Nothing.

This routine configures and enables SPI module with the following settings:

- master mode

- 8 bit data transfer

- most significant bit sent first

- serial clock low when idle

- data sampled on leading edge
- serial clock = fosc/4

Description

Requires MCU must have SPI module.

// Initialize the SPI1 module with default settings
Example

SPI1 Init();

426

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI1_Init_Advanced

void SPI1 Init Advanced(char mode, char fcy div, char

Prototype clock and edge)

Returns Nothing.

Configures and initializes SPI. SPI1_Init_Advanced or SPI1_Init needs to be
called before using other functions of SPI Library.

Parameters mode, fcy_div and clock_and_edge determine the work mode for
SPI, and can have the following values:

Mask Description Predefined library const

SPI mode constants:

0x10 Master mode _SPI MASTER

0x00 Slave mode _SPI_SLAVE

Clock rate select constants:

0x00 Sck = Fosc/4, Master mode _SPI_FCY DIV4
0x01 Sck = Fosc/16, Master mode _SPI_FCY DIV16
0x02 Sck = Fosc/64, Master mode _SPI _FCY DIV64
0x03 Sck = Fosc/128, Master mode _SPI_FCY DIV128
Description 0x04 Sck = Fosc/2, Master mode _SPT_FCY DIV2
0x05 Sck = Fosc/8, Master mode _SPI_FCY DIVS8
0x06 Sck = Fosc/32, Master mode _SPI_FCY DIV32

SPI clock polarity and phase constants:

Clock idle level is low, sample

0x00 . SPI CLK LO LEADING
on rising edge - - - =
Clock idle level is low, sample
0x04 \ SPI CLK LO TRAILING
on falling edge - - - =
lock idle 1 1 is high 1
oxos |“tec idle cvel 1S ighy Sampie SPI CLK HI LEADING
on rising edge - - - -
0x0C Clock idle level is high, sample _SPI_CLK HI TRAILING

on falling edge

Note: Some SPI clock speeds are not supported by all AVR MCUs and these
are: Fosc/2, Fosc/8, Fosc/32. Please consult appropriate datasheet.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 427

CHAPTER 6
Libraries mikroC PRO for AVR

Requires MCU must have SPI module.

// Set SPI to the Master Mode, clock = Fosc/32 , clock idle level
is high, data sampled on falling edge:

SPI1 Init Advanced(SPI MASTER, SPI FCY DIV32, SPI CLK HI TRAIL-
ING) ;

Example

SPI1_Read

Prototype |[char SPI1 Read(char buffer);

Returns Received data.

Reads one byte from the SPI bus.

Description Parameters :

- buffer: dummy data for clock generation (see device Datasheet for
SPI modules implementation details)

SPI module must be initialized before using this function. See SPI1_Init and

Requires . :
q SPI1_Init_Advanced routines.
// read a byte from the SPI bus
char take, dummyl;
Example ;ocumny
take = SPI1 Read(dummyl) ;
SPI1_Write

Prototype |[void SPI1 Write(char data out);

Returns Nothing.
Writes byte via the SPI bus.

Description |Parameters :

- wrdata: data to be sent

SPI module must be initialized before using this function. See SPI1_Init and

Requires . .
q SPI1_Init_Advanced routines.
// write a byte to the SPI bus
char buffer;
Example

SPI1 Write (buffer);

428 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example

The code demonstrates how to use SPI library functions for communication between SPI
module of the MCU and MAX7219 chip. MAX7219 controls eight 7 segment displays.

// DAC module connections

sbit Chip Select at PORTB.BO;

sbit Chip Select Direction at DDRB.BO;
// End DAC module connections

unsigned int value;

void InitMain () {

DDAO = O0; // Set PAO pin as input
DDAl = 0; // Set PAl pin as input
Chip Select = 1; // Deselect DAC

Chip Select Direction = 1; // Set CS# pin as Output
SPI1 Init(); // Initialize SPI1 module

}
// DAC increments (0..4095) --> output voltage (0..Vref)
void DAC Output (unsigned int valueDAC) {

char temp;

Chip Select = 0; // Select DAC chip

// Send High Byte

temp = (valueDAC >> 8) & O0xO0F; // Store valueDAC[11..8]
to temp[3..0]

temp |= 0x30; // Define DAC setting, see MCP4921 datasheet

SPI1 Write (temp); // Send high byte via SPI

// Send Low Byte

temp = valueDAC; // Store valueDAC[7..0] to temp[7..0]
SPI1 Write (temp); // Send low byte via SPI
Chip Select = 1; // Deselect DAC chip

void main () {
InitMain () ; // Perform main initialization

value = 2048; // When program starts, DAC gives
// the output in the mid-range

while (1) { // Endless loop

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 429

CHAPTER 6

Libraries mikroC PRO for AVR
if ((PINA.RO) && (value < 4095)) // If PAO button is pressed
value++; // increment value
}
else {
if ((PINA.B1l) && (value > 0)) // If PAl button is pressed
value--; // decrement value
}
}
DAC Output (value); // Send value to DAC chip
Delay ms(1); // Slow down key repeat pace
}
}
HW Connection
All lines are disconnected
Vref line is connected
E Vcc line is connected
VCC
VCC REF1
TWN 1 3 VouT
2
GND
us
Seis e |
—— o2 3 n re CONNECTOR
SPI-MOSI 4[:::;:(%15 GND
MCP 4921
Il PB.0 e
1
1
1
EPB.S >
!;PB7 -
Iles.
1 =
\VCCo] vce rn GND
OSCILLATOR GND]
ik
[xTAL1 > 1
] = |
1 < |
1 1
1 1
1 1
I [SPI HW connection
430 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI ETHERNET LIBRARY

The ENC28J60 is a stand-alone Ethernet controller with an industry standard Serial
Peripheral Interface (SPI™). It is designed to serve as an Ethernet network interface
for any controller equipped with SPI.

The Enc28J60 meets all of the IEEE 802.3 specifications. It incorporates a number
of packet filtering schemes to limit incoming packets. It also provides an internal
DMA module for fast data throughput and hardware assisted IP checksum calcula-
tions. Communication with the host controller is implemented via two interrupt pins
and the SPI, with data rates of up to 10 Mb/s. Two dedicated pins are used for LED
link and network activity indication.

This library is designed to simplify handling of the underlying hardware (Enc28J60).
It works with any AVR MCU with integrated SPI and more than 4 Kb ROM memory.

SPI Ethernet library supports:

- IPv4 protocol.

- ARP requests.

- ICMP echo requests.

- UDP requests.

- TCP requests (no stack, no packet reconstruction).
- packet fragmentation is NOT supported.

Note: For advanced users there are header files ("eth enc28j60LibDef.h" and
"eth enc28j60LibPrivate.h")in Uses folder of the compiler with description of all rou-
tines and global variables, relevant to the user, implemented in the SPI Ethernet Library.

Note: The appropriate hardware SPI module must be initialized before using any of
the SPI Ethernet library routines. Refer to SPI Library.

Note: The appropriate hardware SPI module must be initialized before using any of
the SPI Ethernet library routines. Refer to SPI Library.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 431

CHAPTER 6

Libraries mikroC PRO for AVR

External dependencies of SPI Ethernet Library

The following variables

must be defined in all Description: Examble :
projects using SPI Eth- P) ple :

ernet Library:

extern sfr sbit . . sbit SPI Ethernet CS
SPI_Ethernet CS; ENC28J60 chip select pin. | " porrsTh4; a
extern sfr sbit . sbit SPI Ethernet RST
SPI_Ethernet RST; ENC28J60 reset pin. at PORTB.B5; a
extern sfr sbit . . sbit
SPI Ethernet CS Direc Dr:r'ectloln of t.he ENC28J60 SPI Ethernet CS Direc
tion; chip select pin. tion at DDRB.B4;
extern sfr sbit = Ipjrection of the ENC28J60 [3°*F |
SPI Ethernet RST Dire . SPI Ethernet RST Dire
ction; reset pin. ction at DDRB.B5;

The following routines

must be defined in all Describtion: Examble :
project using SPI Ether- P) ple :

net Library:
unsigned int
SPI Ethernet UserTCP(
unsigned char Refer to the library exam-
fremoteHost, unsigned TCP request handler. ple at the bottqm of this
int remotePort, page for code implemen-
unsigned int tation.
localPort, unsigned
int reglength) ;
unsigned int
SPI_Ethernet UserUDP (
unsigned char Refer to the library exam-
*remoteHost, unsigned UDP request handler. ple at the bottqm of this
int remotePort, page for code implemen-
unsigned int tation.
destPort, unsigned
int reglength) ;
432 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Routines

- SPI_Ethernet_Init

- SPI_Ethernet_Enable

- SPI_Ethernet_Disable

- SPI_Ethernet_doPacket

- SPI_Ethernet_putByte

- SPI_Ethernet_putBytes

- SPI_Ethernet_putString

- SPI_Ethernet_putConstString
- SPI_Ethernet_putConstBytes
- SPI_Ethernet_getByte

- SPI_Ethernet_getBytes

- SPI_Ethernet_UserTCP

- SPI_Ethernet_UserUDP

The following routines are for the internal use by compiler only:

- SPI_Ethernet_arpResolve

- SPI_Ethernet_checksum

- SPI_Ethernet_clearBitReg

- SPI_Ethernet_confNetwork

- SPI_Ethernet_delay

- SPI_Ethernet DHCPmsg

- SPI_Ethernet DHCPReceive

- SPI_Ethernet_dnsResolve

- SPI_Ethernet_ doARP

- SPI_Ethernet_doDHCP

- SPI_Ethernet_ doDHCPLeaseTime
- SPI_Ethernet_doDNS

- SPI_Ethernet_doTCP

- SPI_Ethernet_doUDP

- SPI_Ethernet_getDnslpAddress
- SPI_Ethernet_getGwlIpAddress
- SPI_Ethernet_getlpAddress

- SPI_Ethernet_getlpMask

- SPI_Ethernet_Init2

- SPI_Ethernet_initDHCP

- SPI_Ethernet_IPswap

- SPI_Ethernet_MACswap

- SPI_Ethernet_memcmp

- SPI_Ethernet_memcpy

- SPI_Ethernet_pktLen

- SPI_Ethernet_RAMcopy

- SPI_Ethernet_readMem

- SPI_Ethernet_readPacket

- SPI_Ethernet_readPHY

- SPI_Ethernet_readReg

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 433

CHAPTER 6
Libraries mikroC PRO for AVR

- SPI_Ethernet_renewDHCP

- SPI_Ethernet_sendUDP

- SPI_Ethernet_sendUDP2

- SPI_Ethernet_setBitReg

- SPI_Ethernet_setRxReadAddress
- SPI_Ethernet_TXpacket

- SPI_Ethernet_writeAddr

- SPI_Ethernet_writeMem

- SPI_Ethernet_writeMemory
- SPI_Ethernet_writeMemory2
- SPI_Ethernet_writePHY

- SPI_Ethernet_writeReg

SPI_Ethernet_Init

void SPI Ethernet Init (unsigned char *mac, unsigned char *ip,
unsigned char fullDuplex);

Prototype

Returns Nothing.

This is MAC module routine. It initializes enc28J60 controller. This function is
internaly splited into 2 parts to help linker when coming short of memory.

ENC28J60 controller settings (parameters not mentioned here are set to
default):

- receive buffer start address : 0x0000.

- receive buffer end address : 0x192AD.

- transmit buffer start address: 0x19AE.

- transmit buffer end address : 0x1FFF.

- RAM buffer read/write pointers in auto-increment mode.

- receive filters set to default: CRC + MAC Unicast + MAC Broadcast in OR mode.
- flow control with TX and RX pause frames in full duplex mode.

- frames are padded to 60 bytes + CRC.

- maximum packet size is set to 1518.

Description | Back-to-Back Inter-Packet Gap: 0x15 in full duplex mode; 0x12 in half duplex mode.

- Non-Back-to-Back Inter-Packet Gap: 0x0012 in full duplex mode; 0x0c12 in
half duplex mode.

- Collision window is set to 63 in half duplex mode to accomodate some
ENC28J60 revisions silicon bugs.

- CLKOUT output is disabled to reduce EMI generation.

- half duplex loopback disabled.

- LED configuration: default (LEDA-link status, LEDB-link activity).

Parameters:

- mac: RAM buffer containing valid MAC address.

- ip: RAM buffer containing valid IP address.

- fullbuplex: ethernet duplex mode switch. Valid values: o (half duplex mode)
and 1 (full duplex mode).

434 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
The appropriate hardware SPI module must be previously initialized.
Global variables :
. - SPI Ethernet cs: Chip Select line
Requires - - , , L . .
- SPI Ethernet CS Direction: Direction of the Chip Select pin
- SPI_Ethernet RST: Reset line
- SPI Ethernet RST Direction: Direction of the Reset pin
must be defined before using this function.
#define SPI_Ethernet HALFDUPLEX 0
#define SPI_Ethernet FULLDUPLEX 1
// mE ethernet NIC pinout
sfr sbit SPI Ethernet Rst at PORTB.B4;
sfr sbit SPI Ethernet CS at PORTB.BS5;
sfr sbit SPI Ethernet Rst Direction at DDRB.B4;
sfr sbit SPI Ethernet CS Direction at DDRB.B5;
// end ethernet NIC definitions
Example | cioned char myMacaddr 6 — {0x00, 0x14, 0xAS5, 0x76, 0x19, 0x3f)
; // my MAC address
unsigned char myIpAddr = {192, 168, 1, 60} ; // my IP
addr
SPI1 Init();
Spi Rd Ptr = SPI1 Read; // pass pointer to SPI Read function
of used SPI module
SPI Ethernet Init (&PORTC, 0, &PORTC, 1, myMacAddr, myIpAddr,
SPI_Ethernet FULLDUPLEX) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 435

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Ethernet_Enable

Prototype |[void SPI Ethernet Enable (unsigned char enFlt) ;

Returns Nothing.

This is MAC module routine. This routine enables appropriate network traffic on
the Enc28J60 module by the means of it's receive filters (unicast, multicast,
broadcast, crc). Specific type of network traffic will be enabled if a correspon-
ding bit of this routine's input parameter is set. Therefore, more than one type of
network traffic can be enabled at the same time. For this purpose, predefined
library constants (see the table below) can be ORed to form appropriate input

value.
Parameters:
- enF1t: network traffic/receive filter flags. Each bit corresponds to the
appropriate network traffic/receive filter:
Bit| Mask Description Predefined library
const
o | oxo1 MAC Broadcast traffic/receive filter flag. When|spI Ethernet BRO
set, MAC broadcast traffic will be enabled. ADCAST
1| oxo MAC Multicast traffic/receive filter flag. When |[sPI Ethernet MUL
set, MAC multicast traffic will be enabled. TICAST
Description |[2 | 0x04 [not used none
3 0x08 |not used none
4 | 0x10 |not used none
CRC check flag. When set, packets with
* | %% linvalid CRC field will be discarded. SPI_Ethernet CRC
6 | 0x40 |not used none
2| oxs0 MAC Unicast traffic/receive filter flag. When |spPI Ethernet UNI
set, MAC unicast traffic will be enabled. CAST

Note: Advance filtering available in the Enc28J60 module such as Pattern Match,
Magic Packet and Hash Table can not be enabled by this routine. Additionaly, all fil-
ters, except CRC, enabled with this routine will work in OR mode, which means that
packet will be received if any of the enabled filters accepts it.

Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the Enc28J60 module. The Enc28760 module should be properly cofigured by
the means of SPI_Ethernet_Init routine.

436 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

SPI Ethernet Enable (SPI Ethernet CRC | SPI Ethernet UNICAST) ; //

Example enable CRC checking and Unicast traffic

SPI_Ethernet_Disable

Prototype |[void SPI Ethernet Disable (unsigned char disFlt) ;

Returns Nothing.

This is MAC module routine. This routine disables appropriate network traffic on
the ENC28760 module by the means of it's receive filters (unicast, multicast, broad-
cast, crc). Specific type of network traffic will be disabled if a corresponding bit of
this routine's input parameter is set. Therefore, more than one type of network
traffic can be disabled at the same time. For this purpose, predefined library con-
stants (see the table below) can be ORed to form appropriate input value.

Parameters:

- disF1t: network traffic/receive filter flags. Each bit corresponds to the
appropriate network traffic/receive filter:

Predefined library

Bit| Mask Description
const
o | oxo1 MAC Broadcast traffic/receive filter flag. When |spI Ethernet BRO
set, MAC broadcast traffic will be disabled. ADCAST
Description || | | .0, |MAC Multicast traffic/receive filter flag. When |SpT Ethernet MUL
set, MAC multicast traffic will be disabled. TICAST
2 0x04 |not used none
3 | 0x08 [not used none
4 | 0x10 [not used none

CRC check flag. When set, CRC check will be
5 | 0x20 [disabled and packets with invalid CRC field SPI Ethernet CRC
will be accepted.

6 0x40 |not used none

MAC Unicast traffic/receive filter flag. When |sPI Ethernet UNI

Tof 080 set, MAC unicast traffic will be disabled. CAST

Note: Advance filtering available in the Enc28760 module such as pattern
Match, Magic Packet and Hash Table can not be disabled by this routine.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 437

CHAPTER 6
Libraries mikroC PRO for AVR

Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the Enc28760 module. The Enc28760 module should be properly cofigured by
the means of SPI_Ethernet_Init routine.

Description

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

SPI Ethernet Disable(SPI_Ethernet CRC | SPI Ethernet UNICAST); //

Example disable CRC checking and Unicast traffic

SPI_Ethernet_doPacket

Prototype |unsigned char SPI Ethernet doPacket ();

- 0 - upon successful packet processing (zero packets received or received
packet processed successfully).

- 1 - upon reception error or receive buffer corruption. ENc28J60 controller needs

Returns to be restarted.

- 2 - received packet was not sent to us (not our IP, nor IP broadcast address).

- 3 - received IP packet was not IPv4.

- 4 - received packet was of type unknown to the library.

This is MAC module routine. It processes next received packet if such exists.
Packets are processed in the following manner:

- ARP & ICMP requests are replied automatically.

- upon TCP request the SPI_Ethernet_UserTCP function is called for further

Description | processing.

- upon UDP request the SPI_Ethernet_UserUDP function is called for further
processing.

Note: spI Ethernet doPacket must be called as often as possible in user's
code.

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.
while (1) {

Example SPI Ethernet doPacket(); // process received packets

438 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Ethernet_putByte

Prototype |[void SPI Ethernet putByte (unsigned char v);

Returns Nothing.

This is MAC module routine. It stores one byte to address pointed by the current
ENC28J60 write pointer (EWRPT).

Description Parameters:

- v: value to store

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

char data;
Example

SPI Ethernet putByte(data); // put an byte into ENC28J60 buffer

SPI_Ethernet_putBytes

Prototype |void SPI Ethernet putBytes (unsigned char *ptr, unsigned char n);

Returns Nothing.

This is MAC module routine. It stores requested number of bytes into Enc28760
RAM starting from current Enc28J60 write pointer (EwrPT) location.

Description |Parameters:

- ptr: RAM buffer containing bytes to be written into Enc28560 RAM.
- n: number of bytes to be written.

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

char *buffer = "mikroElektronika";

Example SPI Ethernet putBytes (buffer, 16); // put an RAM array into

ENC28J60 buffer

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 439

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Ethernet_putConstBytes

void SPI Ethernet putConstBytes(const unsigned char *ptr,
unsigned char n);

Prototype

Returns Nothing.

This is MAC module routine. It stores requested number of const bytes into
ENC28J60 RAM starting from current Enc28J60 write pointer (EwrPT) location.

Description |Parameters:

- ptr: const buffer containing bytes to be written into Exnc28J560 RAM.
- n: number of bytes to be written.

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

const char *buffer = "mikroElektronika";

Example SPI Ethernet putConstBytes (buffer, 16); // put a const array into

ENC28J60 buffer

SPI_Ethernet_putString

Prototype unsigned int SPI Ethernet putString(unsigned char *ptr);

Returns Number of bytes written into Enc28J60 RAM.

This is MAC module routine. It stores whole string (excluding null termination) into
ENC28J60 RAM starting from current Enc28J60 write pointer (EwrPT) location.

Description Parameters:

- ptr: string to be written into Enc28760 RAM.

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

char *buffer = "mikroElektronika";

Example SPI Ethernet putString(buffer); // put a RAM string into ENC28J60

buffer

440 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Ethernet_putConstString

unsigned int SPI Ethernet putConstString(const unsigned char

Prototype ptr);

Returns Number of bytes written into Enc28J60 RAM.
This is MAC module routine. It stores whole const string (excluding null termina-
tion) into ENC28J60 RAM starting from current ENC28J60 write pointer
(EWRPT) location.

Description

Parameters:

- ptr: const string to be written into Enc28J60 RAM.

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

const char *buffer = "mikroElektronika";

Example SPI Ethernet putConstString(buffer); // put a const string into

ENC28J60 buffer

SPI_Ethernet_getByte

Prototype unsigned char SPI Ethernet getByte();

Returns Byte read from Enc28760 RAM.

This is MAC module routine. It fetches a byte from address pointed to by current

Description .
ENC28J60 read pointer (ERDPT).

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

char buffer;

Example buffer = SPI Ethernet getByte(); // read a byte from ENC28J60

buffer

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 441

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Ethernet_getBytes

void SPI Ethernet getBytes (unsigned char *ptr, unsigned int addr,
unsigned char n);

Prototype

Returns Nothing.

This is MAC module routine. It fetches equested number of bytes from
ENC28J60 RAM starting from given address. If value of 0xFFFF is passed as the
address parameter, the reading will start from current Enc28J60 read pointer
(ErDPT) location.

Description Parameters:

- ptr: buffer for storing bytes read from enc28s60 RAM.
- addr: ENC28J60 RAM start address. Valid values: 0. .8192.
- n: number of bytes to be read.

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

char buffer[16] ;

Example SPI _Ethernet getBytes (buffer, 0x100, 16); // read 16 bytes,

starting from address 0x100

442 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Ethernet_UserTCP

unsigned int SPI Ethernet UserTCP(unsigned char *remoteHost,
Prototype unsigned int remotePort, unsigned int localPort, unsigned int
regLength) ;

- 0 - there should not be a reply to the request.

Returns - Length of TCP/HTTP reply data field - otherwise.

This is TCP module routine. It is internally called by the library. The user access-
es to the TCP/HTTP request by using some of the SPI_Ethernet_get routines.
The user puts data in the transmit buffer by using some of the SPI_Ethernet_put
routines. The function must return the length in bytes of the TCP/HTTP reply, or
0 if there is nothing to transmit. If there is no need to reply to the TCP/HTTP
requests, just define this function with return(0) as a single statement.

Description Parameters:
- remoteHost: client's IP address.

- remotePort: client's TCP port.

- localport: port to which the request is sent.

- regLength: TCP/HTTP request data field length.

Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

This function is internally called by the library and should not be called by the

Example
P user's code.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 443

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Ethernet_UserUDP

unsigned int SPI Ethernet UserUDP (unsigned char *remoteHost,
Prototype |unsigned int remotePort, unsigned int destPort, unsigned int

regLength) ;

Returns - 0 - there should not be a reply to the request.

- Length of UDP reply data field - otherwise.

This is UDP module routine. It is internally called by the library. The user
accesses to the UDP request by using some of the SPI_Ethernet_get routines.
The user puts data in the transmit buffer by using some of the SPI_Ethernet_put
routines. The function must return the length in bytes of the UDP reply, or O if
nothing to transmit. If you don't need to reply to the UDP requests, just define
this function with a return(0) as single statement.

Description Parameters:

- remoteHost: client's IP address.

- remotePort: client's port.

- destport: port to which the request is sent.
- reqLength: UDP request data field length.

Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.

Requires Ethernet module has to be initialized. See SPI_Ethernet_Init.

This function is internally called by the library and should not be called by the

Example
P user's code.

Library Example
This code shows how to use the 2vr mini Ethernet library :

- the board will reply to ARP & ICMP echo requests
- the board will reply to UDP requests on any port :

returns the request in upper char with a header made of remote host IP &
port number

- the board will reply to HTTP requests on port 80, GET method with pathnames :

/ will return the HTML main page

/s will return board status as text string

1t0 ... /t7 will toggle P3.b0 to P3.b7 bit and return HTML main page
all other requests return also HTML main page.

444 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

// duplex config flags
#define Spi Ethernet HALFDUPLEX 0x00 // half duplex
#define Spi Ethernet FULLDUPLEX 0x01 // full duplex

// mE ehternet NIC pinout

sfr sbit SPI Ethernet Rst at PORTB.B4;

sfr sbit SPI Ethernet CS at PORTB.B5;

sfr sbit SPI Ethernet Rst Direction at DDRB.B4;
sfr sbit SPI Ethernet CS Direction at DDRB.B5;
// end ethernet NIC definitions

/**

* ROM constant strings

*/

const code unsigned char httpHeader[] = "HTTP/1.1 200 OKnContent-
type: " ; // HTTP header

const code unsigned char httpMimeTypeHTMI]] = T"text/htmlnn" ;
// HTML MIME type

const code unsigned char httpMimeTypeScript[] = "text/plainnn"
// TEXT MIME type

unsigned char httpMethod] = "GET /";

/*

* web page, splited into 2 parts

* when coming short of ROM, fragmented data is handled more effi-
ciently by linker

*

* this HTML page calls the boards to get its status, and builds
itself with javascript

*/
const code char *indexPage = // Change the IP
address of the page to be refreshed

"<meta http-equiv="refresh" content="3;url=http://192.168.20.60">
<HTML><HEAD></HEAD><BODY>
<h1>AVR + ENC28J60 Mini Web Server</hl>
Reload
<script src=/s></script>
<table><tr><td><table border=1 style="font-size:20px ;font-family:

terminal ;">

<tr><th colspan=2>PINC</th></tr>
<script>

var str,i;

str="";

for (1=0;1<8; 1++)

{ str+="<tr><td bgcolor=pink>BUTTON #"+i+"</td>";
1f (PINC& (1<<1i)){ str+="<td bgcolor=red>ON";}

else { str+="<td bgcolor=#cccccc>OFF";}
str+="</td></tr>";}

document.write (str) ;

</script>

LU
’

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 445

CHAPTER 6
Libraries mikroC PRO for AVR

const char *indexPage2 = "</table></td><td>
<table border=1 style="font-size:20px ;font-family: terminal ;">
<tr><th colspan=3>PORTD</th></tr>

<script>

var str,i;

str="";

for (1=0;1<8;i++)

{ str+="<tr><td bgcolor=yellow>LED #"+i+"</td>";

if (PORTD& (1<<i)) { str+="<td bgcolor=red>ON";}

else { str+="<td bgcolor=#cccccc>OFF";}
str+="</td><td>Toggle</td></tr>";}
document.write (str) ;

</script>
</table></td></tr></table>
This is HTTP request

#<script>document.write (REQ)</script></BODY></HTML>

L1
’

/***********************************

* RAM variables

*/

unsigned char myMacAddr[6] = {0x00, 0x14, O0OxA5, 0x76, 0x19, O0x3f}
; // my MAC address

unsigned char myIpAddr[4] = {192, 168, 20, 60} ;
// my IP address
unsigned char getRequest[15] ; //
HTTP request buffer
unsigned char dynal 29] ; //
buffer for dynamic response
unsigned long httpCounter = 0 ; //

counter of HTTP requests

/***

* functions

*/
/*
* put the constant string pointed to by s to the ENC transmit buffer.
*/
/*unsigned int putConstString (const code char *s)
{
unsigned int ctr = 0 ;
while (*s)

{
Spi Ethernet putByte (*s++) ;
ctr++ ;

}

return (ctr) ;

}x/
446 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
/*
* it will be much faster to use library Spi Ethernet putConstString
routine

* instead of putConstString routine above. However, the code will
be a little

* bit bigger. User should choose between size and speed and pick the
implementation that

* suites him best. If you choose to go with the putConstString def-
inition above

* the #define line below should be commented out.
*

*/
#define putConstString SPI Ethernet putConstString
/*
* put the string pointed to by s to the ENC transmit buffer
*/
/*unsigned int putString(char *s)
{
unsigned int ctr = 0 ;
while (*s)
{
Spi Ethernet putByte (*s++) ;
ctr++ ;
}
return (ctr) ;
}x/
/*
* it will be much faster to use library Spi Ethernet putString rou-
tine
* instead of putString routine above. However, the code will be a
little

* bit bigger. User should choose between size and speed and pick the
implementation that

* suites him best. If you choose to go with the putString defini-
tion above

* the #define line below should be commented out.

*

*/

#define putString SPI Ethernet putString

/*

* this function is called by the library

* the wuser accesses to the HTTP request by successive calls to
Spi Ethernet getByte()

* the user puts data in the transmit buffer by successive calls to
Spi Ethernet putByte ()

* the function must return the length in bytes of the HTTP reply,
or 0 if nothing to transmit

*

* if you don't need to reply to HTTP requests,

* just define this function with a return(0) as single statement

*

*/
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 447

CHAPTER 6
Libraries

mikroC PRO for AVR

unsigned int SPI Ethernet UserTCP(unsigned char *remoteHost,
unsigned int remotePort, wunsigned int localPort, wunsigned int
reglength)

{

unsigned int len; // my reply length

if (localPort != 80) // I listen only to web
request on port 80

{

return(0) ;

}

// get 10 first bytes only of the request, the rest does not
matter here

for(len = 0 ; len < 10 ; len++)
getRequest[len] = SPI Ethernet getByte() ;
getRequesl[len] =0 ;
len = 0;
if (memcmp (getRequest, httpMethod, 5)) // only GET

method is supported here
{
return (0) ;

}

httpCounter++ ; // one more
request done

if (getRequest[5] == 's') // if request
path name starts with s, store dynamic data in transmit buffer
{
// the text string replied by this request can be
interpreted as javascript statements
// by browsers

len = putConstString(httpHeader) ; //
HTTP header

len += putConstString(httpMimeTypeScript) ; //
with text MIME type

// add PORTC value (buttons) to reply
len += putConstString("var PINC=") ;
WordToStr (PINC, dyna) ;

len += putString(dyna) ;

len += putConstString(";") ;

// add PORTD value (LEDs) to reply
len += putConstString("var PORTD=")
WordToStr (PORTD, dyna) ;

len += putString(dyna) ;

len += putConstString(";") ;

448 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

// add HTTP requests counter to reply
WordToStr (httpCounter, dyna) ;
len += putConstString("var REQ=")
len += putString(dyna) ;
len += putConstString(";")

}
else if(getRequest([5] == 't') // 1f request path
name starts with t, toggle P3 (LED) bit number that comes after
{
unsigned char bitMask = 0 ; // for bit mask
if(isdigit (getRequest[6])) // 1f 0 <= bit num-
ber <= 9, bits 8 & 9 does not exist but does not matter
{
bitMask = getRequest[6] - '0' ; //

convert ASCII to integer
bitMask = 1 << bitMask ; // create bit mask

PORTD "= bitMask ; //
toggle PORTD with xor operator
}
}
if(len == 0) // what do to by default
{
len = putConstString (httpHeader) ; //
HTTP header
len += putConstString (httpMimeTypeHTML) ; //
with HTML MIME type
len += putConstString (indexPage) ; //
HTML page first part
len += putConstString (indexPagel2) ; //
HTML page second part
}
return(len) ; //
return to the library with the number of bytes to transmit

}

Vas

* this function is called by the library

* the user accesses to the UDP request by successive calls to
Spi Ethernet getByte()

* the user puts data in the transmit buffer by successive calls to
Spi Ethernet putByte()

* the function must return the length in bytes of the UDP reply, or
0 if nothing to transmit

if you don't need to reply to UDP requests,
just define this function with a return(0) as single statement

* % ok %

*/
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 449

CHAPTER 6

Libraries mikroC PRO for AVR
unsigned int SPI Ethernet UserUDP (unsigned char *remoteHost,
unsigned int remotePort, wunsigned int destPort, unsigned int
regLength)

{
unsigned int len ; // my reply
length

// reply is made of the remote host IP address in human read-
able format

ByteToStr (remoteHost[0] , dyna) ; // first IP
address byte

dynal 3] = "'.' ;

ByteToStr (remoteHost[1], dyna + 4) ; // second

dynal 7] = '.' ;

ByteToStr (remoteHost[2] , dyna + 8) ; // third

dyna[11] = '.°

ByteToStr (remoteHost[3] , dyna + 12) ; // fourth

dynal 15] = ':' ; // add
separator

// then remote host port number
WordToStr (remotePort, dyna + 16) ;

dynal 21] = '['
WordToStr (destPort, dyna + 22) ;
dynal 27] = ']
dynal 28] = 0 ;

// the total length of the request is the length of the
dynamic string plus the text of the request
len = 28 + reqglength;

// puts the dynamic string into the transmit buffer
SPI Ethernet putBytes(dyna, 28) ;

// then puts the request string converted into upper char
into the transmit buffer
while (regLength--)
{
SPI Ethernet putByte (toupper (SPI_Ethernet getByte()))

}

return(len) ; // back to the library with the
length of the UDP reply

}
/*
* main entry

*/

450 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries

void main ()

// set PORTC as input
DDRC = 0;

// set PORTD as output
DDRD = OxFF;

/*

starts ENC28J60 with
reset bit on PORTB.B4
CS bit on PORTB.B5
my MAC & IP address
full duplex

* % ok % X o

SPI1 Init Advanced(SPI MASTER, _SPI FCY DIV2,
_SPI_CLK_LO_LEADING) ;

Spi Rd Ptr = SPI1 Read; //

pass pointer to SPI Read function of used SPI module
SPI Ethernet Init (myMacAddr, myIpAddr, Spi Ethernet FULLDU-
PLEX) ; // full duplex, CRC + MAC Unicast + MAC Broadcast filtering

while (1) // do forever
{
/*
* 1if necessary, test the return value to get error
code
*/

SPI_Ethernet doPacket () ; // process incoming

Ethernet packets

/*
add your stuff here if needed
* Spi Ethernet doPacket () must be called as often
as possible
otherwise packets could be lost
*/
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 451

CHAPTER 6
Libraries mikroC PRO for AVR

HW Connection

vee veesa vcesa veesa
nnnnn 2.
Y s o = 0 I I
—Hl no e[— = = = = =
—lar N so[He—
——: a2 E B1) %« 10uF
[6 :3 (9} 15
3
alide —_1H s ﬁ 14
el Toflae & g VeSS 1 J
5 —2l a7 se[HZ—¢ q 2 flenp [e
1011 Gnp s7[}1 ¢ e i cLkout L
§ WoL3.3 5 IL g o8¢
£ MIS03.3 6 o
Mos! 7 N
| scK s = o
J ETH-CS s d= 8 i
ETHRST 1 4 19 FERRITE
1‘: flrReser 5 Rx n BEAD
RO 51R
12 R rpiy. 1L
13 A rpin: 16
14 f1rBias = 51R U 1oe
3ler
1K2 1K2 £ 2{o-
VCC i ; RO+
cT
“ ‘ 51R 81 ro-
panonnoonnoonann =" =
51R
— [C] 0> =
= =]
— =]
=]
= =
— =]
p— =]
=]
=
3| ATmegal28 |E
L——|PBO =
PB.1 =
PB.2 =
PB.3 =
—]|PB.4 -
—] |rB5 =
L——]|rBS6 - —
]
g
=

IJLILILIilL goommoao
‘ OSCILLATOR
cC

'

452 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI GRAPHIC LCD LIBRARY

The mikroC PRO for AVR provides a library for operating Graphic Lcd 128x64 (with
commonly used Samsung KS108/KS107 controller) via SPI interface.

For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.

Note: The library uses the SPI module for communication. User must initialize SPI
module before using the SPI Graphic Lcd Library.

Note: This Library is designed to work with the mikroElektronika's Serial Lcd/Glcd
Adapter Board pinout, see schematic at the bottom of this page for details.

External dependencies of SPI Graphic Lcd Library

The implementation of SPI Graphic Lcd Library routines is based on Port Expander
Library routines.

Prior to calling any of this library routines, Spi_Rd_Ptr needs to be initialized with the
appropriate SPI_Read routine.

External dependencies are the same as Port Expander Library external dependen-
cies.

Library Routines
Basic routines:

- SPI_Glcd_Init

- SPI_Glcd_Set_Side

- SPI_Glcd_Set Page
- SPI_Glcd_Set_X

- SPI_Glcd_Read_Data
- SPI_Glcd_Write_Data

Advanced routines:

- SPI_Glcd_Fill

- SPI_Glcd_Dot

- SPI_Glcd_Line

- SPI_Glcd _V Line

- SPI_Glcd_H_Line

- SPI_Glcd_Rectangle
- SPI_Glcd_Box

- SPI_Glcd_Circle

- SPI_Glcd_Set_Font
- SPI_Glcd_Write_Char
- SPI_Glcd_Write_Text
- SPI_Glcd_Image

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 453

CHAPTER 6

Libraries mikroC PRO for AVR
SPI_Glcd_Init
Prototype void SPI Glcd Init(char DeviceAddress);
Returns Nothing.
Initializes the Glcd module via SPI interface.
oy Parameters :
Description
- DeviceAddress: SPIl expander hardware address, see schematic at
the bottom of this page
Global variables :
- sPExpandercs: Chip Select line
- SPExpanderRST: Reset line
- SPExpanderCS_Direction: Direction of the Chip Select pin
Requires - SPExpanderRST Direction: Direction of the Reset pin
must be defined before using this function.
The SPI module needs to be initialized. See SPI_Init and SPI_Init_ Advanced
routines.
// Port Expander module connections
sbit SPExpanderRST at PORTB.BO;
sbit SPExpanderCS at PORTB.B1;
sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.B1;
// End Port Expander module connections
Example
// If Port Expander Library uses SPI1 module
SPI1 Init Advanced(SPI MASTER, SPI FCY DIV2, SPI CLK HI TRAIL-
ING) ; // Initialize SPI module used with PortExpander
SPI Rd Ptr = SPI1 Read; // Pass pointer to SPI
Read function of used SPI module
SPI Glcd Init(0);

454 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Glcd_Set_Side

Prototype |[void SPI Glcd Set Side(char x pos);

Returns Nothing.

Selects Glcd side. Refer to the Glcd datasheet for detail explanation.
Parameters :

- x_pos: position on x-axis. Valid values: 0..127
Description
The parameter x_pos specifies the Glcd side: values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side.

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

The following two lines are equivalent, and both of them select the left side of

Glcd:
Example

SPI Glcd Set Side(0);
SPI Glcd Set Side(10);

SPI_Glcd_Set_Page

Prototype |[void SPI Glcd Set Page (char page);

Returns Nothing.

Selects page of Glcd.

Parameters :

Description - page: page number. Valid values: 0..7

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

Example SPI _Glcd Set Page(5);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 455

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Glcd_Set_X

Prototype |void SPI Glcd Set X(char x pos);

Returns Nothing.

Sets x-axis position to x_pos dots from the left border of Glcd within the select-
ed side.

Parameters :
Description
- x_pos! position on x-axis. Valid values: 0..63

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

Example SPI _Glcd Set X(25);

SPI_Glcd_Read_Data

Prototype |char SPI Glcd Read Data();

Returns One byte from Glcd memory.
o Reads data from the current location of Glcd memory and moves to the next
Description .
location.
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Requires Glcd side, x-axis position and page should be set first. See the functions
SPI_Glcd_Set_Side, SPI_Glcd_Set_X, and SPI_Glcd_Set_Page.
char data;
Example

data = SPI Glcd Read Dataf();

456 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Glcd_Write _Data

Prototype |void SPI Glcd Write Data (char Ddata);

Returns Nothing.

Writes one byte to the current location in Glcd memory and moves to the next
location.

Description Parameters :

- Ddata: data to be written

Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

Requires Glcd side, x-axis position and page should be set first. See the functions
SPI_Glcd_Set_Side, SPI_Glcd_Set_X, and SPI_Glcd_Set_Page.
char data;

Example e
SPI Glcd Write Data(data);

SPI_Glcd_Fill

Prototype |[void SPI Glcd Fill (char pattern);

Returns Nothing.

Fills Glcd memory with byte pattern.

Parameters :

Description - pattern: byte to fill Glcd memory with
To clear the Glcd screen, use sPI _Glcd Fill (0).

To fill the screen completely, use SPT Glcd Fill (0xFF).

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

// Clear screen
SPT_Glcd Fill(0);

Example

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 457

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Glcd_Dot

Prototype void SPI Glcd Dot (char x pos, char y pos, char color);

Returns Nothing.

Draws a dot on Glcd at coordinates (x_pos, y_pos).
Parameters :

- x_pos: X position. Valid values: 0..127
- y_pos: Yy position. Valid values: 0..63
Description - color: color parameter. Valid values: 0..2

The parameter color determines the dot state: O clears dot, 1 puts a dot, and 2
inverts dot state.

Note: For x and y axis layout explanation see schematic at the bottom of this
page.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

// Invert the dot in the upper left corner

Example |50 Gicd pot(o, 0, 2);
SPI_Glcd_Line

void SPI Glcd Line (int x start, int y start, int x end, int
Prototype = - - - -

y_end, char color);

Returns Nothing.

Draws a line on Glcd.
Parameters :

- x_start: X coordinate of the line start. Valid values: 0..127
- y_start:y coordinate of the line start. Valid values: 0..63
- x_end: x coordinate of the line end. Valid values: 0..127

- y_end: y coordinate of the line end. Valid values: 0..63

- color: color parameter. Valid values: 0..2

Description

Parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

// Draw a line between dots (0,0) and (20,30)

Example SPI_Glcd_Line(0, 0, 20, 30, 1);

458 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Glcd_V _Line

void SPI Glcd V Line(char y start, char y end, char x pos, char
color) ;

Prototype

Returns Nothing.

Draws a vertical line on Glcd.
Parameters :

- y_start:y coordinate of the line start. Valid values: 0..63
- y_end: y coordinate of the line end. Valid values: 0..63

- x_pos: X coordinate of vertical line. Valid values: 0..127

- color: color parameter. Valid values: 0..2

Description

Parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

// Draw a vertical line between dots (10,5) and (10,25)

Example SPI_Glcd V Line(5, 25, 10, 1);

SPI_Glcd_H_Line

void SPI Glcd H Line(char x start, char x end, char y pos, char
color);

Prototype

Returns Nothing.

Draws a horizontal line on Glcd.
Parameters :

- x_start: X coordinate of the line start. Valid values: 0..127
Description - x_end: x coordinate of the line end. Valid values: 0..127

- y_pos: y coordinate of horizontal line. Valid values: 0..63

- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

// Draw a horizontal line between dots (10,20) and (50,20)

Example o1 Glca B Line(10, 50, 20, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 459

CHAPTER 6
Libraries

mikroC PRO for AVR

SPI_Glcd_Rectangle

Prototype

void SPI Glcd Rectangle(char x upper left, char y upper left,
char x bottom right, char y bottom right, char color);

Returns

Nothing.

Description

Draws a rectangle on Glcd.
Parameters :

- x_upper left: X coordinate of the upper left rectangle corner. Valid values: 0..127

-y upper left:y coordinate of the upper left rectangle comer. Valid values: 0..63

- x_bottom right: X coordinate of the lower right rectangle corner. Valid values:
0..127

-y bottom right:y coordinate of the lower right rectangle corner. Valid values:
0..63

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the rectangle border: 0 white, 1
black, and 2 inverts each dot.

Requires

Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

Example

// Draw a rectangle between dots and

SPI Glcd Rectangle (5, 5, 40, 40,

(5,5) (40,40)
1);

SPI_Glcd_B

oX

Prototype

void SPI Glcd Box(char x upper left, char y upper left, char
x bottom right, char y bottom right, char color);

Returns

Nothing.

Description

Draws a box on Glcd.
Parameters :

- x_upper left: X coordinate of the upper left box corner. Valid values: 0..127

-y upper left:y coordinate of the upper left box corner. Valid values: 0..63

- x_bottom right: X coordinate of the lower right box corner. Valid values: 0..127

- v _bottom right:y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the box fill: 0 white, 1 black, and 2
inverts each dot.

Requires

Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

Example

// Draw a box between dots and

SPI_Glcd Box (5, 15, 20, 40,

(5,15)
1),

(20,40)

460

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Glcd_Circle

void SPI Glcd Circle(int x center, int y center, int radius, char
color);

Prototype

Returns Nothing.

Draws a circle on Glcd.
Parameters :

- x_center: X coordinate of the circle center. Valid values: 0..127
Description |- v center: y coordinate of the circle center. Valid values: 0..63
- radius: radius size

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the circle line: 0 white, 1 black,
and 2 inverts each dot.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routine.

// Draw a circle with center in (50,50) and radius=10

Example SPI Glecd Circle(50, 50, 10, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 461

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Glcd_Set_Font

void SPI Glcd Set Font(const code char *activeFont, char

Prototype aFontWidth, char aFontHeight, unsigned int aFontOffs);

Returns Nothing.

Sets font that will be used with SPI_Glcd_Write_Char and SPI_Glcd_Write Text
routines.

Parameters :

- activeFont: font to be set. Needs to be formatted as an array of char

- aFontwidth: width of the font characters in dots.

Description |- aFontHeight: height of the font characters in dots.

- aFontOffs: number that represents difference between the mikroC PRO
character set and regular ASCII set (eg. if ‘A’ is 65 in ASCII character, and 'A’
is 45 in the mikroC PRO character set, aFontOffs is 20). Demo fonts supplied
with the library have an offset of 32, which means that they start with space.

The user can use fonts given in the file “__Lib_Glcd_fonts” file located in the
Uses folder or create his own fonts.

Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.

// Use the custom 5x7 font "myfont" which starts with space (32):

Example SPI Glcd Set Font (myfont, 5, 7, 32);

462 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Glcd_Write_Char

void SPI Glcd Write Char (char chrl, char x pos, char page num,
char color);

Prototype

Returns Nothing.

Prints character on Glcd.
Parameters :

- chr1: character to be written

- x_pos: character starting position on x-axis. Valid values: 0..(127-FontWidth)
- page_num: the number of the page on which character will be written. Valid
Description | values: 0..7

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the character: 0 white, 1 black,
and 2 inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of

this page.
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Requires Use the SPI_Glcd_Set Font to specify the font for display; if no font is specified,
then the default 5x8 font supplied with the library will be used.
Example // Write character 'C' on the position 10 inside the page 2:

SPI Glcd Write Char('C', 10, 2, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 463

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Glcd_Write_Text

void SPI Glcd Write Text (char text[], char x pos, char page num,
char color);

Prototype

Returns Nothing.

Prints text on Glcd.
Parameters :

- text: text to be written

- x_pos: text starting position on x-axis.

.o - page num: the number of the page on which text will be written. Valid values: 0..7

Description - .)
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the text: 0 white, 1 black, and 2

inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of

this page.

Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Requires Use the SPI_Glcd_Set Font to specify the font for display; if no font is specified,

then the default 5x8 font supplied with the library will be used.

// Write text "Hello world!"™ on the position 10 inside the page
Example 2:

SPI Glcd Write Text("Hello world!", 10, 2, 1);

464 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

SPI_Glcd_Image

Prototype |[void SPI Glcd Image (const code char *image);
Returns Nothing.
Displays bitmap on Glcd.
Parameters :
Describtion | image: image to be displayed. Bitmap array can be located in both code and
P RAM memory (due to the mikroC PRO for AVR pointer to const and pointer to
RAM equivalency).
Use the mikroC PRO’s integrated Glcd Bitmap Editor (menu option Tools > Glcd
Bitmap Editor) to convert image to a constant array suitable for displaying on Gicd.
Requires Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
// Draw image my image on Glcd
Example SPI Glcd Image (my image);

Library Example

The example demonstrates how to communicate to KS0108 Glcd via the SPI module, using seri-

al to parallel convertor MCP23S17.

const code char truck bmp[1024] ;

// Port Expander module connections
sbit SPExpanderRST at PORTB.BO;
sbit SPExpanderCS at PORTB.B1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.BI1;
// End Port Expander module connections

void Delay2s (){ // 2 seconds delay function
Delay ms (2000) ;

}

void main ()

{

char *someText;
char counter;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

465

CHAPTER 6
Libraries mikroC PRO for AVR

// If Port Expander Library uses SPI1 module

SPI1 Init Advanced(SPI MASTER, SPI FCY DIV2, SPI CLK HI TRAIL-
ING); // Initialize SPI module used with PortExpander

SPI Rd Ptr = SPI1 Read; // Pass pointer to SPI Read
function of used SPI module

// // If Port Expander Library uses SPI2 module
// Initialize SPI module used with PortExpander
/7 SPI2 Init Advanced(SPI MASTER, _SPI FCY DIV2,

_SPI CLK HI TRAILING) ;

// Pass pointer to SPI Read function of used SPI module
// SPI Rd Ptr = &SPI2 Read;

SPI Glcd Init(0); // Initialize Glcd via SPI
SPI Glcd Fill (0x00); // Clear Glcd
while (1) {

SPI Glcd Image (truck bmp) ; // Draw image
Delay2s(); Delay2s();

SPT_Glcd Fill (0x00); // Clear Gled
Delay2s;

SPI Glcd Box(62,40,124,56,1); // Draw box

SPI Glcd Rectangle(5,5,84,35,1); // Draw rectangle
SPI Glcd Line (0, 63, 127, 0,1); // Draw line
Delay2s () ;

for (counter = 5; counter < 60; counter+=5) { // Draw horizontal

and vertical line
Delay ms (250);
SPI Glcd V Line(2, 54, counter, 1);
SPI Glcd H Line(2, 120, counter, 1);
}

Delay2s () ;

SPT Glcd Fill (0x00); // Clear Glcd

SPI Glcd Set Font (Character8x7, 8, 8, 32); // Choose font, see
_ Lib GlcdFonts.c in Uses folder

SPI Glcd Write Text ("mikroE", 5, 7, 2); // Write string
for (counter = 1; counter <= 10; counter++) // Draw circles

SPI Glcd Circle(63,32, 3*counter, 1);
Delay2s () ;

466 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI Glcd Box (12,20, 70,63, 2); // Draw box
DelayZ2s () ;

SPI Glcd Fill (0xFF); // Fill Glcd

SPI Glcd Set Font (Character8x7, 8, 7, 32); // Change font

someText = "8x7 Font";

SPI Glcd Write Text (someText, 5, 0, 2); // Write string
SPI Glcd Write Text (someText, 5, 1, 2); // Write string
Delay2s () ;

SPI Glcd Set Font (System3x5, 3, 5, 32); // Change font

someText = "3X5 CAPITALS ONLY";

SPI Glcd Write Text (someText, 5, 2, 2); // Write string
SPI Glcd Write Text (someText, 5, 3, 2); // Write string
Delay2s();

SPI Glcd Set Font (fontbx7, 5, 7, 32); // Change font

someText = "5x7 Font";

SPI Glcd Write Text (someText, 5, 4, 2); // Write string
SPI Glcd Write Text (someText, 5, 5, 2); // Write string
Delay2s () ;

SPI Glcd Set Font (FontSystem5x7 v2, 5, 7, 32); // Change font

someText = "5x7 Font (v2)";

SPI Glcd Write Text (someText, 5, 6, 2); // Write string
SPI Glcd Write Text (someText, 5, 7, 2); // Write string
Delay2s () ;

}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 467

CHAPTER 6
Libraries mikroC PRO for AVR

HW Connection

o Leftside Rightside 12z X @Xis

d

[l PB.O
[re.1

MCP23817

[]rBs
[]res
[]rPB7

Cco{] vec
osCiLLATOR eno

[xmaui

9LVOINLY
7

Vee

vcC o

Contrast
Adjustment

SPI Gled HW
connection

468 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI LCD LIBRARY

The mikroC PRO for AVR provides a library for communication with Lcd (with
HD44780 compliant controllers) in 4-bit mode via SPI interface.

For creating a custom set of Lcd characters use Lcd Custom Character Tool.

Note: The library uses the SPI module for communication. The user must initialize
the SPI module before using the SPI Lcd Library.

Note: This Library is designed to work with the mikroElektronika's Serial Lcd
Adapter Board pinout. See schematic at the bottom of this page for details.

External dependencies of SPI Lcd Library

The implementation of SPI Lcd Library routines is based on Port Expander Library
routines.

Prior to calling any of this library routines, Spi_Rd_Ptr needs to be initialized with the
appropriate SPI_Read routine.

External dependencies are the same as Port Expander Library external dependen-
cies.

Library Routines

- SPI_Lcd_Config
- SPI_Lcd_Out

- SPIl_Lcd Out Cp
- SPIl_Lcd_Chr

- SPIl _Lcd _Chr_Cp
- SPIl Lcd Cmd

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 469

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Lcd_Config

Prototype void SPI Lcd Config(char DeviceAddress) ;

Returns Nothing.

Initializes the Lcd module via SPI interface.

Description Parameters :

- DeviceAddress: SPIl expander hardware address, see schematic at
the bottom of this page

Global variables :

- sPExpandercs: Chip Select line

- SPExpanderRST: Reset line

- SPExpanderCS Direction: Direction of the Chip Select pin
Requires - SPExpanderRST Direction: Direction of the Reset pin

must be defined before using this function.

The SPI module needs to be initialized. See SPI1_Init and SPI1_Init_Advanced
routines.

// Port Expander module connections

sbit SPExpanderRST at PORTB.BO;

sbit SPExpanderCS at PORTB.B1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.B1;
// End Port Expander module connections

Example void main() {

// If Port Expander Library uses SPI1 module

SPI1 Init(); // Initialize SPI module
used with PortExpander

SPI Rd Ptr = SPI1 Read; // Pass pointer to SPI
Read function of used SPI module

SPI Lcd Config(0); // initialize Lcd over

SPI interface

470 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Lcd_Out

Prototype |[void SPI Lcd Out (char row, char column, char *text);

Returns Nothing.

Prints text on the Lcd starting from specified position. Both string variables and
literals can be passed as a text.

Description Parameters :
- row: starting position row number

- column: starting position column number
- text: text to be written

Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd_Config routines.

// Write text "Hello!"™ on Lcd starting from row 1, column 3:

Example SPI_Lcd Out (1, 3, "Hello!");

SPI_Lcd Out_Cp

Prototype |void SPI Lcd Out CP(char *text);

Returns Nothing.

Prints text on the Lcd at current cursor position. Both string variables and literals
can be passed as a text.

Description Parameters :

- text: text to be written

Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd Config routines.

// Write text "Here!" at current cursor position:

Example SPI_Lcd Out CP("Here!");

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 471

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Lcd_Chr

Prototype void SPI Lcd Chr(char Row, char Column, char Out Char);

Returns Nothing.

Prints character on Lcd at specified position. Both variables and literals can be
passed as character.

r Parameters :
Description
- Row: Writing position row number
- Column: writing position column number
- Oout Char: character to be written

Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd_Config routines.

// Write character "i" at row 2, column 3:

Example |.o: 1od chr2, 3, 'in);

SPI _Lcd _Chr_Cp

Prototype |void SPI Lcd Chr CP(char Out Char);

Returns Nothing.

Prints character on Lcd at current cursor position. Both variables and literals can
be passed as character.

Description Parameters :

- Out_Char: character to be written

Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd Config routines.

// Write character "e" at current cursor position:

Example SPI Lcd Chr Cp('e');

472 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroC PRO for AVR

SPI Lcd_Cmd

Prototype |void SPI Lcd Cmd(char out char);

Returns Nothing.
Sends command to Lcd.
Parameters :

Description - out_char: command to be sent
Note: Predefined constants can be passed to the function, see Available Lcd
Commands.

Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd_Config routines.
// Clear Lcd display:

Example SPI Lcd Cmd (LCD_CLEAR) ;

Available Lcd Commands

Lcd Command

Purpose

LCD_FIRST ROW

Move cursor to the 1st row

LCD_SECOND ROW

Move cursor to the 2nd row

LCD_THIRD ROW

Move cursor to the 3rd row

LCD_FOURTH_ ROW

Move cursor to the 4th row

LCD_CLEAR

Clear display

LCD_RETURN HOME

Return cursor to home position, returns a shifted display
to its original position. Display data RAM is unaffected.

LCD_CURSOR_OFF

Turn off cursor

LCD_UNDERLINE ON

Underline cursor on

LCD_BLINK_CURSOR ON

Blink cursor on

LCD MOVE CURSOR LEFT

Move cursor left without changing display data RAM

LCD MOVE CURSOR_RIGHT

Move cursor right without changing display data RAM

LCD_TURN_ON

Turn Lcd display on

LCD_TURN OFF

Turn Lcd display off

LCD SHIFT LEFT

Shift display left without changing display data RAM

LCD SHIFT RIGHT

Shift display right without changing display data RAM

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 473

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example

This example demonstrates how to communicate Lcd via the SPI module, using
serial to parallel convertor MCP23S17.

char *text = "mikroElektronika";

// Port Expander module connections

sbit SPExpanderRST at PORTB.RO;

sbit SPExpanderCS at PORTB.BI1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.B1;
// End Port Expander module connections

void main () {

// If Port Expander Library uses SPI1 module

SPI1 Init(); // Initialize SPI module
used with PortExpander
SPI Rd Ptr = SPI1l Read; // Pass pointer to SPI Read

function of used SPI module

// // If Port Expander Library uses SPI2 module

// SPI2 Init(); // Initialize SPI module
used with PortExpander
// SPI_Rd Ptr = SPI2 Read; // Pass pointer to SPI Read

function of used SPI module

SPI Lcd Config(0); // Initialize Lcd over SPI
interface

SPI Lcd Cmd(Lcd CLEAR) ; // Clear display

SPI Lcd Cmd(Lcd CURSOR _OFF) ; // Turn cursor off

SPI Lcd Out (1,6, "mikroE"); // Print text to Lcd, 1st
row, 6th column

SPI Lcd Chr CP('!'"); // Append '!'

SPI Lcd Out (2,1, text); // Print text to Lcd, 2nd

row, 1st column

// SPI Lcd Out(3,1,"mikroE"); // For Lcd with more than
two rows
// SPI Lcd Out (4,15, "mikroE"); // For Lcd with more than

two rows

}

474 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

HW Connection

MCP23S17 [l PBO N
N H
—epeo cpar[}22 .IE PB.1
—2[GPB1 GPA6 |_27
RS 37 26 L
=L P82 GPA5]? i
{] ePB3 GPA4 [— ;[>
D4 5 24 1 PB.
[] PB4 GPA3 [} — []PB6 —l
D5 65 23 L
ﬁ[GPB5 GPA2]? [l pe.7 g
ﬁ[GPB6 GPA1]? [
B N Y et e T OPH
o———{]| vop INTA [|— L =
10 L
(] vss INTB [{ [Q 1
PB.A 114 = 18 PB.O i [x7AL1 > 1
PB.7 125 °° RESET]ni i i
———] sck A2 [|— i — i
PB.513 sl A 16 | m
PB.614|: I 15 L]
—1] so A0 [— i i
L4 [I
_ L 1
1 1
vee
o)
Contrast
[‘| Adjustment
5K J4

EEEFEEREREENEE

SPI Lcd HW connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 475

CHAPTER 6
Libraries mikroC PRO for AVR

SPI LCD8 (8-BIT INTERFACE) LIBRARY

The mikroC PRO for AVR provides a library for communication with Lcd (with
HD44780 compliant controllers) in 8-bit mode via SPI interface.

For creating a custom set of Lcd characters use Lcd Custom Character Tool.

Note: Library uses the SPI module for communication. The user must initialize the
SPI module before using the SPI Lcd Library.

Note: This Library is designed to work with mikroElektronika's Serial Lcd/GLcd
Adapter Board pinout, see schematic at the bottom of this page for details.

External dependencies of SPI Lcd Library

The implementation of SPI Lcd Library routines is based on Port Expander Library
routines.

Prior to calling any of this library routines, Spi_Rd_Ptr needs to be initialized with the
appropriate SPI_Read routine.

External dependencies are the same as Port Expander Library external dependen-
cies.

Library Routines

- SPI_Lcd8 Config
- SPI_Lcd8_Out

- SPI_Lcd8 Out Cp
- SPI_Lcd8_Chr

- SPIl_Lcd8 Chr_Cp
- SPIl Lcd8 Cmd

476 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_Lcd8_Config

Prototype void SPI Lcd8 Config(char DeviceAddress);

Returns Nothing.

Initializes the Lcd module via SPI interface.

Description Parameters :

- DeviceAddress: SPIl expander hardware address, see schematic at
the bottom of this page

Global variables :

- sPExpandercCs: Chip Select line

- SPExpanderRST: Reset line

- SPExpanderCS_Direction: Direction of the Chip Select pin
Requires - SPExpanderRST Direction: Direction of the Reset pin

must be defined before using this function.

The SPI module needs to be initialized. See SPI1_Init and SPI1_Init_Advanced
routines.

// Port Expander module connections

sbit SPExpanderRST at PORTB.BO;

sbit SPExpanderCS at PORTB.B1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.B1;
// End Port Expander module connections

Example
// If Port Expander Library uses SPI1 module
SPI1 Init(); // Initialize SPI
module used with PortExpander
SPI Rd Ptr = SPI1 Read; // Pass pointer to
SPI Read function of used SPI module>
SPI Lcd8 Config(0); // intialize Lcd in

8bit mode via SPI

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 477

CHAPTER 6

Libraries mikroC PRO for AVR
SPI_Lcd8_Out
void SPI Lcd8 Out (unsigned short row, unsigned short column, char
Prototype ftext): -
Returns Nothing.
Prints text on Lcd starting from specified position. Both string variables and liter-
als can be passed as a text.
i Parameters :
Description
- row: starting position row number
- column: starting position column number
- text: text to be written
Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd8 Config routines.
Example // Write text "Hello!" on Lcd starting from row 1, column 3:
xamp SPI Lcd8 Out (1, 3, "Hello!™);

SPI _Lcd8 Out_Cp

Prototype |void SPI Lcd8 Out CP(char *text);
Returns Nothing.
Prints text on Lcd at current cursor position. Both string variables and literals
can be passed as a text.
Description Parameters :
- text: text to be written
Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd8 Config routines.
E I // Write text "Here!" at current cursor position:
xample SPI Lcd8 Out Cp("Herel!");
478 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries

SPI_Lcd8_Chr

void SPI Lcd8 Chr (unsigned short row, unsigned short column, char
out char);

Prototype

Returns Nothing.

Prints character on Lcd at specified position. Both variables and literals can be
passed as character.

i Parameters :
Description

- row: writing position row number

- column: writing position column number
- out char: character to be written

Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd8 Config routines.

// Write character "i" at row 2, column 3:

Example SPI Lcd8 Chr(2, 3, 'i');

SPIl_Lcd8 Chr_Cp

Prototype |void SPI Lcd8 Chr CP(char out char);

Returns Nothing.

Prints character on Lcd at current cursor position. Both variables and literals can
be passed as character.

Description Parameters :

- out char: character to be written

Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd8 Config routines.

Print “e” at current cursor position:

Exan““e // Write character "e" at current cursor position:

SPI Lcd8 Chr Cp('e');

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 479

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_Lcd8 Cmd

Prototype |[void SPI Lcd8 Cmd(char out char);

Returns Nothing.

Sends command to Lcd.

Parameters :

Description
P - out_char: command to be sent

Note: Predefined constants can be passed to the function, see Available Lcd
Commands.

Requires Lcd needs to be initialized for SPI communication, see SPI_Lcd8 Config routines.

// Clear Lcd display:

Example SPI_Lcd8_Cmd (Lcd_CLEAR) ;

Available Lcd Commands

Lcd Command Purpose
LCD_FIRST ROW Move cursor to the 1st row
LCD_SECOND_ROW Move cursor to the 2nd row
LCD THIRD ROW Move cursor to the 3rd row
LCD FOURTH ROW Move cursor to the 4th row
LCD CLEAR Clear display

Return cursor to home position, returns a shifted display

LCD_RETURN_HOME to its original position. Display data RAM is unaffected.

LCD CURSOR _OFF Turn off cursor
LCD_UNDERLINE ON Underline cursor on
LCD_BLINK CURSOR ON Blink cursor on

LCD_MOVE CURSOR LEFT Move cursor left without changing display data RAM

LCD MOVE CURSOR _RIGHT |Move cursor right without changing display data RAM

LCD_TURN ON Turn Lcd display on

LCD_TURN OFF Turn Lcd display off

LCD SHIFT LEFT Shift display left without changing display data RAM
LCD SHIFT RIGHT Shift display right without changing display data RAM

480 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example

This example demonstrates how to communicate Lcd in 8-bit mode via the SPI mod-
ule, using serial to parallel convertor MCP23S17.

char *text = "mikroE";

// Port Expander module connections

sbit SPExpanderRST at PORTB.RO;

sbit SPExpanderCS at PORTB.BI1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.B1;
// End Port Expander module connections

void main () {

// If Port Expander Library uses SPI1 module

SPI1 Init(); // Initialize SPI
module used with PortExpander
SPI Rd Ptr = SPI1 Read; // Pass pointer to SPI

Read function of used SPI module

// // If Port Expander Library uses SPI2 module

// SPI2 Init(); // Initialize SPI
module used with PortExpander
// SPI_Rd Ptr = SPI2 Read; // Pass pointer to SPI

Read function of used SPI module

SPI Lcd8 Config(0); // Intialize Lcd in
8bit mode via SPI

SPI Lcd8 Cmd(LCD CLEAR) ; // Clear display

SPI Lcd8 Cmd(LCD _CURSOR OFF) ; // Turn cursor off

SPI Lcd8 Out (1,6, text); // Print text to Lcd,
lst row, 6th column...

SPI Lcd8 Chr CP('!'); // Append '!'

SPI Lcd8 Out(2,1, "mikroelektronika"); // Print text to Lcd,
2nd row, 1st column...

SPI Lcd8 Out (3,1, text); // For Lcd modules
with more than two rows

SPI Lcd8 Out (4,15, text); // For Lcd modules

with more than two rows

}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 481

CHAPTER 6
Libraries mikroC PRO for AVR

HW Connection

MCP23517

< r \
Do 1[GPBO GPA7 |_28 L PB.0
D1 27 27 {] PB.1
[] epB1 GPAG [|—
B2 3H ez GPA5]ﬁ [
D3 47 25 RS [
{| cPB3 GPA4 [} —— i
D4 5 24
————— (| ePBa GPA3[}— f res >
D5 6 23 E H
——————————{| ePB5 GPA2[}——— {] PB6 —l
D6 7 22 H
ﬁ[GPB6 GPA1]T E PB.7 g
————1]| ePB7 GPAO [}—
vCcC * vop WA [20 Cco{lvec JT] ono
10[19 OSCILLATOR _,__[GND :] —
1 PB.1 11[s _INTB _I:l 18 PB.O % =i O 1
—————]|cs RESET
PB.712 H 17 e[| XTALY > 1
————1] ScK A2 [}— i i
PB.513 ar el N
PB.G14I: st 1 15 [(o))]
—1] so Ao [f—p i i
- []
[]
[]
[]
vee
Contrast
Adjustment
5K

SPI Lcd8 HW connection

482 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI T6963C GRAPHIC LCD LIBRARY

The mikroC PRO for AVR provides a library for working with Glcds based on
TOSHIBA T6963C controller via SPI interface. The Toshiba T6963C is a very popu-
lar Lcd controller for the use in small graphics modules. It is capable of controlling
displays with a resolution up to 240x128. Because of its low power and small out-
line it is most suitable for mobile applications such as PDAs, MP3 players or mobile
measurement equipment. Although this controller is small, it has a capability of dis-
playing and merging text and graphics and it manages all interfacing signals to the
displays Row and Column drivers.

For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.

Note: The library uses the SPI module for communication. The user must initialize
SPI module before using the SPI T6963C Glcd Library.

Note: This Library is designed to work with mikroElektronika's Serial Glcd 240x128
and 240x64 Adapter Boards pinout, see schematic at the bottom of this page for
details.

Note: Some mikroElektronika's adapter boards have pinout different from T6369C
datasheets. Appropriate relations between these labels are given in the table below:

Adapter Board | T6369C datasheet

RS C/D
R/W /RD
E /WR

External dependencies of SPI T6963C Graphic Lcd Library

The implementation of SPI T6963C Graphic Lcd Library routines is based on Port
Expander Library routines.

Prior to calling any of this library routines, Spi_Rd_Ptr needs to be initialized with the
appropriate SPI_Read routine.

External dependencies are the same as Port Expander Library external dependencies.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 483

CHAPTER 6
Libraries mikroC PRO for AVR

Library Routines

-SPI_T6963C_Config
-SPI1_T6963C_WriteData
-SPI1_T6963C_WriteCommand
-SPI_T6963C_SetPir
-SPI_T6963C_WaitReady
-SPI_T6963C_Fill
-SPI_T6963C_Dot
-SPI_T6963C_Write_Char
-SPI_T6963C_Write_Text
-SPI_T6963C_Line
-SPI_T6963C_Rectangle
-SPI_T6963C_Box
-SPI_T6963C_Circle
-SPI1_T6963C_Image
-SPI_T6963C_Sprite
-SPI1_T6963C_Set_Cursor

Note: The following low level library routines are implemented as macros. These
macros can be found in the sp1_T6963C.h header file which is located in the SPI
T6963C example projects folders.

- SPI_T6963C_ClearBit

- SPI_T6963C_SetBit

- SPI_T6963C_NegBit

- SPI_T6963C_DisplayGrPanel
- SPI_T6963C_DisplayTxtPanel
- SPI_T6963C_SetGrPanel

- SPI_T6963C_SetTxtPanel

- SPI_T6963C_PanelFill

- SP1_T6963C_GrFill

- SP1_T6963C_TxtFill

- SPI_T6963C_Cursor_Height
- SPI_T6963C_Graphics

- SPI_T6963C_Text

- SPI_T6963C_Cursor

- SPI_T6963C_Cursor_Blink

484 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_T6963C_Config

void SPI T6963C Config(unsigned int width, unsigned char height,
Prototype unsigned char fntW, char DeviceAddress, unsigned char wr,
unsigned char rd, unsigned char cd, unsigned char rst);

Returns Nothing.

Initalizes the Graphic Lcd controller.
Parameters :

- width: width of the Glcd panel

- height: height of the Glcd panel

- fntw: font width

- DeviceAddress: SPIl expander hardware address, see schematic at
the bottom of this page

- wr: write signal pin on Glcd control port

- rd: read signal pin on Glcd control port

- cd: command/data signal pin on Glcd control port

- rst: reset signal pin on Glcd control port

Display RAM organization:
The library cuts RAM into panels : a complete panel is one graphics panel fol-
lowed by a text panel (see schematic below).

Description
schematic:
L atata e T D + /\
+ GRAPHICS PANEL #0 +
+ +
+ +
+ +
e it e T + | PANEL 0
+ TEXT PANEL #0 +
+ +\/
- + /\
+ GRAPHICS PANEL #1 +
+ +
+ +
+ +
e it e T + | PANEL 1
+ TEXT PANEL #2 +
+ +
o + \/

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 485

CHAPTER 6
Libraries mikroC PRO for AVR

Global variables :

- sPExpandercs: Chip Select line

- SPExpanderRST: Reset line

- SPExpanderRST Direction: Direction of the Chip Select pin
Requires - SPExpanderCS Direction: Direction of the Reset pin

variables must be defined before using this function.

The SPI module needs to be initialized. See the SPI_Init and
SPI_Init_Advanced routines.

// Port Expander module connections

sbit SPExpanderRST at PORTB.BO;

sbit SPExpanderCS at PORTB.B1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.B1;
// End Port Expander module connections

Example

// Pass pointer to SPI Read function of used SPI module
SPT Rd Ptr = SPI1 Read;

// Initialize SPI module

SPI1 Init Advanced(SPI MASTER, SPI FCY DIV32, SPI CLK HI TRAIL-
ING) ;

SPI T6963C Config (240, 64, 8, 0, 0, 1, 3, 4);

486 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_T6963C_WriteData

Prototype |void SPI T6963C WriteData (unsigned char Ddata);

Returns Nothing.

Writes data to T6963C controller via SPI interface.
Description |Parameters :

- Ddata: data to be written

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example SPI T6963C WriteData (AddrL);

SPI_T6963C_WriteCommand

Prototype |[void SPI T6963C WriteCommand (unsigned char Ddata);

Returns Nothing.

Writes command to T6963C controller via SPI interface.
Description |Parameters :

- bdata: command to be written

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example SPI T6963C WriteCommand (SPI T6963C CURSOR POINTER SET);

SPI_T6963C_SetPtr

Prototype |void SPI T6963C SetPtr (unsigned int p, unsigned char c);

Returns Nothing.

Sets the memory pointer p for command c.

Description Parameters :

- p: address where command should be written
- ¢: command to be written

Requires SToshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

SPI_T6963C_SetPtr (T6963C_grHomeAddr + start, T6963C_ADDRESS POINT-

Example ER SET);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 487

CHAPTER 6

Libraries mikroC PRO for AVR

SPI_T6963C_WaitReady

Prototype |void SPI T6963C WaitReady (void);
Returns Nothing.
Description [Pools the status byte, and loops until Toshiba Glcd module is ready.
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example SPI_T6963C WaitReady () ;
SPI_T6963C_Fill
void SPI T6963C Fill (unsigned char v, unsigned int start,
Prototype . - —
unsigned int len);
Returns Nothing.
Fills controller memory block with given byte.
Parameters :
Description
- v: byte to be written
- start: starting address of the memory block
- len: length of the memory block in bytes
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example SPI_T6963C Fill (0x33,0x00FF,0x000F) ;

SPI_T6963C_Dot

Prototype void SPI T6963C Dot (int x, int y, unsigned char color);
Returns Nothing.
Draws a dot in the current graphic panel of Glcd at coordinates (x, y).
Parameters :
Description - x: dot position on x-axis
- y: dot position on y-axis
- color: color parameter. Valid values: SPI_T6963C_BLACK and
SPI_T6963C_WHITE
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example SPI T6963C Dot (x0, y0, pcolor);

488

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_T6963C_Write_Char

void SPI T6963C Write Char (unsigned char c, unsigned char x,
unsigned char y, unsigned char mode) ;

Prototype

Returns Nothing.

Writes a char in the current text panel of Glcd at coordinates (x, y).
Parameters :

- c: char to be written

- x: char position on x-axis

- y: char position on y-axis

- mode : mode parameter. Valid values: SPI_T6963C_ROM_MODE_OR,
SPI_T6963C_ROM_MODE_XOR, SPI_T6963C_ROM_MODE_AND
and SPI_T6963C_ROM_MODE_TEXT

Mode parameter explanation:

Description

- OR Mode: In the OR-Mode, text and graphics can be displayed and
the data is logically “OR-ed”. This is the most common way of combin-
ing text and graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via
the logical “exclusive OR”. This can be useful to display text in nega-
tive mode, i.e. white text on black background.

- AND-Mode: The text and graphic data shown on display are combined
via the logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text.
The Text Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example SPI_T6963C Write Char ("A",22,23,AND);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 489

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_T6963C_Write_Text

void SPI T6963C Write Text (unsigned char *str, unsigned char x,
unsigned char y, unsigned char mode) ;

Prototype

Returns Nothing.

Writes text in the current text panel of Glcd at coordinates (x, y).
Parameters :

- str: text to be written

- x: text position on x-axis

- y: text position on y-axis

- mode: mode parameter. Valid values: SPI_T6963C_ROM_MODE_OR,
SPI_T6963C_ROM_MODE_XOR, SPI_T6963C_ROM_MODE_AND
and SPI_T6963C_ROM_MODE_TEXT

Mode parameter explanation:

Description

- OR Mode: In the OR-Mode, text and graphics can be displayed and
the data is logically “OR-ed”. This is the most common way of combin-
ing text and graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via
the logical “exclusive OR”. This can be useful to display text in nega-
tive mode, i.e. white text on black background.

- AND-Mode: The text and graphic data shown on the display are com-
bined via the logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text.
The Text Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

SPI T6963C Write Text ("Glcd LIBRARY DEMO, WELCOME !", 0, O,

Example 05750 rom MODE ExOR) ;

490 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

SPI_T6963C_Line

Prototype

void SPI T6963C Line(int x0, int y0, int x1,
char pcolor);

int yl, unsigned

Returns

Nothing.

Description

Draws a line from (x0, y0) to (x1, y1).
Parameters :

- x0: X coordinate of the line start

- y0: y coordinate of the line end

- x1: X coordinate of the line start

- y1: y coordinate of the line end

- pcolor: color parameter. Valid values: SPI_T6963C_ BLACK and
SPI_T6963C_WHITE

Requires

Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example

SPI_T6963C Line (0, 0, 239, 127, T6963C_WHITE);

SPI_T6963C_Rectangle

Prototype

void SPI T6963C Rectangle (int x0, int y0, int x1, int yl,
unsigned char pcolor);

Returns

Nothing.

Description

Draws a rectangle on Glcd.
Parameters :

- x0: x coordinate of the upper left rectangle corner

- y0: y coordinate of the upper left rectangle corner

- x1: X coordinate of the lower right rectangle corner

- y1: y coordinate of the lower right rectangle corner

- pcolor: color parameter. Valid values: SPI_T6963C_BLACK and
SPI_T6963C_WHITE

Requires

Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example

SPI T6963C Rectangle (20, 20, 219, 107,

T6963C WHITE) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

491

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_T6963C_Box

void SPI T6963C Box(int x0, int y0, int x1, int yl, unsigned char
pcolor) ;

Prototype

Returns Nothing.

Draws a box on the Glcd
Parameters :

- x0: x coordinate of the upper left box corner

- y0: y coordinate of the upper left box corner

- x1: X coordinate of the lower right box corner

- y1: y coordinate of the lower right box corner

- pcolor: color parameter. Valid values: SPI_T6963C_BLACK and
SPI_T6963C_WHITE

Description

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example SPI T6963C Box (0, 119, 239, 127, T6963C WHITE);

SPI_T6963C_Circle

void SPI T6963C Circle(int x, int y, long r, unsigned char pcol-
or) ;

Prototype

Returns Nothing.

Draws a circle on the Glcd.
Parameters :

Description - x: X coordinate of the circle center

- yv: y coordinate of the circle center

- r: radius size

- pcolor: color parameter. Valid values: SPI_T6963C_BLACK and
SPI_T6963C_WHITE

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example SPI_T6963C Circle (120, 64, 110, T6963C WHITE);

492 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_T6963C_Image

Prototype |[void SPI T6963C Image (const code char *pic);

Returns Nothing.

Displays bitmap on Glcd.
Parameters :
- pic: image to be displayed. Bitmap array can be located in both code

and RAM memory (due to the mikroC PRO for AVR pointer to const
and pointer to RAM equivalency).

Description

Use the mikroC PRO’s integrated Glcd Bitmap Editor (menu option Tools > Glcd
Bitmap Editor) to convert image to a constant array suitable for displaying on Glcd.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example SPI T6963C Image (my image);

SPI_T6963C_Sprite

void SPI T6963C Sprite(unsigned char px, unsigned char py, const
code char *pic, unsigned char sx, unsigned char sy);

Prototype

Returns Nothing.

Fills graphic rectangle area (px, py) to (px+sx, py+sy) with custom size picture.
Parameters :

- px: x coordinate of the upper left picture corner. Valid values: multiples
of the font width

Description - py: y coordinate of the upper left picture corner

- pic: picture to be displayed

- sx: picture width. Valid values: multiples of the font width

- sy: picture height

Note: If px and sx parameters are not multiples of the font width they will be
scaled to the nearest lower number that is a multiple of the font width.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example SPI T6963C Sprite(76, 4, einstein, 88, 119); // draw a sprite

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 493

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_T6963C_Set_Cursor

Prototype void SPI T6963C Set Cursor (unsigned char x, unsigned char y);

Returns Nothing.

Sets cursor to row x and column y.

Description Parameters :

- x: cursor position row number
- y: cursor position column number

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

Example SPI T6963C Set Cursor(cposx, cCposy);

SPI_T6963C_ClearBit

Prototype |void SPI T6963C ClearBit (char b);

Returns Nothing.

Clears control port bit(s).

Description Parameters :

- b: bit mask. The function will clear bit x on control port if bit x in bit
mask is set to 1.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

// clear bits 0 and 1 on control port
SPI T6963C ClearBit (0x03);

Example

494 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries

SPI_T6963C_SetBit

Prototype |void SPI T6963C SetBit (char b);

Returns Nothing.

Sets control port bit(s).

Description Parameters :

- b: bit mask. The function will set bit x on control port if bit x in bit
mask is set to 1.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

// set bits 0 and 1 on control port

Example SPT T6963C_SetBit (0x03);

SPI_T6963C_NegBit

Prototype |void SPI T6963C NegBit (char b);

Returns Nothing.

Negates control port bit(s).

Description Parameters :

- b: bit mask. The function will negate bit x on control port if bit x in bit
mask is set to 1.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

// negate bits 0 and 1 on control port
SPI T6963C_NegBit (0x03) ;

Example

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 495

CHAPTER 6
Libraries

mikroC PRO for AVR

SPI_T6963C_DisplayGrPanel

Prototype [void SPI T6963C DisplayGrPanel (char n);
Returns Nothing.
Display selected graphic panel.
Description |Parameters :
- n: graphic panel number. Valid values: 0 and 1.
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example |00 LS T e)

SPI_T6963C_DisplayTxtPanel

Prototype |void SPI T6963C DisplayTxtPanel (char n);
Returns Nothing.
Display selected text panel.
Description |Parameters :
- n: text panel number. Valid values: 0 and 1.
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
// display text panel 1
Exan“ﬂe SPI T6963C DisplayTxtPanel(1l);
SPI_T6963C_SetGrPanel
Prototype |void SPI T6963C SetGrPanel (char n);
Returns Nothing.
Compute start address for selected graphic panel and set appropriate internal point-
ers. All subsequent graphic operations will be preformed at this graphic panel.
Description Parameters :
- n: graphic panel number. Valid values: 0 and 1.
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
// set graphic panel 1 as current graphic panel.
Example [.p; r5o63c setGrpanel (1)
496 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

SPI_T6963C_SetTxtPanel

Prototype |[void SPI T6963C SetTxtPanel (char n);

Returns Nothing.

Compute start address for selected text panel and set appropriate internal point-
ers. All subsequent text operations will be preformed at this text panel.

Description Parameters :

- n: text panel number. Valid values: 0 and 1.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

// set text panel 1 as current text panel.

Exan““e SPI T6963C SetTxtPanel(1l);

SPI_T6963C_PanelFill

Prototype |[void SPI T6963C PanelFill (unsigned char v);

Returns Nothing.

Fill current panel in full (graphic+text) with appropriate value (0 to clear).

Description |Parameters :

- v: value to fill panel with.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

clear current panel

Example o1 16963c pane1rill (0);

SPI_T6963C_GrFill

Prototype |[void SPI T6963C GrFill (unsigned char v);

Returns Nothing.

Fill current graphic panel with appropriate value (0 to clear).

Description |Parameters :

- v: value to fill graphic panel with.

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

// clear current graphic panel

Example |01 16963c Grrill (0);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 497

CHAPTER 6
Libraries

mikroC PRO for AVR

SPI_T6963C_TxtFill

Prototype |[void SPI T6963C TxtFill (unsigned char v);
Returns Nothing.
Fill current text panel with appropriate value (0 to clear).
Description |Parameters :
- v: this value increased by 32 will be used to fill text panel.
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
// clear current text panel
Example |50 r6063c TxtFill(0);
SPI_T6963C_Cursor_Height
Prototype |void SPI T6963C Cursor Height (unsigned char n);
Returns Nothing.
Set cursor size.
Description |Parameters :
- n: cursor height. Valid values: 0. .7.
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example SPI T6963C Cursor Height (7);

SPI_T6963C_Graphics

Prototype |[void SPI T6963C Graphics(char n);
Returns Nothing.
Enable/disable graphic displaying.
Description Parameters :
- n: graphic enable/disable parameter. Valid values: 0 (disable graphic
dispaying) and 1 (enable graphic displaying).
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
// enable graphic displaying
Example |01 16063 Graphics (1)

498

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

SPI_T6963C_Text

Prototype |void SPI T6963C Text (char n);
Returns Nothing.
Enable/disable text displaying.
Description Parameters :
- n: text enable/disable parameter. Valid values: 0 (disable text
dispaying) and 1 (enable text displaying).
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
// enable text displaying
Example |01 r6063c Text (1)
SPI_T6963C_Cursor
Prototype |[void SPI T6963C Cursor (char n);
Returns Nothing.
Set cursor on/off.
Description |Parameters :
- n: on/off parameter. Valid values: o0 (set cursor off) and 1 (set cursor on).
Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
// set cursor on
Exan“ﬂe SPI T6963C Cursor(l);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

499

CHAPTER 6
Libraries mikroC PRO for AVR

SPI_T6963C_Cursor_Blink

Prototype void SPI T6963C Cursor Blink(char n);

Returns Nothing.

Enable/disable cursor blinking.

Description Parameters :

- n: cursor blinking enable/disable parameter. Valid values: 0 (disable
cursor blinking) and 1 (enable cursor blinking).

Requires Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.

// enable cursor blinking

Example SPI_T6963C_Cursor Blink(1);

Library Example

The following drawing demo tests advanced routines of the SPI T6963C Glcd library. Hardware
configurations in this example are made for the T6963C 240x128 display, EasyAVR5 board and

ATmega16.
#include " SPIT6963C.h"
/*
* bitmap pictures stored in ROM
*/

extern const code char me[] ;
extern const code char einstein[] ;

// Port Expander module connections

sbit SPExpanderRST at PORTB.BO;

sbit SPExpanderCS at PORTB.BL1;

sbit SPExpanderRST Direction at DDRB.BO;
sbit SPExpanderCS Direction at DDRB.BI1;
// End Port Expander module connections

void main () {

char txtl[] = " EINSTEIN WOULD HAVE LIKED mE";
char txt[] = " Glcd LIBRARY DEMO, WELCOME !";

500 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroC PRO for AVR Libraries
unsigned char panel ; // current panel
unsigned int i // general purpose register
unsigned char curs ; // cursor visibility
unsigned int cposx, cposy ; // cursor x-y position
DDRA = 0x00; // configure PORTA as input
/*
* init display for 240 pixel width and 128 pixel height
* 8 bits character width
* data bus on MCP23S17 portB
* control bus on MCP23S17 portA
* bit 2 is !WR
* pbit 1 is !RD
* bit 0 is !CD
* bit 4 is RST
*

chip enable, reverse on, 8x8 font internaly set in library

*
N

// Pass pointer to SPI Read function of used SPI module
SPI Rd Ptr = SPI1 Read;

// Initialize SPI module
SPI1 Init Advanced(SPI MASTER, SPI FCY DIV32, SPI CLK HI TRAIL-
ING) ;

// // If Port Expander Library uses SPI2 module

// Pass pointer to SPI Read function of used SPI module

// SPI_Rd Ptr = SPI2 Read; // Pass pointer to SPI Read
function of used SPI module

// Initialize SPI module used with PortExpander
/7 SPI2 Init Advanced(SPI MASTER, _SPI FCY DIV32,
_SPI CLK HI TRAILING);

// Initialize SPI Toshiba 240x128

SPI _T6963C Config(240, 128, 8, 0, 2, 1, 0, 4) ;

Delay ms (1000) ;

/*
* Enable both graphics and text display at the same time
*/

SPI T6963C graphics(l) ;

SPI _T6963C text(l) ;

panel = 0 ;

i =20 ;

curs = 0 ;

cposx = cposy = 0 ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 501

CHAPTER 6
Libraries

mikroC PRO for AVR

/*

* Text messages

*/
SPI T6963C write text(txt, 0, 0, SPI T6963C ROM MODE XOR) ;
SPI T6963C write text (txtl, 0, 15, SPI T6963C ROM MODE XOR) ;

J*
* Cursor
*/
SPI T6963C cursor height (8) ; // 8 pixel height
SPI _T6963C_set cursor (0, 0) ; // move cursor to top left
SPI T6963C_cursor (0) ; // cursor off

J*
* Draw rectangles
*/
SPI T6963C rectangle(0, 0, 239, 127, SPI T6963C WHITE) ;
SPI T6963C rectangle (20, 20, 219, 107, SPI T6963C WHITE) ;
SPI T6963C rectangle (40, 40, 199, 87, SPI T6963C WHITE) ;
SPI T6963C rectangle (60, 60, 179, 67, SPI T6963C WHITE) ;

J*
* Draw a Ccross
*/
SPI T6963C line (0, 0, 239, 127, SPI T6963C WHITE) ;
SPI T6963C line (0, 127, 239, 0, SPI T6963C WHITE) ;

/*
* Draw solid boxes
*/
SPI T6963C box (0, 0, 239, 8, SPI T6963C WHITE) ;
SPI T6963C box (0, 119, 239, 127, SPI T6963C WHITE) ;

J*
* Draw circles
*/
SPI T6963C circle (120, 64, 10, SPI T6963C WHITE)
SPI T6963C circle (120, 64, 30, SPI T6963C WHITE)
SPI T6963C circle (120, 64, 50, SPI T6963C WHITE) ;
SPI T6963C circle (120, 64, 70, SPI T6963C WHITE)
SPI T6963C circle (120, 64, 90, SPI T6963C WHITE)
SPI T6963C circle (120, 64, 110, SPI T6963C WHITE) ;
SPI T6963C circle (120, 64, 130, SPI _T6963C WHITE) ;

SPI T6963C sprite(76, 4, einstein, 88, 119) ; // Draw a sprite
SPI T6963C_setGrPanel (1) ; // Select other graphic panel
SPI _T6963C_image (me) ; // Fill the graphic screen with a picture

while (1) { // Endless loop

502 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

/*
* If PORTA 0 is pressed, toggle the display between graphic
panel 0 and graphic 1
*/
if (!PINAO) {
panel++ ;
panel &= 1 ;
SPI T6963C displayGrPanel (panel) ;
Delay ms (300) ;
}

Vs
* If PORTA 1 is pressed, display only graphic panel
*/
else if (!PINALl) {
SPI T6963C graphics(l) ;
SPI_T6963C text (0) ;
Delay ms (300) ;
}

/*
* If PORTA 2 is pressed, display only text panel
*/
else if (!PINA2) {
SPI T6963C graphics(0) ;
SPI T6963C text(l) ;
Delay ms (300) ;
}

/*
* If PORTA 3 is pressed, display text and graphic panels
*/
else if (!PINA3) {
SPI T6963C graphics(l) ;
SPI_T6963C text (1) ;
Delay ms(300) ;
}

/*
* If PORTA 4 is pressed, change cursor
*/
else if (!PINA4) {
curs++ ;
if (curs == 3) curs = 0 ;
switch (curs) {

case 0:

// no cursor

SPI T6963C cursor(0) ;
break ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 503

CHAPTER 6
Libraries

mikroC PRO for AVR

case 1:
// blinking cursor
SPI T6963C cursor(l) ;
SPI T6963C cursor blink(1l) ;
break ;
case 2:
// non blinking cursor
SPI T6963C cursor(l) ;
SPI T6963C cursor blink(0) ;
break ;
}
Delay ms (300) ;
}

/*
* Move cursor, even 1if not visible
*/
cposx++ ;
if (cposx == SPI T6963C txtCols) {
cposx = 0 ;
cposy++ ;
if (cposy == SPI T6963C grHeight / SPI T6963C CHARACTER HEIGHT)

cposy = 0 ;
}
}
SPI T6963C set cursor (cposx, cposy)

Delay ms (100) ;
}

’

504 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

HW Connection

MCP23S17

q

PB.0O
PB.1

PB.5
PB.6
PB.7

I

VCC

OSCILLATOR

2

vcc
GND

XTAL1

91VOINLVY

1,
fomm o T T T T e T

g s s s | s

Toshiba T6963C Graphic LCD (240x128)

10K|
Contrast
Adjustment

SPI T6963C Glcd HW connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 505

CHAPTER 6
Libraries mikroC PRO for AVR

T6963C GRAPHIC LCD LIBRARY

The mikroC PRO for AVR provides a library for working with GLCDs based on
TOSHIBA T6963C controller. The Toshiba T6963C is a very popular LCD controller
for the use in small graphics modules. It is capable of controlling displays with a res-
olution up to 240x128. Because of its low power and small outline it is most suitable
for mobile applications such as PDAs, MP3 players or mobile measurement equip-
ment. Although small, this contoller has a capability of displaying and merging text
and graphics and it manages all the interfacing signals to the displays Row and Col-
umn drivers.

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.
Note: ChipEnable(CE), FontSelect(FS) and Reverse(MD) have to be set to appro-
priate levels by the user outside of the T6963¢c 1nit function. See the Library Exam-

ple code at the bottom of this page.

Note: Some mikroElektronika's adapter boards have pinout different from T6369C
datasheets. Appropriate relations between these labels are given in the table below:

Adapter Board | T6369C datasheet

RS C/D
R/W /RD
E /WR

506 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

External dependencies of T6963C Graphic LCD Library

The following variables
must be defined in all
projects using T6963C
Graphic LCD library:

Description:

Example :

extern sfr char
T6963C dataPort;

T6963C Data Port.

unsigned char sfr
T6963C dataPort at
PORTD;

extern sfr char
T6963C ctrlPort;

T6963C Control Port.

unsigned char sfr
T6963C ctrlPort at
PORTC;

extern sfr char
T6963C dataPort Direc
tion;

Direction of the T6963C
Data Port.

unsigned char sfr
T6963C dataPort Direc
tion at DDRD;

extern sfr char
T6963C ctrlPort Direc

Direction of the T6963C

unsigned char sfr
T6963C ctrlPort Direc

tion; Control Port. tion at DDRC;

extern sfr sbit Write signal. sbit T6963C ctrlwr at

T6963C ctrlwr; PORTC.B2;

extern sfr sbit . sbit T6963C ctrlrd at
Read signal. -

T6963C ctrlrd;

PORTC.B1;

extern sfr sbit
T6963C ctrlcd;

Command/Data signal.

sbit T6963C ctrlcd at
PORTC.BO;

extern sfr sbit
T6963C ctrlrst;

Reset signal.

sbit T6963C ctrlrst
at PORTC.B4;

extern sfr sbit
T6963C ctrlwr Directi
on;

Direction of the Write pin.

sbit
T6963C ctrlwr Directi
on at DDRC.B2;

extern sfr sbit
T6963C ctrlrd Directi
on;

Direction of the Read pin.

sbit
T6963C ctrlrd Directi
on at DDRC.B1;

extern sfr sbit
T6963C ctrlcd Directi
on;

Direction of the Data pin.

sbit
T6963C ctrlcd Directi
on at DDRC.BO;

extern sfr sbit
T6963C ctrlrst Direct
ion;

Direction of the Reset pin.

sbit
T6963C ctrlrst Direct
ion at DDRC.B4;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

507

CHAPTER 6
Libraries mikroC PRO for AVR

Library Routines

- T6963C_Init

- T6963C_WriteData

- T6963C_WriteCommand
- T6963C_SetPtr

- T6963C_WaitReady
- T6963C_Fill

- T6963C_Dot

- T6963C_Write_Char
- T6963C_Write_Text
- T6963C_Line

- T6963C_Rectangle
- T6963C_Box

- T6963C_Circle

- T6963C_Image

- T6963C_Sprite

- T6963C_Set Cursor

Note: The following low level library routines are implemented as macros. These
macros can be found in the T6963c.h header file which is located in the T6963C
example projects folders.

- T6963C_ClearBit

- T6963C_SetBit

- T6963C_NegBit

- T6963C_DisplayGrPanel
- T6963C_DisplayTxtPanel
- T6963C_SetGrPanel

- T6963C_SetTxtPanel

- T6963C_PanelFill

- T6963C_GrfFill

- T6963C_TxtFill

- T6963C_Cursor_Height
- T6963C_Graphics

- T6963C_Text

- T6963C_Cursor

- T6963C_Cursor_Blink

508 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

T6963C_Init

void T6963C Init (unsigned int width, unsigned char height,
unsigned char fntW);

Prototype

Returns Nothing.

Initalizes the Graphic Lcd controller.
Parameters :

- width: width of the GLCD panel
- height: height of the GLCD panel
- fntw: font width

Display RAM organization:
The library cuts the RAM into panels : a complete panel is one graphics panel
followed by a text panel (see schematic below).

schematic:

- + /\
Description |+ GraPHICS PANEL #0 +

+ +

+ +

+ +

e i e e + | PANEL 0

+ TEXT PANEL #0 +

+ +\/

Fmm + /\

+ GRAPHICS PANEL #1 +

+ +

+ +

+ +

et + | PANEL 1

+ TEXT PANEL #2 +

+ +

Fmm + \/

Global variables :

- T6963C dataport: Data Port

- T6963C ctrlport: Control Port

Requires - T6963C_ctrlwr: Write signal pin

- T6963C_ctrlrd: Read signal pin

- T6963C_ctrlcd: Command/Data signal pin
- T6963C ctrlrst: Reset signal pin

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 509

CHAPTER 6
Libraries mikroC PRO for AVR

- T6963C dataPort Direction: Direction of Data Port

T6963C ctrlPort Direction: Direction of Control Port

T6963C ctrlwr Direction: Direction of Write signal pin

T6963C ctrlrd Direction: Direction of Read signal pin

T6963C ctrlcd Direction: Direction of Command/Data signal pin
T6963C ctrlrst Direction: Direction of Reset signal pin

Requires

must be defined before using this function.

// T6963C module connections

char T6963C ctrlPort at PORTC;

char T6963C dataPort at PORTD;

char T6963C ctrlPort Direction at DDRC;
char T6963C dataPort Direction at DDRD;

sbit T6963C ctrlwr at PORTC.BZ2;

sbit T6963C ctrlrd at PORTC.BI1;

sbit T6963C ctrlcd at PORTC.BO;

sbit T6963C ctrlrst at PORTC.B4;

sbit T6963C ctrlwr Direction at DDRC.B2;
sbit T6963C ctrlrd Direction at DDRC.BI1;
sbit T6963C ctrlcd Direction at DDRC.BO;
sbit T6963C ctrlrst Direction at DDRC.B4;
// End of T6963C module connections

Example

// init display for 240 pixel width, 128 pixel height and 8 bits
character width
T6963C init (240, 128, 8) ;

T6963C_WriteData

Prokﬂype void T6963C WriteData(unsigned char mydata);

Returns Nothing.
Writes data to T6963C controller.

Description |Parameters :

- mydata: data to be written

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

Example T6963C WriteData (AddrL);

510 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

T6963C_WriteCommand

Prototype |void T6963C WriteCommand (unsigned char mydata);
Returns Nothing.
Writes command to T6963C controller.
Description |Parameters :
- mydata: command to be written
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example T6963C WriteCommand (T6963C CURSOR POINTER SET);

T6963C_SetPtr

Prototype |void T6963C SetPtr (unsigned int p, unsigned char c);
Returns Nothing.
Sets the memory pointer p for command c.

Description Parameters :

- p: address where command should be written

- ¢: command to be written
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.
Example T6963C SetPtr(T6963C grHomeAddr + start,

T6963C_ADDRESS POINTER SET) ;

T6963C_WaitReady

Prototype |void T6963C WaitReady (void) ;

Returns Nothing.

Description |Pools the status byte, and loops until Toshiba GLCD module is ready.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example T6963C_WaitReady () ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

511

CHAPTER 6
Libraries mikroC PRO for AVR

T6963C_Fill

void T6963C Fill (unsigned char v, unsigned int start, unsigned
int len);

Prototype

Returns Nothing.

Fills controller memory block with given byte.

Parameters :
Description
- v: byte to be written

- start: starting address of the memory block
- len: length of the memory block in bytes

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example T6963C Fill (0x33, 0x00FF, 0x000F) ;

T6963C_Dot

Prototype |void T6963C Dot (int x, int y, unsigned char color);

Returns Nothing.

Draws a dot in the current graphic panel of GLCD at coordinates (X, y).

Parameters :

Description - .
- x: dot position on x-axis
- y: dot position on y-axis
- color: color parameter. Valid values: T6963C_BLACK and
T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

Example T6963C Dot (x0, y0, pcolor);

512 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

T6963C_Write_Char

void T6963C Write Char (unsigned char c, unsigned char x, unsigned
char y, unsigned char mode);

Prototype

Returns Nothing.

Writes a char in the current text panel of GLCD at coordinates (x, y).
Parameters :

- c: char to be written

- x: char position on x-axis

- y: char position on y-axis

- mode: mode parameter. Valid values: T6963C_ROM_MODE_OR,
T6963C_ROM_MODE_XOR, T6963C_ROM_MODE_AND and
T6963C_ROM_MODE_TEXT

Mode parameter explanation:

Description

- OR Mode: In the OR-Mode, text and graphics can be displayed and
the data is logically “OR-ed”. This is the most common way of combin-
ing text and graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via
the logical “exclusive OR”. This can be useful to display text in the
negative mode, i.e. white text on black background.

- AND-Mode: The text and graphic data shown on display are combined
via the logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text.
The Text Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C _Write Char('A',22,23,AND);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 513

CHAPTER 6

Libraries mikroC PRO for AVR

T6963C_Write_Text

void T6963C Write Text (unsigned char *str, unsigned char x,
unsigned char y, unsigned char mode) ;

Prototype

Returns Nothing.

Writes text in the current text panel of GLCD at coordinates (x, y).

Parameters :

- str: text to be written

- x: text position on x-axis

- y: text position on y-axis

- mode: mode parameter. Valid values: T6963C_ROM_MODE_OR,
T6963C_ROM_MODE_XOR, T6963C_ROM_MODE_AND and
T6963C_ROM_MODE_TEXT

Mode parameter explanation:

Description

- OR Mode: In the OR-Mode, text and graphics can be displayed and
the data is logically “OR-ed”. This is the most common way of combin-
ing text and graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via
the logical “exclusive OR”. This can be useful to display text in the
negative mode, i.e. white text on black background.

- AND-Mode: The text and graphic data shown on display are combined
via the logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text.
The Text Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

T6963C Write Text (" GLCD LIBRARY DEMO, WELCOME !, 0, O,

Example 110650 roM woDE x0R) ;

514 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

T6963C_Line
Prototvpbe void T6963C Line(int x0, int y0, int x1, int yl, unsigned char
yp pcolor) ;
Returns Nothing.
Draws a line from (x0, y0) to (x1, y1).
Parameters :
Describtion - x0: X coordinate of the line start
P - y0: y coordinate of the line end
- x1: x coordinate of the line start
- y1: y coordinate of the line end
- pcolor: color parameter. Valid values: T6963C_BLACK and
T6963C_WHITE
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.
Example T6963C _Line (0, 0, 239, 127, T6963C WHITE);

T6963C_Rectangle

void T6963C Rectangle (int x0, int y0, int x1, int yl, unsigned

PrOtOtype char pcolor);
Returns Nothing.
Draws a rectangle on GLCD.
Parameters :
v - x0: x coordinate of the upper left rectangle corner
Description PP 9
P - y0: y coordinate of the upper left rectangle corner
- x1: x coordinate of the lower right rectangle corner
- y1: y coordinate of the lower right rectangle corner
- pcolor: color parameter. Valid values: T6963C_BLACK and
T6963C_WHITE
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example T6963C Rectangle (20, 20, 219, 107, T6963C WHITE);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

515

CHAPTER 6

Libraries mikroC PRO for AVR
T6963C_Box
Prototvbe void T6963C Box(int x0, int y0, int x1, int yl, unsigned char
yp pcolor) ;
Returns Nothing.
Draws a box on GLCD
Parameters :
Describtion - x0: x coordinate of the upper left box corner
P - y0: y coordinate of the upper left box corner
- x1: x coordinate of the lower right box corner
- y1: y coordinate of the lower right box corner
- pcolor: color parameter. Valid values: T6963C_BLACK and
T6963C_WHITE
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.
Example T6963C Box (0, 119, 239, 127, T6963C WHITE);

T6963C_Circle

Prototype |[void T6963C Circle(int x, int y, long r, unsigned char pcolor);
Returns Nothing.
Draws a circle on GLCD.
Parameters :
Description - x: X coordinate of the circle center
- y: y coordinate of the circle center
- r: radius size
- pcolor: color parameter. Valid values: T6963C_BLACK and
T6963C_WHITE
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.
Example T6963C Circle (120, 64, 110, T6963C _WHITE);
516 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

T6963C_Image

Prototype void T6963C Image (const code char *pic);

Returns Nothing.

Displays bitmap on GLCD.
Parameters :

- pic: image to be displayed. Bitmap array can be located in both code
Description and RAM memory (due to the mikroC PRO for AVR pointer to const
and pointer to RAM equivalency).

Use the mikroC PRO’s integrated GLCD Bitmap Editor (menu option Tools »
GLCD Bitmap Editor) to convert image to a constant array suitable for display-
ing on GLCD.

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

Example T6963C_Image (mc);

T6963C_Sprite

void T6963C Sprite(unsigned char px, unsigned char py, const code
char *pic, unsigned char sx, unsigned char sy);

Prototype

Returns Nothing.

Fills graphic rectangle area (px, py) to (px+sx, py+sy) with custom size picture.
Parameters :

- px: x coordinate of the upper left picture corner. Valid values: multiples
of the font width

Description - py: y coordinate of the upper left picture corner

- pic: picture to be displayed

- sx: picture width. Valid values: multiples of the font width

- sy: picture height

Note: If px and sx parameters are not multiples of the font width they will be
scaled to the nearest lower number that is a multiple of the font width.

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

Example T6963C_Sprite (76, 4, einstein, 88, 119); // draw a sprite

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 517

CHAPTER 6
Libraries

mikroC PRO for AVR

T6963C_Set_Cursor

Prototype void T6963C_Set Cursor (unsigned char x, unsigned char y);
Returns Nothing.
Sets cursor to row x and column vy.

Description Parameters :

- x: cursor position row number

- y: cursor position column number
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.
Example T6963C_Set Cursor (Cposx, cCposy);

T6963C_ClearBit

Prototype [void T6963C ClearBit (char b);
Returns Nothing.
Clears control port bit(s).
Description Parameters :
- b: bit mask. The function will clear bit x on control port if bit x in bit
mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.
E I // clear bits 0 and 1 on control port

Xample 115963c clearBit (0x03);

518 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

T6963C_SetBit

Prototype [void T6963C SetBit (char b);

Returns Nothing.

Sets control port bit(s).

Description Parameters :

- b: bit mask. The function will set bit x on control port if bit % in bit
mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// set bits 0 and 1 on control port

Example T6963C_SetBit (0x03);

T6963C_NegBit

Prototype |void T6963C NegBit (char b);

Returns Nothing.

Negates control port bit(s).

Description Parameters :

- b: bit mask. The function will negate bit x on control port if bit x in bit
mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// negate bits 0 and 1 on control port

Example (00050 yegmit (0x03) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 519

CHAPTER 6
Libraries mikroC PRO for AVR

T6963C_DisplayGrPanel

Prototype |void T6963C DisplayGrPanel (char n);

Returns Nothing.

Display selected graphic panel.
Description |Parameters :

- n: graphic panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

// display graphic panel 1

Example T6963C DisplayGrPanel (1) ;

T6963C_DisplayTxtPanel

Prototype |void T6963C DisplayTxtPanel (char n);

Returns Nothing.

Display selected text panel.
Description |Parameters :

- n: text panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

// display text panel 1

Example T6963C DisplayTxtPanel (1);

520 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

T6963C_SetGrPanel

Prototype |void T6963C SetGrPanel (char n);

Returns Nothing.

Compute start address for selected graphic panel and set appropriate internal
pointers. All subsequent graphic operations will be preformed at this graphic
panel.

Description
Parameters :

- n: graphic panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

// set graphic panel 1 as current graphic panel.

Example |::555c setarranel (1) ;

T6963C_SetTxtPanel

Prototype |void T6963C SetTxtPanel (char n);

Returns Nothing.

Compute start address for selected text panel and set appropriate internal point-
ers. All subsequent text operations will be preformed at this text panel.

Description Parameters :

- n: text panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// set text panel 1 as current text panel.

Example T6963C_SetTxtPanel (1) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 521

CHAPTER 6
Libraries mikroC PRO for AVR

T6963C_PanelFill

Prototype |[void T6963C PanelFill (unsigned char v);

Returns Nothing.

Fill current panel in full (graphic+text) with appropriate value (0 to clear).

Description |Parameters :

- v: value to fill panel with.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

clear current panel

Example [065c pane1riil (0);

T6963C_GrFill

Prototype |[void T6963C GrFill (unsigned char v);

Returns Nothing.

Fill current graphic panel with appropriate value (0 to clear).

Description |Parameters :

- v: value to fill graphic panel with.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// clear current graphic panel

Example T6963C_GrFill (0);

T6963C_TxtFill

Prototype |[void T6963C TxtFill (unsigned char v);

Returns Nothing.

Fill current text panel with appropriate value (0 to clear).

Description |Parameters :

- v: this value increased by 32 will be used to fill text panel.

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

// clear current text panel

Example T6963C_TxtFill (0);

522 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

T6963C_Cursor_Height

Prototype |[void T6963C Cursor Height (unsigned char n);

Returns Nothing.

Set cursor size.
Description |Parameters :

- n: cursor height. Valid values: 0. .7.
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

Example T6963C Cursor Height (7);

T6963C_Graphics

Prototype |void T6963C Graphics (char n);

Returns Nothing.

Enable/disable graphic displaying.

Description Parameters :

- n: on/off parameter. Valid values: o (disable graphic displaying) and 1
(enable graphic displaying).

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// enable graphic displaying

Example T6963C_Graphics (1) ;

T6963C_Text

Prototype [void T6963C Text (char n);

Returns Nothing.

Enable/disable text displaying.

Description Parameters :

- n: on/off parameter. Valid values: 0 (disable text displaying) and 1
(enable text displaying).

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

// enable text displaying

Example |:0065c rext (1)

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 523

CHAPTER 6
Libraries mikroC PRO for AVR

T6963C_Cursor

Prototype |void T6963C Cursor (char n);

Returns Nothing.

Set cursor on/off.
Description |Parameters :

- n: on/off parameter. Valid values: 0 (set cursor off) and 1 (set cursor on).

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// set cursor on
T6963C Cursor (1) ;

Example

T6963C_Cursor_Blink

Prototype [void T6963C Cursor Blink(char n);

Returns Nothing.

Enable/disable cursor blinking.

Description Parameters :

- n: on/off parameter. Valid values: 0 (disable cursor blinking) and 1
(enable cursor blinking).

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

// enable cursor blinking

Example 1160630 cursor Blink(1);

524 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example

The following drawing demo tests advanced routines of the T6963C GLCD library.
Hardware configurations in this example are made for the T6963C 240x128 display,
EasyAVRS5 board and ATMEGA16.

#include " T6963C.h"

// T6963C module connections

char T6963C ctrlPort at PORTC;

char T6963C dataPort at PORTD;

char T6963C ctrlPort Direction at DDRC;
char T6963C dataPort Direction at DDRD;

sbit T6963C_Ctrlwr at PORTC.B2;
sbit T6963C ctrlrd at PORTC.BI1;
sbit T6963C ctrlcd at PORTC.BO;
sbit T6963C ctrlrst at PORTC.B4;
sbit T6963C ctrlwr Direction at DDRC.B2;
sbit T6963C ctrlrd Direction at DDRC.B1;
sbit T6963C ctrlcd Direction at DDRC.BO;
sbit T6963C ctrlrst Direction at DDRC.B4;

// Signals not used by library, they are set in main function
sbit T6963C ctrlce at PORTC.B3;

sbit T6963C ctrlfs at PORTC.B6;

sbit T6963C ctrlmd at PORTC.B5;

sbit T6963C ctrlce Direction at DDRC.B3;

sbit T6963C ctrlfs Direction at DDRC.B6;

sbit T6963C ctrlmd Direction at DDRC.B5;

// End T6963C module connections

Vas
* bitmap pictures stored in ROM
*/
const code char mikroE 240x128 bmp[] ;
const code char einstein[];

void main () {

char txtl[] = " EINSTEIN WOULD HAVE LIKED mE";

char txt[] = " GLCD LIBRARY DEMO, WELCOME !";

unsigned char panel; // Current panel

unsigned int i // General purpose register
unsigned char curs; // Cursor visibility
unsigned int cposx, cposy; // Cursor x-y position

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 525

CHAPTER 6

Libraries mikroC PRO for AVR
DDBO = O0; // Set PB0O as input
DDB1 = O0; // Set PB1 as input
DDB2 0; // Set PB2 as input
DDB3 = O0; // Set PB3 as input
DDB4 = O0; // Set PB4 as input

T6963C ctrlce Direction = 1;

T6963C ctrlce = 0; // Enable T6963C

T6963C ctrlfs Direction = 1;

T6963C ctrlfs = 0; // Font Select 8x8
T6963C ctrlmd Direction = 1;

T6963C ctrlmd = 0; // Column number select

// Initialize T6369C
T6963C init (240, 128, 8);

J*
* Enable both graphics and text display at the same time
*/

T6963C graphics (1) ;

T6963C text(1);

panel = 0;
i = 0;
curs = 0;
cposx = cposy = 0;
/*
* Text messages
*/

T6963C write text(txt, 0, 0, T6963C ROM MODE XOR) ;
T6963C write text(txtl, 0, 15, T6963C ROM MODE XOR);

J*
* Cursor
*/
T6963C_cursor height (8); // 8 pixel height
T6963C_set cursor (0, 0); // Move cursor to top left
T6963C _cursor(0) ; // Cursor off
J*
* Draw rectangles
*/

T6963C rectangle (0, 0, 239, 127, T6963C WHITE);

T6963C_rectangle (20, 20, 219, 107, T6963C _WHITE);
T6963C rectangle (40, 40, 199, 87, T6963C WHITE);
T6963C rectangle (60 60, 179, 67, T6963C WHITE);

526 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

/*

* Draw a Ccross

*/
T6963C 1line (0, 0, 239, 127, T6963C WHITE);
T6963C line (0, 127, 239, 0, T6963C WHITE);

J*
* Draw solid boxes
*/
T6963C box (0, 0, 239, 8, T6963C WHITE);
T6963C box (0, 119, 239, 127, T6963C WHITE);

J*
* Draw circles
*/

T6963C _circle (120, 64, 10, T6963C_WHITE

(;
T6963C circle (120, 64, 30, T6963C WHITE);
T6963C circle (120, 64, 50, T6963C WHITE
T6963C circle (120, 64, 70, T6963C WHITE

(

(

(

)
)
)
)
T6963C_circle (120, 64, 90, T6963C_WHITE)
E
E

’

’

T6963C circle (120, 64, 110, T6963C WHIT

)
T6963C circle (120, 64, 130, T6963C WHITE)

’

T6963C_sprite(76, 4, einstein, 88, 119); // Draw a sprite
T6963C_setGrPanel(1l); // Select other graphic panel
T6963C image (mikroE 240x128 bmp) ;

for(;;) { // Endless loop
Va3
* If PBO is pressed, display only graphic panel
*/
if (PINBO) {
T6963C graphics (1) ;
T6963C text (0);
Delay ms(300);
}

/*
* If PBl is pressed, toggle the display between graphic panel
0 and graphic panel 1
*/
else if (PINB1) {
panel++;
panel &= 1;
T6963C displayGrPanel (panel);
Delay ms(300);
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 527

CHAPTER 6
Libraries

mikroC PRO for AVR

/*
* If PB2 is pressed, display only text panel
*/
else if (PINB2) {
T6963C _graphics(0);
T6963C text (1)
Delay ms(300);
}

Va3
* If PB3 1is pressed, display text and graphic panels
*/

else if (PINB3) {

T6963C graphics (1) ;
T6963C text (1);
Delay ms(300);

}

J*
* If PB4 is pressed, change cursor
*/

else if (PINB4) {

curs++;
if (curs == 3) curs = 0;
switch (curs) {

case 0:
// no cursor
T6963C cursor (0);
break;
case 1:
// blinking cursor
T6963C cursor(l);
T6963C _cursor_blink(1l);
break;
case 2:
// non blinking cursor
T6963C cursor(l);
T6963C cursor blink(0);
break;
}
Delay ms(300);
}

Va3
* Move cursor, even 1f not visible
*/
cposx++;
if (cposx == T6963C txtCols) ({
cposx = 0;
cposy++;
if (cposy == T6963C_grHeight / T6963C_ CHARACTER HEIGHT) ({

cposy = 0;
}

T6963C set cursor (cposx, Cposy);

Delay ms(100);
}

528 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

HW Connection

d

PB.0
PB.1
PB.2
PB.3
PB.4
PB.5
PB.6

IR

i

vce

OSCILLATOR GND

nl

XTALA1

91VO3INLV

i e s B e B e 1 s e e B s |

PA.O
PA1
PA2
PA3
PA.4
PA5
PA.6
PA7

GND

S o s — s -

Toshiba T6963C Graphic LCD (240x128)

10K

Contrast
Adjustment

T6963C GLCD HW connection

]

DO
D1
D2
D3
D4

D6
D7

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 529

CHAPTER 6
Libraries mikroC PRO for AVR

TWI LIBRARY

TWI full master MSSP module is available with a number of AVR MCU models. mikroC PRO for
AVR provides library which supports the master TWI mode.

Note: Examples for AVR MCUs with module on other ports can be found in your mikroC for AVR
installation folder, subfolder “Examples”.

Library Routines

- TWI_Init

- TWI_Busy
- TWI_Start

- TWI_Stop

- TWI_Read
- TWI_Write
- TWI_Status
- TWI_Close

TWI_Init

Prototype |[void TWI Init (unsigned long clock);

Returns Nothing.

Initializes TWI with desired c1ock (refer to device data sheet for correct values in
respect with Fosc). Needs to be called before using other functions of TWI Library.
Description
You don’t need to configure ports manually for using the module; library will take
care of the initialization.

Requires Library requires MSSP module on PORTB or PORTC.

Example TWI Init (100000);

530 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroC PRO for AVR
TWI_Busy
Prototype |char TWI Busy();
Returns Returns 0 if TWI start sequnce is finished, 1 if TWI start sequnce is not finished.
Description |Signalizes the status of TWI bus.
Requires TWI must be configured before using this function. See TWI_Init.
Exanuﬂe if (TWI Busy == 1) {
TWI_Start
Prototype |[char TWI Start();
Returns If there is no error function returns 0, otherwise returns 1.
Description |Determines if TWI bus is free and issues START signal.
Requires TWI must be configured before using this function. See TWI_Init.
Example if (TWI Start == 1) {
TWI_Read
Prototype char TWI Read(char ack);
Returns Returns one byte from the slave.
o Reads one byte from the slave, and sends not acknowledge signal if parameter
Description . L
ack is 0, otherwise it sends acknowledge.
TWI must be configured before using this function. See TWI_Init.
Requires Also, START signal needs to be issued in order to use this function. See
TWI_Start.
Read data and send not acknowledge signal:
Example

tmp = TWI Read(0);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

531

CHAPTER 6
Libraries mikroC PRO for AVR

TWI_Write

Prototype |void TWI Write (char data);

Returns Nothing.

Description |Sends data byte (parameter data) via TWI bus.

TWI must be configured before using this function. See TWI_lInit.

Requires Also, START signal needs to be issued in order to use this function. See
TWI_Start.
Example TWI Write (0xA3);
TWI_Stop

Prototype |void TWI Stop();

Returns Nothing.

Description |[Issues STOP signal to TWI operation.

Requires TWI must be configured before using this function. See TWI_Init.

Example TWI Stop();

TWI_Status

Prototype |char TWI Status();

Returns Returns value of status register (TWSR), the highest 5 bits.

Description |Returns status of TWI.

Requires TWI must be configured before using this function. See TWI_Init.

Example status = TWI Status();

TWI_Close

Prototype [void TWI Close();

Returns Nothing.

Description |Closes TWI connection.

Requires TWI must be configured before using this function. See TWI_Init.

Example TWI Close();

532 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Library Example

This code demonstrates use of TWI Library procedures and functions. AVR MCU is
connected (SCL, SDA pins) to 24c02 EEPROM. Program sends data to EEPROM
(data is written at address 2). Then, we read data via TWI from EEPROM and send
its value to PORTA, to check if the cycle was successful. Check the figure below.

void main (){

DDRA = OxFF; // configure PORTA as output

TWI Init (100000); // initialize TWI communication

TWI Start(); // issue TWI start signal

TWI Write (0xA2); // send byte via TWI (device address + W)
TWI Write(2); // send byte (address of EEPROM location)
TWI Write (OxAR); // send data (data to be written)

TWI Stop(); // issue TWI stop signal

Delay 100ms ()

TWI Start(); // issue TWI start signal

TWI Write (0xA2); // send byte via TWI (device address + W)
TWI Write(2); // send byte (data address)

TWI Start(); // issue TWI signal repeated start

TWI Write (0xA3); // send byte (device address + R)
PORTA = TWI_Read(Ou); // read data (NO acknowledge)

TWI Stop(); // issue TWI stop signal

}

HW Connection

rarrararararar

XTAL1

I U
1 VCC VCC
[Y
i L[
[> ! A0 chc 8
E — : At wp]%;{“
1 g . NC sCL]5—
\VCCo-] vce m GND GND SDA [}—
OSCILLATOR I[GND Q — § ‘g- 1 24CO2
-_—
(o]

PC.A
PC.0

S — — — — — -

Interfacing 24c02 to AVR via TWI

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 533

CHAPTER 6
Libraries

mikroC PRO for AVR

UART LIBRARY

UART hardware module is available with a number of AVR MCUs. mikroC PRO for
AVR UART Library provides comfortable work with the Asynchronous (full duplex)
mode.

You can easily communicate with other devices via RS-232 protocol (for example
with PC, see the figure at the end of the topic — RS-232 HW connection). You need
a AVR MCU with hardware integrated UART, for example ATmega16. Then, simply
use the functions listed below.

Library Routines

- UARTX_Init

- UARTx_Init_Advanced
- UARTx_Data_Ready
- UARTx_Read

- UARTx_Read_Text

- UARTx_Write

- UARTx_Write_Text

The following routine is for the internal use by compiler only:

UARTx_TX Idle

Note: AVR MCUs require you to specify the module you want to use. To select the
desired UART, simply change the letter x in the prototype for a number from 1 to 4.
Number of UART modules per MCU differs from chip to chip. Please, read the
appropriate datasheet before utilizing this library.

Example: uarRT2 Init (); initializes UART 2 module.

Note: Some of the AVR MCUs do not support UARTx_ Init_Advanced routine.
Please, refer to the appropriate datasheet.

534 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroC PRO for AVR
UARTX_Init
Prototype |[void UARTx Init (unsigned long baud rate);
Returns Nothing.
Configures and initializes the UART module.
The internal UART module module is set to:
- receiver enabled
- transmitter enabled
- frame size 8 bits
Description -1 STOP bit
P - parity mode disabled
- asynchronous operation
Parameters :
- baud rate: requested baud rate
Refer to the device data sheet for baud rates allowed for specific Fosc.
You'll need AVR MCU with hardware UART.
Requires
UARTx Init needs to be called before using other functions from UART Library.
This will initialize hardware UART1 module and establish the communication at
Example 2400 bps:
UART1 Init (2400);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

535

CHAPTER 6
Libraries

mikroC PRO for AVR

UARTx_Init_Advanced

void UARTx Init Advanced (unsigned long baud rate, char parity,
Prototype —. - -

char stop bits);
Returns Nothing.

Configures and initializes UART module.

Parameter baud rate configures UART module to work on a requested baud

rate.

Parameters parity and stop bits determine the work mode for UART, and

can have the following values:

o Predefined libra
Mask Description y
const
Parity constants:

Description 0x00 Parity mode disabled _UART NOPARITY
0x20 Even parity _UART EVENPARITY
0x30 Odd parity _UART_ODDPARITY

Stop bit constants:
0x00 1 stop bit _UART ONE STOPBIT
0x01 2 stop bits _UART TWO_ STOPBITS
Note: Some MCUs do not support advanced configuration of the UART module.
Please consult appropriate daatsheet.

Requires MCU must have UART module.

// Initialize hardware UARTI module and establish communication

Example at 9600 bps, 8-bit data, even parity and 2 STOP bits

UART1 Init Advanced (9600, UART EVENPARITY, UART TWO STOPBITS);
536 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

C

mikroC PRO for AVR

HAPTER 6
Libraries

UARTx_Data_Ready

Prototype |char UARTx Data Ready();
Returns Function returns 1 if data is ready or 0 if there is no data.
Description |Use the function to test if data in receive buffer is ready for reading.
Requires UART HW module must be initialized and communication established before
q using this function. See UARTX_Init.
// If data is ready, read it:
if (UART1 Data Ready() == 1) {
Example receive = UART1 Read();
}
UARTx_Read
Prototype |[char UARTx Read();
Returns Returns the received byte.
oy Function receives a byte via UART. Use the function UARTx_Data_Ready to
Description ; . .
test if data is ready first.
Requires UART HW module must be initialized and communication established before
q using this function. See UARTX_Init.
// If data is ready, read it:
if (UART1 Data Ready() == 1) {
Example receive = UART1 Read();
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 537

CHAPTER 6
Libraries mikroC PRO for AVR

UARTx_Read_Text

void UARTx Read Text (char *Output, char *Delimiter, char

PrOtOtype Attempts) ;

Returns Nothing.

Reads characters received via UART until the delimiter sequence is detected.
The read sequence is stored in the parameter output; delimiter sequence is
stored in the parameter delimiter.

Description This is a blocking call: the delimiter sequence is expected, otherwise the proce-
dure exits (if the delimiter is not found). Parameterv Attempts defines number of
received characters in which Delimiter sequence is expected. If Attempts is set
to 255, this routine will continuously try to detect the Delimiter sequence.

UART HW module must be initialized and communication established before

Requires | cing this function. See UARTX_Init.

Read text until the sequence “OK” is received, and send back
what’ s been received:

UART1 Init (4800); // initialize UART
module
Delay ms (100);

Example while (1) {
if (UART1 Data Ready() == 1) { // 1if data 1is

received

UART1 Read Text (output, "delim", 10); // reads text until
'delim' is found

UART1 Write Text (output); // sends back text
}
}

538 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

UARTx_Write

Prototype |void UARTx Write(char data);

Returns Nothing.

The function transmits a byte via the UART module.
Description |Parameters :

- data: data to be sent

UART HW module must be initialized and communication established before

Requires using this function. See UARTX_Init.

unsigned char data = Ox1E;
Example

UART1 Write(data);

UARTx_Write_Text

Prototype void UARTx Write Text (char * UART text);

Returns Nothing.

Description |Sends text (parameter uarT text) via UART. Text should be zero terminated.

UART HW module must be initialized and communication established before

Requires using this function. See UARTx_Init.

Read text until the sequence “OK” is received, and send back what’s been
received:

UART1 Init (4800); // initialize UART module
Delay ms(100);

Example while (1) {
if (UART1 Data Ready() == 1) { // 1f data 1s received
UART1 Read Text (output, "delim", 10); // reads text until
'delim' is found
UART1 Write Text (output); // sends back text
}
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 539

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example

The example demonstrates a simple data exchange via UART. When AVR MCU
receives data, it immediately sends it back. If AVR is connected to the PC (see the
figure below), you can test the example from the mikroC PRO for AVR terminal for
RS-232 communication, menu choice Tools > Terminal.

char uart rd;

void main () {

UART1 Init(9600); // initialize UART module at 9600 bps
Delay ms (100); // wait for UART module to stabilize
while (1) { // endless loop
if (UART1 Data Ready()) { // 1f data 1s received,
uart _rd = UART1 Read(); // read the received data,
UART1 Write (uart rd); /S and send data via UART

}

540 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

HW Connection

PC

vVCcC
GND

XTALA1
PD.0

b}
O
o

91VO3INLY

d

GND [

| SN | NNNN) SN NN) SN S S S— m—) m—

| T
RS-232 %610 @1
CON O/OQQO 5C) SUB-D 9p
. CONNECT Receive
o . MCU TO PC data (Rx)
SERIAL
CABLE g
Lo . CONNECT p
Send
l l PCTOMCY Data (Tx)
T)
RS-232 O, .
con_ | O/ 1oloToTo O] SUB-D 9p E
1
cLolafelolol<|ofe 1
1
| |
= 1
1
OSCILLATOI}lcclﬁ
il vee e UL E
2 VS+ ‘GND| 15
10"“—‘—‘—2[c1 > T1OUT:’% . Tx E
1DuF_‘_1_:[Z’ ﬁ R1':l::]% - [
| ke ,
8 :: R2IN N RZOUTig— [
10qua 1 [
RS-232 HW connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

541

CHAPTER 6
Libraries mikroC PRO for AVR

ANSI C CTYPE LIBRARY

The mikroC PRO for AVR provides a set of standard ANSI C library functions for testing and map-
ping characters.

Note: Not all of the standard functions have been included.

Note: The functions have been mostly implemented according to the ANSI C standard, but cer-
tain functions have been modified in order to facilitate AVR programming. Be sure to skim through
the description before using standard C functions.

Library Functions

- isalnum
isalpha
iscntrl

isdigit

isgraph
islower
ispunct
isspace
isupper
isxdigit
toupper
- tolower

isalnum

Prototype unsigned short isalnum(char character);

Function returns 1 if the character is alphanumeric (A-Z, a-z, 0-9), otherwise

Description
returns zero.

isalpha

Prototype unsigned short isalpha(char character);

Function returns 1 if the character is alphabetic (A-Z, a-z), otherwise returns

Description
zero.

iscntrl

Prototype |unsigned short iscntrl(char character);

Function returns 1 if the character is a control or delete character(decimal 0-31

Description and 127), otherwise returns zero.

542 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

isdigit

Prototype |[unsigned short isdigit (char character);

Description |Function returns 1 if the character is a digit (0-9), otherwise returns zero.

isgraph

Prototype |unsigned short isgraph(char character);

Function returns 1 if the character is a printable, excluding the space (decimal

Description 32), otherwise returns zero.

islower

Prototype |int islower (char character);

Function returns 1 if the character is a lowercase letter (a-z), otherwise returns

Description
zero.

ispunct

Prototype unsigned short ispunct(char character);

Function returns 1 if the character is a punctuation (decimal 32-47, 58-63, 91-

Description 96, 123-126), otherwise returns zero.

isspace

Prototype |unsigned short isspace (char character);

Function returns 1 if the character is a white space (space, tab, CR, HT, VT, NL,

Description FF), otherwise returns zero.

isupper

Prototype |[unsigned short isupper (char character);

Function returns 1 if the character is an uppercase letter (A-Z), otherwise

Description
returns zero.

isxdigit

Prototype unsigned short isxdigit (char character);

Function returns 1 if the character is a hex digit (0-9, A-F, a-f), otherwise

Description
returns zero.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 543

CHAPTER 6
Libraries mikroC PRO for AVR

toupper

Prototype unsigned short toupper (char character);

If the character is a lowercase letter (a-z), the function returns an uppercase

Description letter. Otherwise, the function returns an unchanged input parameter.

tolower

Prototype unsigned short tolower (char character);

If the character is an uppercase letter (A-Z), function returns a lowercase letter.

Description Otherwise, function returns an unchanged input parameter.

544 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

ANSI C MATH LIBRARY

The mikroC PRO for AVR provides a set of standard ANSI C library functions for
floating point math handling.

Note: Not all of the standard functions have been included.

Note: The functions have been mostly implemented according to the ANSI C stan-
dard, but certain functions have been modified in order to facilitate AVR program-
ming. Be sure to skim through the description before using standard C functions.

Library Functions

- acos
- asin

- atan
- atan2
- ceil

- COoSs

- cosh
- eval_poly
- exp

- fabs
- floor
- frexp
- Idexp
- log

- log10
- modf
- pow

- sin

- sinh

- sqrt

- tan

- tanh

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 545

CHAPTER 6

Libraries mikroC PRO for AVR
acos
Prototype double acos (double x);
Function returns the arc cosine of parameter x; that is, the value whose cosine
Description |is x. The input parameter x must be between -1 and 1 (inclusive). The return
value is in radians, between 0 an n (inclusive).
asin
Prototype |double asin (double x);
Function returns the arc sine of parameter x; that is, the value whose sine is x.
Description | The input parameter x must be between -1 and 1 (inclusive). The return value is
in radians, between - /2 and N /2 (inclusive).
atan
Prototype [double atan(double f);
Descriotion Function computes the arc tangent of parameter £; that is, the value whose tan-
P gent is f. The return value is in radians, between - n/2 and n /2 (inclusive).
atan2
Prototype double atan2 (double y, double x);
This is the two-argument arc tangent function. It is similar to computing the arc
Describtion tangent of v/x, except that the signs of both arguments are used to determine
P the quadrant of the result and x is permitted to be zero. The return value is in
radians, between - n and n (inclusive).
ceil
Prototype |double ceil (double x);
Description |Function returns value of parameter x rounded up to the next whole number.
cos
Prototype |double cos (double f);
Description |Function returns the cosine of £ in radians. The return value is from -1 to 1.

546

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroC PRO for AVR
cosh
Prototype |double cosh (double x);
D oy Function returns the hyperbolic cosine of %, defined mathematically as (e*+e™%) /2.
escription
If the value of x is too large (if overflow occurs), the function fails.
eval_poly
Prototype static double eval poly(double x, const double code * d, int n);
D . Function Calculates polynom for number x, with coefficients stored in d[1, for
escription
degree n.
exp
Prototype double exp (double x);
N Function returns the value of e — the base of natural logarithms — raised to the
Description :
power x (i.e. e¥).
fabs
Prototype |double fabs (double d);
Description |Function returns the absolute (i.e. positive) value of 4.
floor
Prototype |double floor (double x);
Description |Function returns the value of parameter x rounded down to the nearest integer.
frexp
Prototype |double frexp(double value, int *eptr);
Function splits a floating-point value into a normalized fraction and an integral
Description |power of 2. The return value is the normalized fraction and the integer exponent
is stored in the object pointed to by eptr.
Idexp
Prototype [double ldexp(double value, int newexp);
Description Fu.nctlon returns the re;ult of multiplying the floating-point number num by 2
raised to the power n (i.e. returns x * 2n).

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

547

CHAPTER 6

Libraries mikroC PRO for AVR
log
Prototype |double log(double x);
Description |Function returns the natural logarithm of x (i.e. log. (x)).
log10
Prototype double 1ogl0 (double x);
Description |Function returns the base-10 logarithm of x (i.e. logyq(x)).
modf
Prototype double modf (double val, double * iptr);
o Returns argument va1 split to the fractional part (function return val) and integer
Description . .
part (in number iptr).
pow
Prototype |double pow(double x, double y);
Description Functlon_retur_ns the vall._|e of x ralsec_i to the power y (i.e. xY). If x is negative,
the function will automatically cast y into unsigned long.
sin
Prototype |double sin(double f);
Description |Function returns the sine of f in radians. The return value is from -1 to 1.
sinh
Prototype [double sinh(double x);
o Function returns the hyperbolic sine of x, defined mathematically as (e*-e7%) /2. If
Description .) . .
the value of x is too large (if overflow occurs), the function fails.
sqrt
Prototype [double sqgrt (double x);
Description |Function returns the non negative square root of x.

548

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

tan

Prototype |double tan(double x);

Function returns the tangent of x in radians. The return value spans the allowed

Description range of floating point in the mikroC PRO for AVR.

tanh

Prototype |double tanh(double x);

Function returns the hyperbolic tangent of x, defined mathematically as

Description sinh(x)/cosh(x).

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 549

CHAPTER 6
Libraries mikroC PRO for AVR

ANSI C STDLIB LIBRARY

The mikroC PRO for AVR provides a set of standard ANSI C library functions of general utility.
Note: Not all of the standard functions have been included.

Note: Functions have been mostly implemented according to the ANSI C standard, but certain
functions have been modified in order to facilitate AVR programming. Be sure to skim through the
description before using standard C functions.

Library Functions

- abs
- atof
- atoi
- atol
- div

- Idiv
- uldiv
- labs
- max
- min
- rand
- srand
- xtoi

abs

Prototype |int abs (int a);

Description |Function returns the absolute (i.e. positive) value of a.

atof

Prototype [double atof (char *s)

Function converts the input string s into a double precision value and returns the
value. Input string s should conform to the floating point literal format, with an
Description |optional whitespace at the beginning. The string will be processed one character
at a time, until the function reaches a character which it doesn’t recognize
(including a null character).

550 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

atoi

Prototype |int atoi(char *s);

Function converts the input string s into an integer value and returns the value.
The input string s should consist exclusively of decimal digits, with an optional
Description |whitespace and a sign at the beginning. The string will be processed one char-
acter at a time, until the function reaches a character which it doesn’t recognize
(including a null character).

atol

Prototype |long atol(char *s)

Function converts the input string s into a long integer value and returns the
value. The input string s should consist exclusively of decimal digits, with an
Description |optional whitespace and a sign at the beginning. The string will be processed
one character at a time, until the function reaches a character which it doesn’t
recognize (including a null character).

div

Prototype div_t div(int number, int denom);

Function computes the result of division of the numerator number by the denom-
Description |inator denom; the function returns a structure of type div_t comprising quotient
(quot) and remainder (rem), see Div Structures.

Idiv

Prototype ldiv_t 1div(long number, long denom);

Function is similar to the div function, except that the arguments and result
structure members all have type long.

Description Function computes the result of division of the numerator number by the denom-
inator denom; the function returns a structure of type 1div t comprising quotient
(quot) and remainder (rem), see Div Structures.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 551

CHAPTER 6

Libraries mikroC PRO for AVR
uldiv

Prototype uldiv_t uldiv (unsigned long number, unsigned long denom);

Function is similar to the div function, except that the arguments and result
structure members all have type unsigned long.

Description Function computes the result of division of the numerator number by the denom-
inator denom; the function returns a structure of type u1div_ t comprising quo-
tient (quot) and remainder (rem), see Div Structures.

labs

Prototype |long labs (long x);

Description |Function returns the absolute (i.e. positive) value of long integer x.

max

Prototype |int max(int a, int b);

Description |Function returns greater of the two integers, a and b.

min

Prototype [int min(int a, int b);

Description |Function returns lower of the two integers, a and b.

rand

Prototype |int rand();

Function returns a sequence of pseudo-random numbers between 0 and 32767.

Description | The function will always produce the same sequence of numbers unless srand
is called to seed the start point.

srand

Prototype |void srand(unsigned x);

Function uses x as a starting point for a new sequence of pseudo-random num-

Description |bers to be returned by subsequent calls to rand. No values are returned by this
function.

552 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

xtoi

Prototype |unsigned xtoi (register char *s);

Function converts the input string s consisting of hexadecimal digits into an inte-
ger value. The input parameter s should consist exclusively of hexadecimal dig-
Description |its, with an optional whitespace and a sign at the beginning. The string will be
processed one character at a time, until the function reaches a character which
it doesn’t recognize (including a null character).

Div Structures

typedef struct divstruct ({
int quot;
int rem;
}odiv_t;

typedef struct ldivstruct {
long quot;
long rem;
}oldiv_t;

typedef struct uldivstruct ({
unsigned long quot;
unsigned long rem;
} uldiv_t;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 553

CHAPTER 6
Libraries mikroC PRO for AVR

ANSI C STRING LIBRARY

The mikroC PRO for AVR provides a set of standard ANSI C library functions use-
ful for manipulating strings and RAM memory.

Note: Not all of the standard functions have been included.

Note: Functions have been mostly implemented according to the ANSI C standard,
but certain functions have been modified in order to facilitate AVR programming. Be
sure to skim through the description before using standard C functions.

Library Functions

- memchr
- memcmp
- memcpy
- memmove
- memset
- strcat

- strchr

- strcmp

- strcpy

- strlen

- strncat

- strncpy

- strspn

- strncmp
- strstr

- strcspn

- strpbrk

- strrchr

554 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroC PRO for AVR

memchr

Prototype |[void *memchr (void *p, char n, unsigned int v);
Function locates the first occurrence of n in the initial v bytes of memory area
starting at the address p. The function returns the pointer to this location or 0 if
the n was not found.

Description
For parameter p you can use either a numerical value (literal/variable/constant)
indicating memory address or a dereferenced value of an object, for example
s&mystring Or &PO.

memcmp

Prototype int memcmp (void *sl, woid *s2, int n);
Function compares the first n characters of objects pointed to by s1 and s2 and
returns zero if the objects are equal, or returns a difference between the first dif-

Description |fering characters (in a left-to-right evaluation). Accordingly, the result is greater
than zero if the object pointed to by s1 is greater than the object pointed to by
s2 and vice versa.

memcpy

Prototype void *memcpy (void *dl, wvoid *sl, int n);
Function copies n characters from the object pointed to by s2 into the object point-

Description |ed to by d1. If copying takes place between objects that overlap, the behavior is
undefined. The function returns address of the object pointed to by d1.

memmove

Prototype void *memmove (void *to, void * from, register int n);
Function copies n characters from the object pointed to by from into the object

Description |pointed to by to. Unlike memcpy, the memory areas to and from may overlap.
The function returns address of the object pointed to by to.

memset

Prototype |[void *memset (void *pl, char character, int n)
Function copies the value of the character into each of the first n characters of

Description |the object pointed by p1. The function returns address of the object pointed to
by p1.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

555

CHAPTER 6
Libraries mikroC PRO for AVR

strcat

Prototype char *strcat (char *to, char *from);

Function appends a copy of the string from to the string to, overwriting the null
character at the end of to. Then, a terminating null character is added to the
Description |result. If copying takes place between objects that overlap, the behavior is unde-
fined. to string must have enough space to store the result. The function returns
address of the object pointed to by to.

strchr

Prototype char *strchr (char *ptr, char chr);

Function locates the first occurrence of character chr in the string ptr. The
function returns a pointer to the first occurrence of character chr, or a null point-
er if chr does not occur in ptr. The terminating null character is considered to
be a part of the string.

Description

strcmp

Prototype int strcmp (char *sl, char *s2);

Function compares strings s1 and s2 and returns zero if the strings are equal,
or returns a difference between the first differing characters (in a left-to-right
evaluation). Accordingly, the result is greater than zero if s1 is greater than s2
and vice versa.

Description

strcpy

Prototype char *strcpy(char *to, char *from);

Function copies the string from into the string to. If copying is successful, the
Description [function returns to. If copying takes place between objects that overlap, the
behavior is undefined.

strlen

Prototype |int strlen(char *s);

Function returns the length of the string s (the terminating null character does

Description |+ - ount against string’s length).

556 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

strncat

Prototype char *strncat (char *to, char *from, int size);

Function appends not more than size characters from the string from to to. The
Description |initial character of from overwrites the null character at the end of to. The termi-
nating null character is always appended to the result. The function returns to.

strncpy

Prokﬂype char *strncpy(char *to, char *from, int size);

Function copies not more than size characters from string from to to. If copy-
ing takes place between objects that overlap, the behavior is undefined. If from
is shorter than size characters, then to will be padded out with null characters
to make up the difference. The function returns the resulting string to.

Description

strspn

Prototype int strspn(char *strl, char *str2);

Function returns the length of the maximum initial segment of str1 which con-
Description [sists entirely of characters from str2. The terminating null character at the end
of the string is not compared.

Strncmp

Prototype int strncmp(char *sl, char *s2, char len);

Function lexicographically compares not more than len characters (characters
that follow the null character are not compared) from the string pointed by s1 to
the string pointed by s2. The function returns a value indicating the s1 and s2

relationship:
Description
Value Meaning
< 0 sl "less than" s2
=0 sl "equal to" s2
> 0 sl "greater than" s2

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 557

CHAPTER 6
Libraries mikroC PRO for AVR

Strstr

Prototype [char *strstr(char *sl, char *s2);

Function locates the first occurrence of the string s2 in the string s1 (excluding
the terminating null character).

Description
The function returns pointer to first occurrence of s2 in s1; if no string was
found, function returns o. If s2 is a null string, the function returns o.

Strcspn

Prototype char *strcspn(char * sl, char *s2);

Function computes the length of the maximum initial segment of the string point-
ed to by s1 that consists entirely of characters that are not in the string pointed
Description |to by s2.

The function returns the length of the initial segment.

Strpbrk

Prototype char *strpbrk(char * sl, char *s2);

Function searches s1 for the first occurrence of any character from the string s2.
The terminating null character is not included in the search. The function returns
pointer to the matching character in s1. If s1 contains no characters from s2, the
function returns o.

Description

Strrchr

Prototype char *strrchr (char * ptr, unsigned int chr);

Function searches the string ptr for the last occurrence of character chr. The
null character terminating ptr is not included in the search. The function returns
pointer to the last chr found in ptr; if no matching character was found, function
returns o.

Description

558 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

BUTTON LIBRARY

The Button library contains miscellaneous routines useful for a project development.

External dependecies of Button Library

The following variable

must be defined in all

projects using Button
library:

Description:

Example :

extern sbit
Button Pin;

Declares button pins.

sbit Button Pin at
PINB.BO;

extern sbit
Button Pin Direction;

Declares direction of the
button.

sbit
Button Pin Direction
at DDRB.RBO;

Library Routines

- Button

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

559

CHAPTER 6

Libraries mikroC PRO for AVR
Button
unsigned short Button (unsigned short time, unsigned short
Prototype .
active state)
- 255 if the pin was in the active state for given period.
Returns .
- 0 otherwise
The function eliminates the influence of contact flickering upon pressing a button
(debouncing). The Button pin is tested just after the function call and then again
after the debouncing period has expired. If the pin was in the active state in both
cases then the function returns 255 (true).
Description
P Parameters :
- time: debouncing period in milliseconds
- active state: determines what is considered as active state. Valid
values: 0 (logical zero) and 1 (logical one)
Global variables :
. - Button Pin: Button pin line
Requires - . N .
- Button Pin Direction: Direction of the button pin
must be defined before using this function.
On every PBO one-to-zero transition PORTC is inverted :
// Button connections
sbit Button Pin at PINB.BO; //Input pin, PINx register is used
sbit Button Pin Direction at DDRB.BO;
// End Button connections
bit oldstate; // 0ld state flag
void main () {
Button Pin Direction = 0; // Set pin as input
E I DDRC = OxFF; // Configure PORTC as output
Xample PORTC = OxAA; // Initial PORTC value
oldstate = 0;
do {
if (Button(l, 1)) { // Detect logical one
oldstate = 1; // Update flag
}
if (oldstate && Button(l, 0)) { //Detect one-to-zero transition
PORTC = ~PORTC; // Invert PORTC
oldstate = 0; // Update flag
}
} while(1); // Endless loop
}

560 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

CONVERSIONS LIBRARY

The mikroC PRO for AVR Conversions Library provides routines for numerals to
strings and BCD/decimal conversions.

Library Routines

You can get text representation of numerical value by passing it to one of the follow-
ing routines:

- ByteToStr

- ShortToStr

- WordToStr

- IntToStr

- LongToStr

- LongWordToStr
- FloatToStr

The following functions convert decimal values to BCD and vice versa:
- Dec2Bcd

- Bcd2Dec16
- Dec2Bcd16

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 561

CHAPTER 6
Libraries mikroC PRO for AVR

ByteToStr

Prototype |void ByteToStr (unsigned short input, char *output);

Returns Nothing.

Converts input byte to a string. The output string has fixed width of 4 characters
including null character at the end (string termination). The output string is right
justified and remaining positions on the left (if any) are filled with blanks.

Description Parameters :

- input: byte to be converted
- output: destination string

Requires Destination string should be at least 4 characters in length.

unsigned short t = 24;

char txt[4] ;
Example LA

ByteToStr (t, txt); // txt is " 24" (one blank here)

ShortToStr

Prototype |[void ShortToStr(short input, char *output);

Returns Nothing.

Converts input signed short number to a string. The output string has fixed width
of 5 characters including null character at the end (string termination). The out-
put string is right justified and remaining positions on the left (if any) are filled
with blanks.

Description
Parameters :

- input: signed short number to be converted
- output: destination string

Requires Destination string should be at least 5 characters in length.

short t = -24;
char txt[5] ;

Example

ShortToStr (t, txt); // txt is " -24" (one blank here)

562 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

WordToStr

Prototype void WordToStr (unsigned input, char *output);

Returns Nothing.

Converts input word to a string. The output string has fixed width of 6 characters
including null character at the end (string termination). The output string is right
justified and the remaining positions on the left (if any) are filled with blanks.

Description Parameters :

- input: word to be converted
- output: destination string

Requires Destination string should be at least 6 characters in length.

unsigned t = 437;

h txt[6] ;
Example char txtl o]

WordToStr (t, txt); // txt is " 437" (two blanks here)

IntToStr

Prototype void IntToStr (int input, char *output);

Returns Nothing.

Converts input signed integer number to a string. The output string has fixed
width of 7 characters including null character at the end (string termination). The
output string is right justified and the remaining positions on the left (if any) are
filled with blanks.

Description
Parameters :

- input: signed integer number to be converted
- output: destination string

Requires Destination string should be at least 7 characters in length.

int § = -4220;

h txtl 7] ;
Example char txtl 7]

IntToStr (j, txt); // txt 1is " -4220" (one blank here)

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 563

CHAPTER 6
Libraries mikroC PRO for AVR

LongToStr

Prototype void LongToStr (long input, char *output);

Returns Nothing.

Converts input signed long integer number to a string. The output string has
fixed width of 12 characters including null character at the end (string termina-
tion). The output string is right justified and the remaining positions on the left (if
any) are filled with blanks.

Description
Parameters :

- input: signed long integer number to be converted
- output: destination string

Requires Destination string should be at least 12 characters in length.

long 3 = -3700000;
char txt[12] ;
Example -
LongToStr(jj, txt);
// txt 1is " -3700000" (three blanks here)
LongWordToStr

Prototype void LongWordToStr (unsigned long input, char *output);

Returns Nothing.

Converts input unsigned long integer number to a string. The output string has
fixed width of 11 characters including null character at the end (string termina-
tion). The output string is right justified and the remaining positions on the left (if
any) are filled with blanks.

Description
Parameters :

- input: unsigned long integer number to be converted
- output: destination string

Requires Destination string should be at least 11 characters in length.

unsigned long jj = 3700000;
char txt[11] ;

Example e
LongToStr (jj, txt);

// txt is " 3700000" (three blanks here)

564 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

FloatToStr

Prounype unsigned char FloatToStr (float fnum, unsigned char *str);

- 3 if input number is NaN
- 2 if input number is -INF
- 1 if input number is +INF
- 0 if conversion was successful

Returns

Converts a floating point number to a string.
Parameters :

- fnum: floating point number to be converted
Description - str: destination string

The output string is left justified and null terminated after the last digit.

Note: Given floating point number will be truncated to 7 most significant digits
before conversion.

Requires Destination string should be at least 14 characters in length.

float ffl = -374.2;
float ff2 = 123.456789;
float ff3 = 0.000001234;
char txt[15] ;

Example o)
FloatToStr (£ff1, txt); // txt 1is "-374.2"
FloatToStr (ff2, txt); // txt is "123.4567"
FloatToStr (f£3, txt); // txt 1is "1.234e-6"

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 565

CHAPTER 6
Libraries mikroC PRO for AVR

Dec2Bcd

Prototype |unsigned short Dec2Bcd(unsigned short decnum);

Returns Converted BCD value.

Converts input unsigned short integer number to its appropriate BCD represen-
tation.

Description Parameters :

- decnum: unsigned short integer number to be converted

Requires Nothing.

unsigned short a, b;

Example 2= 22

b = Dec2Bcd(a); // b equals 34

Bcd2Dec16

Prototype unsigned Bcd2Decl6 (unsigned bcdnum) ;

Returns Converted decimal value.

Converts 16-bit BCD numeral to its decimal equivalent.
Description |Parameters :

- becdnum: 16-bit BCD numeral to be converted

Requires Nothing.

unsigned a, b;

Example a = 0x1234; // a equals 4660

b = Bcd2Declé6 (a); // b equals 1234

566 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

Dec2Bcd16

Prototype unsigned Dec2Bcdl6 (unsigned decnum) ;

Returns Converted BCD value.

Converts unsigned 16-bit decimal value to its BCD equivalent.
Description |Parameters :

- decnum unsigned 16-bit decimal number to be converted

Requires Nothing.

unsigned a, b;

Example 2345;

Dec2Bcdlé6 (a) ; // b equals 9029

a
b

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 567

CHAPTER 6
Libraries mikroC PRO for AVR

SPRINT LIBRARY
The mikroC PRO for AVR provides the standard ANSI C Sprintf function for easy data formatting.
Note: In addition to ANSI C standard, the Sprint Library also includes two limited versions of the
sprintf function (sprinti and sprintl). These functions take less ROM and RAM and may be more
convenient for use in some cases.
Functions

- sprintf

- sprintl

- sprinti

sprintf

Prototype sprintf (char *wh, const char *f,...);

Returns The function returns the number of characters actually written to destination string.

sprintf is used to format data and print them into destination string.
Parameters :

- wh: destination string
- £: format string

The £ argument is a format string and may be composed of characters, escape
sequences, and format specifications. Ordinary characters and escape
sequences are copied to the destination string in the order in which they are
Descripti interpreted. Format specifications always begin with a percent sign (%) and
ption) i . ; .
require additional arguments to be included in the function call.
The format string is read from left to right. The first format specification encoun-
tered refers to the first argument after f and then converts and outputs it using
the format specification. The second format specification accesses the second
argument after £, and so on. If there are more arguments than format specifica-
tions, then these extra arguments are ignored. Results are unpredictable if there
are not enough arguments for the format specifications. The format specifica-
tions have the following format:

% [flags] [width] [.precision] [{ 1 | L }] conversion type

568 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6
Libraries

Description

Each field in the format specification can be a single character or a number
which specifies a particular format option. The conversion type field is where
a single character specifies that the argument is interpreted as a character,
string, number, or pointer, as shown in the following table:

conversion type [Argument Type Output Format
d int Signed decimal number
u unsigned int Unsigned decimal number
o) unsigned int Unsigned octal number
N ansigned int Unsigned hexadecimal number
J using 0123456789abcdef
% insianed int Unsigned hexadecimal number
J using 0123456789ABCEDF
Floating-point number using the for-
£ double mat [-]dddd.dddd
Floating-point number using the for-
1
© doubte mat [-]d.dddde[-]dd
Floating-point number using the for-
: doubte mat [-]d.ddddE[-]dd
Floating-point number using either e or
g double f format, whichever is more compact
for the specified value and precision
. int int is converted to unsigned char,
and the resulting character is written
S char * String with a terminating null character
p void * Pointer value, the X format is used
A % is written. No argument is con-
g <none> verted. The complete conversion
specification shall be %%.

The f1ags field is where a single character is used to justify the output and to
print +/- signs and blanks, decimal points, and octal and hexadecimal prefixes,
as shown in the following table.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

569

CHAPTER 6
Libraries mikroC PRO for AVR

flags Meaning

- Left justify the output in the specified field width.

+ Prefix the output value with + or - sign if the output is a signed type.

Prefix the output value with a blank if it is a signed positive

space |) value. Otherwise, no blank is prefixed

Prefixes a non-zero output value with 0, 0x, or 0x when used with
o, x, and x field types, respectively. When used withe, E, f, g,
and G field types, the # flag forces the output value to include a
decimal point. The # flag is ignored in all other cases.

* Ignore format specifier.

The width field is a non-negative number that specifies the minimum number of
printed characters. If a number of characters in the output value is less than
width, then blanks are added on the left or right (when the - flag is specified) to
pad to the minimum width. If width is prefixed with 0, then zeros are padded
instead of blanks. The width field never truncates a field. If a length of the out-
put value exceeds the specified width, all characters are output.

The precision field is a non-negative number that specifies a number of char-
acters to print, number of significant digits or number of decimal places. The
precision field can cause truncation or rounding of the output value in the case
of a floating-point number as specified in the following table.

Description

flags Meaning of the precision field

The precision field is where you specify a minimum number of dig-
its that will be included in the output value. Digits are not truncated
if the number of digits in the argument exceeds that defined in the
precision field. If a number of digits in the argument is less than the
precision field, the output value is padded on the left with zeros.

The precision field is where you specify a number of digits to the
right of the decimal point. The last digit is rounded.

d, u, o,
x, X

The precision field is where you specify a number of digits to the
right of the decimal point. The last digit is rounded.

The precision field is where you specify a maximum number of
significant digits in the output value.

c, C The precision field has no effect on these field types.

The precision field is where you specify a maximum number of
characters in the output value. Excess characters are not output.

570 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

The optional characters 1 or L. may immediately precede conversion type to
respectively specify long versions of the integer types d, i, u, o, x, and x.
Description
You must ensure that the argument type matches that of the format specification. You
can use type casts to ensure that the proper type is passed to sprintf.

sprintl

Prototype sprintl (char *wh, const char *f,...);

Returns The function returns the number of characters actually written to destination string.

Description | The same as sprintf, except it doesn't support float-type numbers.

sprinti

Prototype sprinti(char *wh, const char *f,...);

Returns The function returns the number of characters actually written to destination string.

Description | The same as sprintf, except it doesn't support long integers and float-type numbers.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 571

CHAPTER 6

Libraries mikroC PRO for AVR
Library Example
This is a demonstration of the standard C library sprintf routine usage. Three differ-
ent representations of the same floating poing number obtained by using the sprintf
routine are sent via UART.
double ww = -1.2587538e+1;
char Dbuffer[15] ;
// Function for sending string to UART
void UartWriteText (char *txt) ({
while (* txt)
Uart Write (*txt++);
}
// Function for sending const string to UART
vold UartWriteConstText (const char *txt) {
while (* txt)
Uart Write (*txt++);
}
void main (){
Uart Init (4800); // Initialize UART mod-
ule at 4800 bps
Delay ms (10);
UartWriteConstText ("Floating point number representation"); //
Write message on UART
sprintf (buffer, "%$12e", ww); // Format ww and store
it to buffer
UartWriteConstText ("\r\ne format:"); // Write message on UART
UartWriteText (buffer) ; // Write buffer on UART
sprintf (buffer, "$12f", ww); // Format ww and store
it to buffer
UartWriteConstText ("\r\nf format:"); // Write message on UART
UartWriteText (buffer); // Write buffer on UART
sprintf (buffer, "%12g", ww); // Format ww and store
it to buffer
UartWriteConstText ("\r\ng format:"); // Write message on UART
UartWriteText (buffer) ; // Write buffer on UART
}
572 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

TIME LIBRARY

The Time Library contains functions and type definitions for time calculations in the UNIX time for-
mat which counts the number of seconds since the "epoch”. This is very convenient for programs
that work with time intervals: the difference between two UNIX time values is a real-time differ-
ence measured in seconds.

What is the epoch?
Originally it was defined as the beginning of 1970 GMT. (January 1, 1970 Julian day) GMT,
Greenwich Mean Time, is a traditional term for the time zone in England.

The TimeStruct type is a structure type suitable for time and date storage. Type declaration is
contained in timelib.h which can be found in the mikroC PRO for AVR Time Library Demo
example folder.
Library Routines

- Time_dateToEpoch

- Time_epochToDate

- Time_dateDiff

Time_dateToEpoch

Prototype |long Time dateToEpoch (TimeStruct *ts);

Returns Number of seconds since January 1, 1970 0hOOmnOQ0s.
This function returns the unix time : number of seconds since January 1, 1970
0h0OmnQO0s.

Description Parameters :

- ts: time and date value for calculating unix time.

Requires Nothing.

#include "timelib.h"
TimeStruct tsl;
long epoch ;
Example ..
/*
* what is the epoch of the date in ts ?
*/

epoch = Time dateToEpoch (&tsl) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 573

CHAPTER 6
Libraries mikroC PRO for AVR

Time_epochToDate

Prototype void Time epochToDate (long e, TimeStruct *ts);

Returns Nothing.

Converts the unix time to time and date.

Description Parameters :

- e: unix time (seconds since unix epoch)
- ts: time and date structure for storing conversion output

Requires Nothing.

#include "timelib.h"
TimeStruct ts2;
long epoch ;
Example /*
* what date is epoch 1234567890 ?
*/

epoch = 1234567890 ;
Time epochToDate (epoch, &ts2) ;

574 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

CHAPTER 6

Libraries

Time_dateDiff

Prouﬁype long Time dateDiff (TimeStruct *tl, TimeStruct *t2);
Returns Time difference in seconds as a signed long.
This function compares two dates and returns time difference in seconds as a
signed long. Result is positive if t1 is before 2, result is null if £1 is the same
as t2 and result is negative if t1 is after t2.
Parameters :
Description
- t1: time and date structure (the first comparison parameter)
- £2: time and date structure (the second comparison parameter)
Note: This function is implemented as macro in the timelib.h header file which
can be found in the mikroC PRO for AVR Time Library Demo example folder.
Requires Nothing.
#include "timelib.h"
TimeStruct tsl, ts2;
long diff ;
Example /*
* how many seconds between these two dates contained in tsl and
ts2 buffers?
*/
diff = Time dateDiff (&tsl, &ts2) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

575

CHAPTER 6
Libraries mikroC PRO for AVR

Library Example

This example demonstrates Time Library usage.
#include "timelib.h"

TimeStruct tsl, ts2 ;
long epoch ;
long diff ;

void main () {
tsl.ss = 0 ;
tsl.mn = 7 ;
tsl.hh = 17 ;
tsl.md = 23 ;
tsl.mo = 5 ;
tsl.yy = 2006 ;

/*
* What 1is the epoch of the date in ts ?
*/

epoch = Time dateToEpoch(&tsl) ;

J*
* What date 1is epoch 1234567890 ?
*/

epoch = 1234567890 ;

Time epochToDate (epoch, &ts2) ;

J*
* How much seconds between this two dates ?
*/

diff = Time dateDiff (&tsl, &ts2) ;

576 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroC PRO for AVR Libraries

TRIGONOMETRY LIBRARY

The mikroC PRO for AVR implements fundamental trigonometry functions. These functions are
implemented as look-up tables. Trigonometry functions are implemented in integer format in order
to save memory.

Library Routines

- sinE3
- coskE3

sinE3

Prototype int sinE3 (unsigned angle degq);

Returns The function returns the sine of input parameter.

The function calculates sine multiplied by 1000 and rounded to the nearest integer:
result = round(sin(angle deg)*1000)

Description |Parameters :

- angle deg: input angle in degrees

Note: Return value range: -1000..1000.

Requires Nothing.

int res;
Example e
res = sinE3(45); // result is 707

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 577

CHAPTER 6
Libraries mikroC PRO for AVR

cosE3

Prototype int cosE3(unsigned angle deg);

Returns The function returns the cosine of input parameter.

The function calculates cosine multiplied by 1000 and rounded to the nearest integer:
result = round(cos (angle deg)*1000)

Description |Parameters :

- angle deg: input angle in degrees

Note: Return value range: -1000..1000.

Requires Nothing.

int res;
Example
res = cosE3(196); // result is -193

578 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroC PRO for AVR

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 579

00
000

OOOOL @O0
e

(N)

§ C
(©) ©)
e ©)
()
S\LS
)
(€ y) oQUH -

00000

B

0O
A\
'e) laYe!lle)
A v VIV
O OO Hm
0O o e
A\ \C A
(®) (@) (o] (e)e](e](e][]
Q (oXo](o](e](e]
~) ©o|e
o

(]
.

@ mecccecccccccccce e

B (oTe[o [y IYIVEYIINToRIC TN [[WFYVAVIN :140ddNS TYDINHDAL "MOUD| SN 19| 9sea|d ‘Uoiiewiojul [euoiippe Juem 1snf nok 1o
s1onpoid Ino jo Aue yum swajqoid Bupualiadxa ate nok J|
W0 20IW@3DIHO0 :[lew-3

TR R=TIN P VYISO YT :sn 10e1u0D asea|d ‘jesodoid ssauisng e 1o Juawwod ‘uonsanb Jayio Aue aney nok §|

\uﬂnw S T O.vﬁ,,u)d,)b .

- [CREIOTINEEL[eEENERTOE] SNOILNTOS I4VMAYYH ANV F4YM L40S
CHIUCIDBIA0IINEE

