1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

\qquad
General Description
The MAX9310A is a fast, low-skew 1:5 differential driver with selectable LVPECL inputs and LVDS outputs, designed for clock distribution applications. This device features an ultra-low propagation delay of 340ps with 48 mA of supply current.
The MAX9310A operates from a 3 V to 3.6 V power supply for use in 3.3 V systems. A 2:1 input multiplexer is used to select one of two differential inputs. The input selection is controlled through the CLKSEL pin.
This device features a synchronous enable function. The MAX9310A LVPECL inputs can be driven by either a differential or single-ended signal. A VBB reference voltage output is provided for use with single-ended inputs. The device can also accept differential HSTL signals.
The MAX9310A is offered in a space-saving 20-pin TSSOP package and operates over the extended temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications

Data and Clock Drivers and Buffers
Central-Office Backplane Clock Distribution
DSLAM
Base Stations
ATE

- Guaranteed 1.0GHz Operating Frequency
- 8.Ops Output-to-Output Skew
- 340ps Propagation Delay
- Accepts LVPECL and Differential HSTL Inputs
- Synchronous Output Enable/Disable
- Two Selectable Differential Inputs
- 3V to 3.6V Supply Voltage
- On-Chip Reference for Single-Ended Operation
- ESD Protection: $\pm 2 \mathrm{kV}$ (Human Body Model)
- Input Bias Resistors Drive Output Low for Open Inputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9310AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP

Pin Configuration

M/IXINI

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

ABSOLUTE MAXIMUM RATINGS
$V_{C c}$ to GND
0.3 V to +4.1 V
EN, CLKSEL, CLK_, CLK_, to GND.............-0.3V to (VCC + 0.3V)
CLK_ to CLK
\qquad

Continuous Output Current
\qquad 24 mA
Surge Output Current.
.50 mA
VBB Sink/Source Current $\pm 0.65 \mathrm{~mA}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
Single-Layer PC Board
20-Pin TSSOP (derate $7.69 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 615 mW
Multilayer PC Board
20-Pin TSSOP (derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 879 mW
Junction-to-Ambient Thermal Resistance in Still Air
Single-Layer PC Board
20-Pin TSSOP
\qquad $+130^{\circ} \mathrm{C} / \mathrm{W}$

Multilayer PC Board
20-Pin TSSOP
$+91^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient Thermal Resistance with 500LFPM
Airflow Single-Layer PC board 20-Pin TSSOP
$+96^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance
20-Pin TSSOP
$+20^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ESD Protection

Human Body Model (inputs and outputs).
.$\pm 2 \mathrm{kV}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}-\mathrm{GND}=3 \mathrm{~V}\right.$ to 3.6 V , outputs terminated with $100 \Omega \pm 1 \%$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}-\mathrm{GND}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=$ $\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
SINGLE-ENDED INPUTS (CLKSEL, $\overline{\text { EN }}$)												
Input High Voltage	V_{IH}		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.165 \end{aligned}$		$\begin{gathered} V_{C C}- \\ 0.88 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.165 \end{aligned}$		$\begin{gathered} V_{C C}- \\ 0.88 \end{gathered}$	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		$\begin{gathered} \text { VCC } \\ 0.88 \end{gathered}$	V
Input Low Voltage	VIL		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.81 \end{gathered}$		$\begin{aligned} & V_{C C}- \\ & 1.475 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.81 \end{gathered}$		$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.475 \end{aligned}$	$\begin{gathered} V_{C C}- \\ 1.81 \end{gathered}$		$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.475 \end{aligned}$	V
Input Current	In	$\mathrm{V}_{\mathrm{IH}}(\mathrm{MAX}),$ VIL(MAX)	-10		+70	-10		+70	-10		+70	$\mu \mathrm{A}$
DIFFERENTIAL INPUTS (CLK_, $\mathbf{C L K}_{\text {- }}$)												
Single-Ended Input High Voltage	V_{IH}	Figure 1	$\begin{aligned} & V_{C C}- \\ & 1.125 \end{aligned}$		$\begin{gathered} V_{\mathrm{CC}}- \\ 0.88 \end{gathered}$	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		$\begin{gathered} V_{\mathrm{CC}}- \\ 0.88 \end{gathered}$	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		$\begin{gathered} \text { VCC }- \\ 0.88 \end{gathered}$	V
Single-Ended Input Low Voltage	VIL	Figure 1	$\begin{array}{\|c} \hline \mathrm{VCC}- \\ 1.81 \end{array}$		$\begin{aligned} & V_{C C}- \\ & 1.475 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.81 \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.475 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.81 \end{gathered}$		$\begin{aligned} & V_{C C}- \\ & 1.495 \end{aligned}$	V
Differential Input High Voltage	VIHD	Figure 2	1.2		$V_{C C}$	1.2		VCC	1.2		VCC	V
Differential Input Low Voltage	VILD	Figure 2	GND		$\begin{aligned} & \text { VCC - } \\ & 0.095 \end{aligned}$	GND		$\begin{aligned} & \text { VCC - } \\ & 0.095 \end{aligned}$	GND		$\begin{aligned} & \text { VCC - } \\ & 0.095 \end{aligned}$	V
Differential Input Voltage	VID	VIHD - VILD	0.095		3.0	0.095		3.0	0.095		3.0	V
Input Current	$\mathrm{IIH}_{\text {, IIL }}$	$\begin{aligned} & \text { CLK_, or } \overline{\text { CLK_ }}= \\ & \mathrm{V}_{\text {IHD }} \text { or } \mathrm{V}_{\text {ILD }} \end{aligned}$	-100		+100	-100		+100	-100		+100	$\mu \mathrm{A}$

