Dual 4-Stage Binary Ripple Counter ## **High-Performance Silicon-Gate CMOS** The MC74HC393A is identical in pinout to the LS393. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of two independent 4-bit binary ripple counters with parallel outputs from each counter stage. A \div 256 counter can be obtained by cascading the two binary counters. Internal flip—flops are triggered by high—to—low transitions of the clock input. Reset for the counters is asynchronous and active—high. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or as strobes except when gated with the Clock of the HC393A. #### **Features** - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2.0 to 6.0 V - Low Input Current: 1 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the JEDEC Standard No. 7 A Requirements - Chip Complexity: 236 FETs or 59 Equivalent Gates - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb-Free, Halogen Free and are RoHS Compliant #### LOGIC DIAGRAM #### ON Semiconductor® #### http://onsemi.com SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G #### **PIN ASSIGNMENT** | CLOCK a | 1● | 14 | v _{cc} | |-------------------|----|----|-------------------| | RESET a | 2 | 13 | С СССК В | | Q1 _a [| 3 | 12 | RESET b | | Q2 _a [| 4 | 11 |] Q1 _b | | Q3 _a [| 5 | 10 | Q2 _b | | Q4 _a [| 6 | 9 |] Q3 _b | | GND [| 7 | 8 | Q4 _b | | | | | ı | #### **MARKING DIAGRAMS** SOIC-14 NB = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or = Pb-Free Package (Note: Microdot may be in either location) #### **FUNCTION TABLE** | Inputs | | | |--------|-------|--------------------------| | Clock | Reset | Outputs | | Х | Н | L | | Н | L | No Change | | L | L | No Change | | | L | No Change | | _ \ | L | Advance to
Next State | #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|---|-------------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | -0.5 to +7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | l _{in} | DC Input Current, per Pin | ±20 | mA | | l _{out} | DC Output Current, per Pin | ±25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | ±50 | mA | | P _D | Power Dissipation in Still Air, SOIC Package† TSSOP Package† | 500
450 | mW | | T _{stg} | Storage Temperature | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating: SOIC Package: –7 mW/°C from 65° to 125°C TSSOP Package: –6.1 mW/°C from 65° to 125°C ## RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | Min | Max | Unit | |------------------------------------|--|--|-----------------|---------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | | 2.0 | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | 0 | V _{CC} | V | | | T _A | Operating Temperature, All Package Types | | - 55 | +125 | °C | | t _r , t _f | V _{CC} (Figure 1) | ; = 2.0 V
; = 3.0 V
; = 4.5 V
; = 6.0 V | 0
0
0 | 1000
600
500
400 | ns | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. #### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Guaranteed Limit | | | | |-----------------|--------------------------------------|---|--------------------------|----------------------------|----------------------------|----------------------------|------| | Symbol | Parameter | Test Conditions | V _{CC} | –55 to
25°C | ≤85°C | ≤125°C | Unit | | V _{IH} | Minimum High–Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | V | | V _{IL} | Maximum Low–Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 0.5
0.9
1.35
1.80 | 0.5
0.9
1.35
1.80 | 0.5
0.9
1.35
1.80 | V | | V _{OH} | Minimum High–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $\begin{split} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ & I_{out} \leq 4.0 \text{ mA} \\ & I_{out} \leq 5.2 \text{ mA} \end{split}$ | 3.0
4.5
6.0 | 2.48
3.98
5.48 | 2.34
3.84
5.34 | 2.20
3.70
5.20 | | #### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued) | | | | | Guaranteed Limit | | | | |-----------------|---|---|-------------------|----------------------|----------------------|----------------------|------| | Symbol | Parameter | Test Conditions | V _{CC} | –55 to
25°C | ≤85°C | ≤125°C | Unit | | V _{OL} | Maximum Low–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $\begin{split} V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} & I_{\text{out}} \leq 2.4 \text{ mA} \\ I_{\text{out}} \leq 4.0 \text{ mA} \\ I_{\text{out}} \leq 5.2 \text{ mA} \end{split}$ | 3.0
4.5
6.0 | 0.26
0.26
0.26 | 0.33
0.33
0.33 | 0.40
0.40
0.40 | | | I _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 6.0 | ±0.1 | ±1.0 | ±1.0 | μΑ | | I _{CC} | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | 6.0 | 4 | 40 | 160 | μΑ | ## AC ELECTRICAL CHARACTERISTICS (C $_L$ = 50 pF, Input $t_{\rm f}$ = $t_{\rm f}$ = 6 ns) | | | | Gu | aranteed Li | mit | | |--|--|--------------------------|------------------------|------------------------|------------------------|------| | Symbol | Parameter | V _{CC} | –55 to
25°C | ≤85°C | ≤125°C | Unit | | f _{max} | Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 3) | 2.0
3.0
4.5
6.0 | 10
15
30
50 | 9
14
28
45 | 8
12
25
40 | MHz | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock to Q1 (Figures 1 and 3) | 2.0
3.0
4.5
6.0 | 70
40
24
20 | 80
45
30
26 | 90
50
36
31 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock to Q2 (Figures 1 and 3) | 2.0
3.0
4.5
6.0 | 100
56
34
20 | 105
70
45
38 | 180
100
55
48 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock to Q3 (Figures 1 and 3) | 2.0
3.0
4.5
6.0 | 130
80
44
37 | 150
105
55
47 | 180
130
70
58 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock to Q4 (Figures 1 and 3) | 2.0
3.0
4.5
6.0 | 160
110
52
44 | 250
185
65
55 | 300
210
82
65 | ns | | t _{PHL} | Maximum Propagation Delay, Reset to any Q (Figures 2 and 3) | 2.0
3.0
4.5
6.0 | 80
48
30
26 | 95
65
38
33 | 110
75
50
43 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figures 1 and 3) | 2.0
3.0
4.5
6.0 | 75
27
15
13 | 95
32
19
16 | 110
36
22
19 | ns | | C _{in} | Maximum Input Capacitance | - | 10 | 10 | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |-----------------|--|---|----| | C _{Pl} | Power Dissipation Capacitance (Per Counter)* | 35 | рF | ^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. #### **TIMING REQUIREMENTS** (Input $t_r = t_f = 6 \text{ ns}$) | | | | Guaranteed Limit | | | | |---------------------------------|---|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | V _{CC} | –55 to
25°C | ≤85°C | ≤125°C | Unit | | t _{rec} | Minimum Recovery Time, Reset Inactive to Clock (Figure 2) | 2.0
3.0
4.5
6.0 | 25
15
10
9 | 30
20
13
11 | 40
30
15
13 | ns | | t _w | Minimum Pulse Width, Clock
(Figure 1) | 2.0
3.0
4.5
6.0 | 75
27
15
13 | 95
32
19
15 | 110
36
22
19 | ns | | t _w | Minimum Pulse Width, Reset
(Figure 2) | 2.0
3.0
4.5
6.0 | 75
27
15
13 | 95
32
19
15 | 110
36
22
19 | ns | | t _r , t _f | Maximum Input Rise and Fall Times
(Figure 1) | 2.0
3.0
4.5
6.0 | 1000
800
500
400 | 1000
800
500
400 | 1000
800
500
400 | ns | #### **PIN DESCRIPTIONS** #### **INPUTS** ### **Clock (Pins 1, 13)** Clock input. The internal flip-flops are toggled and the counter state advances on high-to-low transitions of the clock input. #### **OUTPUTS** Q1, Q2, Q3, Q4 (Pins 3, 4, 5, 6, 8, 9, 10, 11) Parallel binary outputs Q4 is the most significant bit. #### CONTROL INPUTS Reset (Pins 2, 12) Active-high, asynchronous reset. A separate reset is provided for each counter. A high at the Reset input prevents counting and forces all four outputs low. #### **SWITCHING WAVEFORMS** Figure 1. Figure 2. *Includes all probe and jig capacitance Figure 3. Test Circuit #### **EXPANDED LOGIC DIAGRAM** #### **TIMING DIAGRAM** #### **COUNT SEQUENCE** | | Outputs | | | | | |-------|---------|----|----|----|--| | Count | Q4 | Q3 | Q2 | Q1 | | | 0 | L | L | L | L | | | 1 | L | L | L | Н | | | 2 | L | L | Н | L | | | 3 | L | L | Н | Н | | | 4 | L | Н | L | L | | | 5 | L | Н | L | Н | | | 6 | L | Н | Н | L | | | 7 | L | Н | Н | Н | | | 8 | Н | L | L | L | | | 9 | Н | L | L | Н | | | 10 | Н | L | Н | L | | | 11 | Н | L | Н | Н | | | 12 | Н | Н | L | L | | | 13 | Н | Н | L | Н | | | 14 | Н | Н | Н | L | | | 15 | Н | Н | Н | Н | | #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|-------------------------|-----------------------| | MC74HC393ADG | SOIC-14 NB
(Pb-Free) | 55 Units / Rail | | MC74HC393ADR2G | SOIC-14 NB
(Pb-Free) | 2500 / Tape & Reel | | NLV74HC393ADR2G* | SOIC-14 NB
(Pb-Free) | 2500 / Tape & Reel | | MC74HC393ADTR2G | TSSOP-14
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable SOIC-14 NB CASE 751A-03 ISSUE L **DATE 03 FEB 2016** #### 0.25 0.50 0.010 0.019 0.40 1.25 0.016 0.049 NOTES: 1. DIMENSIONING AND TOLERANCING PER 5. MAXIMUM MOLD PROTRUSION 0.15 PER INCHES MIN MAX 0.050 BSC 0.25 0.004 0.010 0.25 0.008 0.010 0.49 0.014 8.75 0.337 3.80 4.00 0.150 0.157 0.068 0.019 MILLIMETERS MIN MAX 1.27 BSC 0.19 8.55 SIDE Α A1 0.10 АЗ b 0.35 D E e H h ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. **GENERIC** XXXXX = Specific Device Code Α = Assembly Location WL = Wafer Lot Υ = Year = Work Week WW G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator. "G" or microdot " ■". may or may not be present. #### **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|--|-------------|--|--| | DESCRIPTION: | SOIC-14 NB | | PAGE 1 OF 2 | | | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### SOIC-14 CASE 751A-03 ISSUE L #### DATE 03 FEB 2016 | STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:
CANCELLED | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE | |---|---|---|---| | STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE | | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-14 NB | | PAGE 2 OF 2 | ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. **DATE 17 FEB 2016** - NOTES. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY. - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | - | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 BSC | | | М | ° o | 8 ° | 0 ° | 8 ° | #### **GENERIC MARKING DIAGRAM*** (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | ◀ | 7.06 | |---------------|--| | 1 | | | | | | | | | | | | | 0.65 | | , <u> </u> | — — — • • • • • • • • • • • • • • • • • • • | | 14X | ─ | | 0.36 14X 1.26 | DIMENSIONS: MILLIMETERS | **SOLDERING FOOTPRINT** | DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|--|-------------| | DESCRIPTION: | TSSOP-14 WB | | PAGE 1 OF 1 | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative