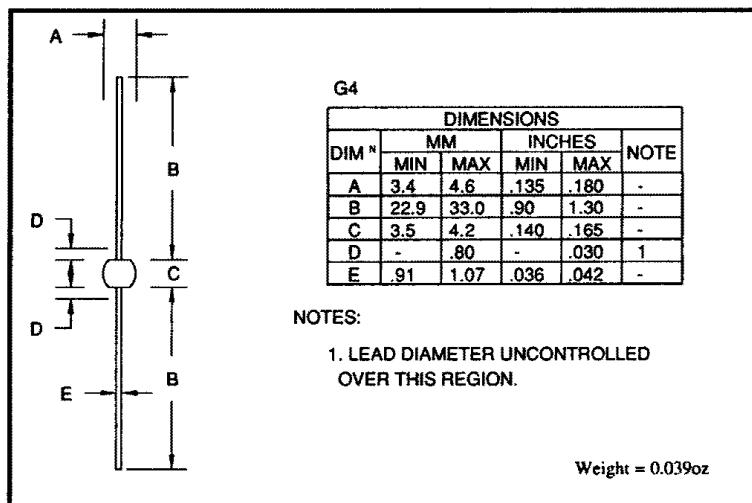


January 7, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:<http://www.semtech.com>AXIAL LEADED HERMETICALLY SEALED
SUPERFAST RECTIFIER DIODEQUICK REFERENCE
DATA


- Very low reverse recovery time
- Hermetically sealed in Metoxilite fused metal oxide
- Low switching losses
- Low forward voltage drop
- Soft, non-snap off, recovery characteristics

- V_R = 50 - 150V
- I_F = 5.0A
- t_{rr} = 30nS
- V_F = 0.97V

ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified)

	Symbol	1N6079 5FF05	1N6080 5FF10	1N6081 5FF15	Unit
Working reverse voltage	V_{RWM}	50	100	150	V
Repetitive reverse voltage	V_{RRM}	50	100	150	V
Average forward current (@ 55°C, lead length 0.375")	$I_{F(av)}$	5.0	5.0	5.0	A
Repetitive surge current (@ 55°C in free air, lead length 0.375")	I_{FRM}	24	24	24	A
Non-repetitive surge current ($t_p = 8.3\text{mS}$, @ V_R & T_{jmax})	I_{FSM}	175	175	175	A
Storage temperature range	T_{STG}	-65 to +150	-65 to +150	-65 to +150	°C
Operating temperature range	T_{OP}	-65 to +150	-65 to +150	-65 to +150	°C

MECHANICAL

These products are qualified to MIL-S-19500/503.

They can be supplied fully released as JAN, JANTX, and JANTXV versions.

These products are qualified in Europe to DEF STAN 59-61 (PART 80)/030 available to F and FX levels.

January 7, 1998

ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified)

	Symbol	1N6079 5FF05	1N6080 5FF10	1N6081 5FF15	Unit
Average forward current max. T _A = 55°C for sine wave	I _{F(AV)}	2.0			A
Average forward current max. T _L = 70°C; L = 0" T _L = 55°C; L = 3/8" for sine wave	I _{F(AV)}	12.0			A
for square wave	I _{F(AV)}	4.8			A
I ² t for fusing (t = 8.3mS) max.	I ² t	5.0			A ² S
Forward voltage drop max. @ I _F = 5.0A, T _j = 25°C	V _F	127			V
Reverse current max. @ VRWM, T _j = 25°C @ VRWM, T _j = 100°C	I _R	0.97			μA
Reverse recovery time max. 0.5A I _F to 1.0A I _R . Recovers to 0.25A I _{RR} .	t _{rr}	10			μA
Junction capacitance typ. @ V _R = 5V, f = 1MHz	C _j	500			nS
		30			pF
		230			

THERMAL CHARACTERISTICS

	Symbol	1N6079 5FF05	1N6080 5FF10	1N6081 5FF15	Unit
Thermal resistance - junction to lead Lead length = 0.375" Lead length = 0.0"	R _{θJL}	23.5			°C/W
Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper.	R _{θJA}	5			°C/W
		75			°C/W

January 7, 1998

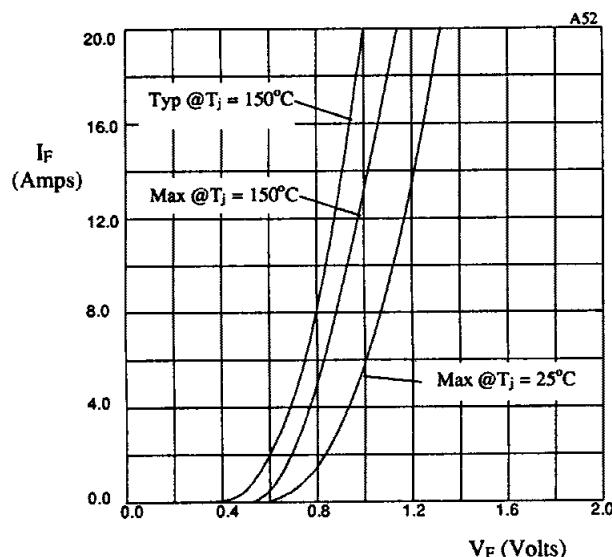


Fig 1. Forward voltage drop as a function of forward current

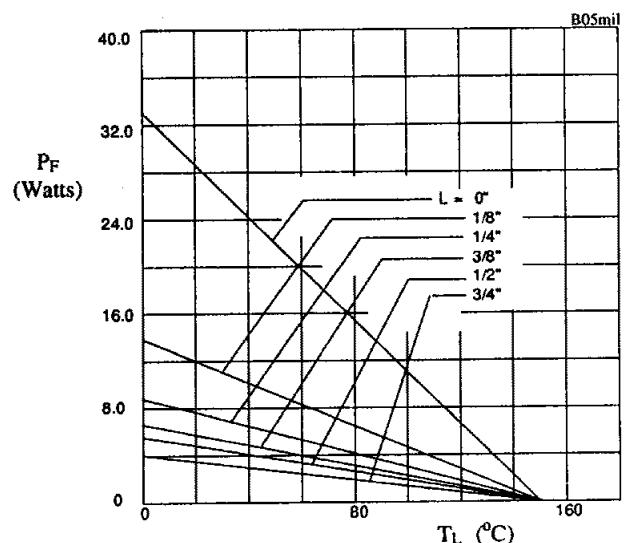


Fig 2. Maximum power versus lead temperature

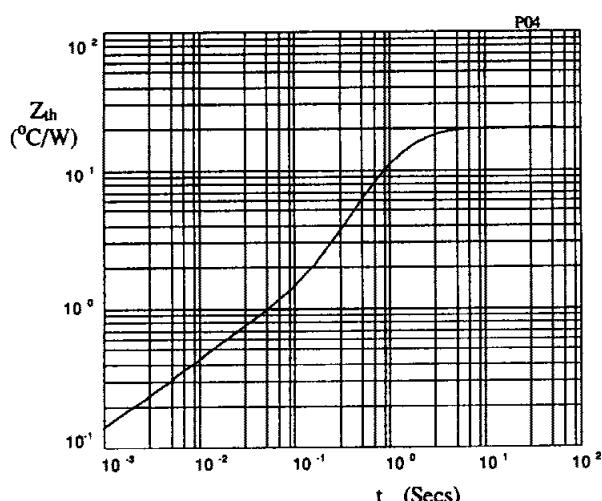


Fig 3. Transient thermal impedance characteristic.

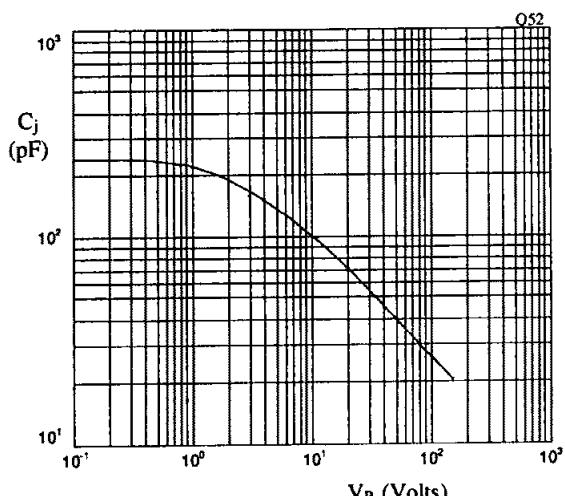


Fig 4. Typical junction capacitance as a function of reverse voltage.

