TrenchMV ${ }^{\text {TM }}$ Power MOSFET

N-Channel Enhancement Mode

IXTA98N075T
IXTP98N075T

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$	75	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	75	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 20	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	98	A
$\mathrm{I}_{\text {LRMS }}$	Package Current Limit (RMS):	75	A
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{JM}	280	A
dv/dt	$\begin{aligned} & \mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{di} / \mathrm{dt} \leq 100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}} \\ & \mathrm{~T}_{\mathrm{J}} \leq 175^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=5 \Omega \end{aligned}$	5	V/ns
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	25	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	600	mJ
P_{d}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	230	W
TJ		$-55 \ldots+175$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-40 ... +175	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062 in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sold }}$	Plastic body for 10 seconds	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (TO-220)	1.13 / 10	$\mathrm{Nm} / \mathrm{lb}$.in.
Weight	TO-220	3.0	g
	TO-263	2.5	g

Symbol Test Conditions ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)			Characteristic Values			
			Min.	Typ.	Max	
$B V_{\text {Dss }}$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$		75			V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$V_{D S}=V_{G S}, I_{D}$		2.0		4.0	V
$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$,				± 200	nA
$\mathrm{I}_{\text {DSS }}$	$\begin{aligned} & V_{D S}=V_{D S S} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$			2 150	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{R}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$	1, 2			10	$\mathrm{m} \Omega$

TO-263 (IXTA)

TO-220 (IXTP)

G = Gate
S = Source
D = Drain $\mathrm{TAB}=$ Drain

Features

- Ultra-low On Resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- $175^{\circ} \mathrm{C}$ Operating Temperature

Advantages

- Easy to mount
- Space savings
- High power density

Applications

- Automotive
- Motor Drives
- 42V Power Bus
- ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- High Current Switching Applications

Symbol Test Conditions$\left(T_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)		Characteristic Values		
		Min.	Typ.	Max.
$\mathrm{g}_{\text {fs }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$, Note 1	38	64	S
$\mathrm{C}_{\text {iss }}$			3100	pF
$\mathrm{C}_{\text {oss }}$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		520	pF
$\mathrm{C}_{\text {rss }}$			125	pF
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Resistive Switching Times		20	ns
t_{r}	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0.5 \mathrm{~V}_{\text {DSS }}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$		42	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	$\mathrm{R}_{\mathrm{G}}=5 \Omega$ (External)		42	ns
t_{f}			27	ns
$Q_{\text {g(on) }}$			68	nC
Q_{gs}	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$		18	$n \mathrm{C}$
Q_{gd}			15	nC
$\mathrm{R}_{\text {thJc }}$				$0.65{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathbf{R}_{\text {thcs }}$			0.50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Source-Drain Diode

Symbol Test ConditionsCharacteristic Values

($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)		Min.	Typ.	Max.	
I_{s}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			98	A
$\mathrm{I}_{\text {SM }}$	Repetitive			280	A
$\mathrm{V}_{\text {sD }}$	$I_{F}=I_{S}, V_{G S}=0 \mathrm{~V}$, Note 1			1.5	V
t_{rr}	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=49 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$		50		ns

Note 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$;
2. On through-hole packages, $\mathrm{R}_{\mathrm{DS}(\text { (n) }}$ Kelvin test contact location is 5 mm or less from the package body.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics