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

DC ELECTRICAL CHARACTERISTICS (continued)

(V CC $-\mathrm{GND}=3 \mathrm{~V}$ to 3.6 V , outputs terminated with $100 \Omega \pm 1 \%$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=$ $\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUTS ($\left.\mathbf{Q}_{-}, \overline{\mathbf{Q}_{-}}\right)$												
Output High Voltage	VOH	Figure 2			1.6			1.6			1.6	V
Output Low Voltage	Vol	Figure 2	0.9			0.9			0.9			V
Differential Output Voltage	VOD	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}},$ Figure 2	250	350	450	250	350	450	250	350	450	mV
Change in VOD Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$				50			50			50	mV
Output Offset Voltage	Vos		1.125	1.25	1.375	1.125	1.25	1.375	1.125	1.25	1.375	mV
Change in VOS Between Complementary Output States	$\triangle \mathrm{VOCM}$				25			25			25	mV
Output ShortCircuit Current	Iosc	Q_ shorted to $\overline{Q_{-}}$			12			12			12	mA
		Q_ or $\overline{Q_{-}}$shorted to GND			29			29			29	
REFERENCE												
Reference Voltage Output	VBB	$\begin{aligned} & \mathrm{l} \mathrm{lB}= \pm 0.65 \mathrm{~mA} \\ & \text { (Note 4) } \end{aligned}$	$\begin{gathered} \hline V_{C C}- \\ 1.38 \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.22 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.38 \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.26 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.40 \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.26 \end{gathered}$	V
POWER SUPPLY												
Power-Supply Current	IcC	(Note 5)		45	75		48	75		51	75	mA

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

AC ELECTRICAL CHARACTERISTICS

(VCC - GND $=3 \mathrm{~V}$ to 3.6 V , outputs terminated with $100 \Omega \pm 1 \%, \mathrm{f}_{\mathrm{IN}} \leq 1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$,
$\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to V_{CC}, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1 and 6)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay CLK_, $\overline{C L K}$ _ to $Q_{-}, \overline{Q_{-}}$	tpHL, tpLH	Figure 2	250	340	600	250	340	600	250	340	600	ps
Output-toOutput Skew	tskoo	(Note 7)		10	30		8	25		20	45	ps
Part-to-Part Skew	tSKPP	(Note 8)			145			145			145	ps
Added Random Jitter	tRJ	$\mathrm{f} / \mathrm{N}=1.0 \mathrm{GHz}$, clock pattern (Note 9)		0.3	1.0		0.3	1.0		0.3	1.0	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$
Added Deterministic Jitter	tDJ	$\begin{aligned} & \mathrm{f} / \mathrm{N}=1.0 \mathrm{Gsps}, \\ & 2^{23}-1 \text { PRBS } \\ & \text { pattern (Note 9) } \end{aligned}$		50	60		50	60		50	60	$\begin{gathered} \text { ps } \\ \text { (P-P) } \end{gathered}$
Operating Frequency	$f_{\text {max }}$	$\mathrm{V}_{\mathrm{OD}} \geq 250 \mathrm{mV}$	1.0			1.0			1.0			GHz
Differential Output Rise/Fall Time	tR/tF	20\% to 80\%, Figure 2	140	205	300	140	205	300	140	205	300	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at $+25^{\circ} \mathrm{C}$. DC limits are guaranteed by design and characterized over the full operating temperature range.
Note 4: Use V_{BB} only for inputs that are on the same device as the V_{BB} reference.
Note 5: All pins are open except $\mathrm{V}_{C C}$ and GND, all outputs are loaded with 100Ω differentially.
Note 6: Guaranteed by design and characterization. Limits are set to ± 6 sigma.
Note 7: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 8: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
Note 9: Device jitter added to the input signal.

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

Typical Operating Characteristics
$\left(V_{C C}-G N D=3.3 \mathrm{~V}\right.$, outputs terminated with $100 \Omega \pm 1 \%, \mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.)

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

Pin Description

PIN	NAME	FUNCTION
1	Q0	Noninverting Differential Output 0 . Typically terminated with 100Ω to $\overline{\mathrm{Q} 0}$.
2	Q0	Inverting Differential Output 0. Typically terminated with 100Ω to Q0.
3	Q1	Noninverting Differential Output 1. Typically terminated with 100Ω to $\overline{\text { Q1 }}$.
4	Q1	Inverting Differential Output 1. Typically terminated with 100Ω to Q1.
5	Q2	Noninverting Differential Output 2. Typically terminated with 100Ω to $\overline{\mathrm{Q} 2}$.
6	Q2	Inverting Differential Output 2. Typically terminated with 100Ω to Q2.
7	Q3	Noninverting Differential Output 3. Typically terminated with 100Ω to $\overline{\mathrm{Q} 3}$.
8	Q3	Inverting Differential Output 3. Typically terminated with 100Ω to Q3.
9	Q4	Noninverting Differential Output 4. Typically terminated with 100Ω to $\overline{\text { Q4 }}$.
10	$\overline{\text { Q4 }}$	Inverting Differential Output 4. Typically terminated with 100Ω to Q4.
11	GND	Ground
12	CLKSEL	Clock Select Input. Drive low to select the CLKO, $\overline{\text { CLKO input. Drive high to select the CLK1, }}$ CLK1 input. The CLKSEL threshold is equal to $V_{B B}$. Internal $60 \mathrm{k} \Omega$ pulldown to GND.
13	CLKO	Noninverting Differential Clock Input 0. Internal $75 \mathrm{k} \Omega$ pulldown to GND.
14	CLKO	Inverting Differential Clock Input 0. Internal $75 \mathrm{k} \Omega$ pullup to V_{CC} and $75 \mathrm{k} \Omega$ pulldown to GND.
15	$V_{B B}$	Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to VCC; otherwise, leave open.
16	CLK1	Noninverting Differential Input 1. Internal $75 \mathrm{k} \Omega$ pulldown to GND.
17	CLK1	Inverting Differential Input 1. Internal $75 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{C C}$ and $75 \mathrm{k} \Omega$ pulldown to GND.
18, 20	Vcc	Positive Supply Voltage. Bypass $V_{C C}$ to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
19	$\overline{\mathrm{EN}}$	Output Enable Input. Outputs are synchronously enabled on the falling edge of the selected clock input when $\overline{E N}$ is low. Outputs are synchronously driven to a differential low state on the falling edge of the selected clock input when $\overline{\mathrm{EN}}$ is high. Internal $60 \mathrm{k} \Omega$ pulldown to GND (Figure 3).

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

Figure 1. MAX9310A Switching Characteristics with Single-Ended Input

Figure 2. MAX9310A Timing Diagram

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

Figure 3. MAX9310A Timing $\overline{E N}$ Diagram

Detailed Description

The MAX9310A is a low-skew 1:5 differential driver with two selectable LVPECL inputs and LVDS outputs, designed for clock distribution applications. The selected clock accepts a differential input signal and reproduces it on five separate differential LVDS outputs. The inputs are biased with internal resistors such that the output is differential low when inputs are open. An onchip $V_{B B}$ reference output is available for single-ended input operation. The device is guaranteed to operate at frequencies up to 1.0 GHz with LVDS output levels conforming to the EIA/TIA-644 standard.
The MAX9310A is designed for 3 V to 3.6 V operation in systems with a nominal 3.3 V supply.

Differential LVPECL Input

The MAX9310A has two input differential pairs that accept differential LVPECL/HSTL inputs, and can be configured to accept single-ended LVPECL inputs through the use of the $V_{B B}$ voltage-reference output. Each differential input pair has to be independently terminated. A select pin (CLKSEL) is used to activate the desired input. The maximum magnitude of the differential signal applied to the input is 3 V . Specifications for the high and low voltages of a differential input (VIHD and $\mathrm{V}_{\text {ILD }}$) and the differential input voltage (VIHD - VILD) apply simultaneously.

Single-Ended Inputs and VBB

The differential inputs can be configured to accept a single-ended input through the use of the $V_{B B}$ reference voltage. A noninverting, single-ended input is produced by connecting $V_{B B}$ to the CLK_ input and $^{\text {a }}$ applying a single-ended signal to the CLK_ input. Similarly, an inverting input is produced by connecting VBB to the CLK_ input and applying the signal to the CLK_ input. With a differential input configured as single ended (using $V_{B B}$), the single-ended input can be driven to VCC and GND, or with a single-ended LVPECL signal. Note the single-ended input must be at least $V_{B B} \pm 95 \mathrm{mV}$ or a differential input of at least 95 mV
to switch the outputs to the VOH and VOL levels specified in the DC Electrical Characteristics table (Figure 1).
When using the $V_{B B}$ reference output, bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to $\mathrm{V}_{C C}$. If the $\mathrm{V}_{B B}$ reference is not used, leave unconnected. The VBB reference can source or sink $500 \mu \mathrm{~A}$. Use V_{BB} only for inputs that are on the same device as the $V_{B B}$ reference.

Synchronous Enable

The MAX9310A is synchronously enabled and disabled with outputs in a differential low state to eliminate shortened clock pulses. EN is connected to the input of an edge-triggered D flip-flop. After power-up, drive EN low and toggle the selected clock input to enable the outputs. The outputs are enabled on the falling edge of the selected clock input after EN goes low. The outputs are set to a differential low state on the falling edge of the selected clock input after EN goes high (Figure 3).

Input Bias Resistors

Internal biasing resistors ensure a (differential) output low condition in the event that the inputs are not connected. The inverting input ($\overline{C L K}$ _) is biased with a $75 \mathrm{k} \Omega$ pulldown to GND and a $75 \mathrm{k} \Omega$ pullup to V_{cc}. The noninverting input (CLK_) is biased with a $75 \mathrm{k} \Omega$ pulldown to GND.

Differential LVDS Output
The LVDS outputs must be terminated with 100Ω across Q and $\overline{\mathrm{Q}}$, as shown in the Typical Application Circuit. The outputs are short-circuit protected.

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

Applications Information

Supply Bypassing

Bypass each VCC to GND with high-frequency surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the $V_{B B}$ reference output, bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to $V_{C C}$. If the $V_{B B}$ reference is not used, it can be left open.

Controlled-Impedance Traces

Input and output trace characteristics affect the performance of the MAX9310A. Connect high-frequency input and output signals to 50Ω characteristic impedance traces. Minimize the number of vias to prevent
impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination
Terminate the outputs with 100Ω across Q_{-}and \bar{Q}_{-}, as shown in the Typical Application Circuit.

Chip Information
TRANSISTOR COUNT: 716
PROCESS: Bipolar

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

Functional Diagram

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
MAX9310AEUP + MAX9310AEUP + T

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time