January 7, 1998

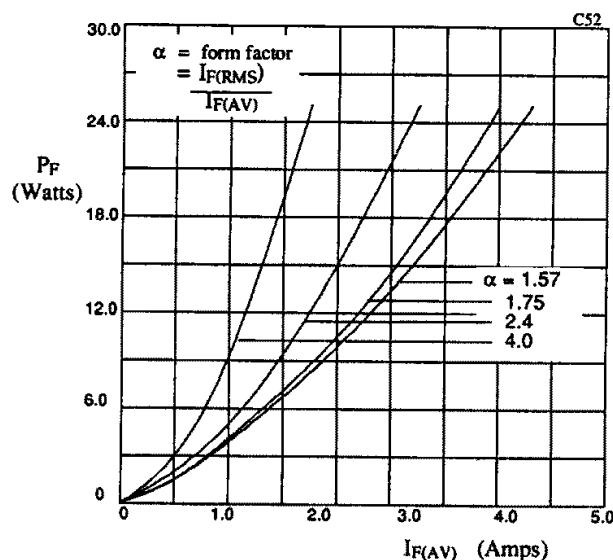


Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

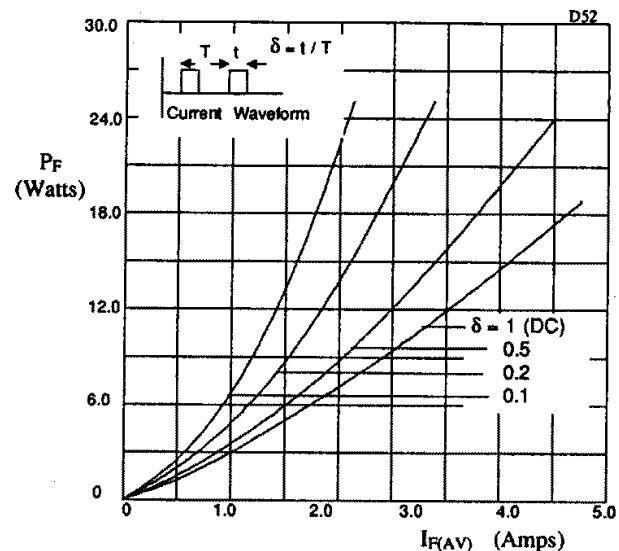


Fig 6. Forward power dissipation as a function of forward current, for square wave operation.

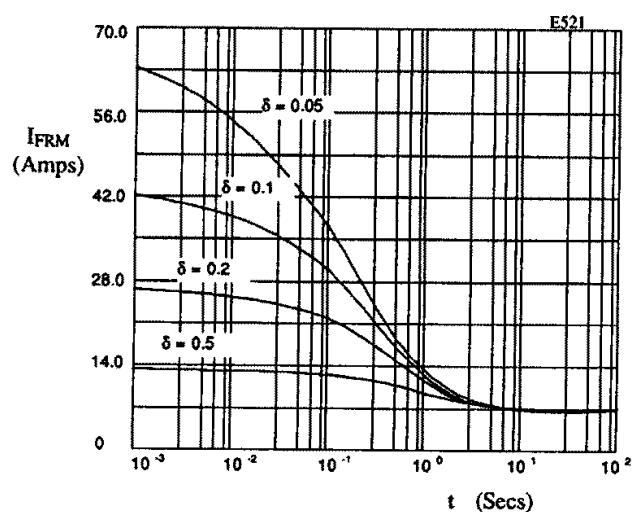


Fig 7. Maximum repetitive forward current as a function of pulse width at 55°C ; $R_{\text{BJL}} = 20 \text{ }^{\circ}\text{C/W}$; V_{RWM} during $1 - \delta$.

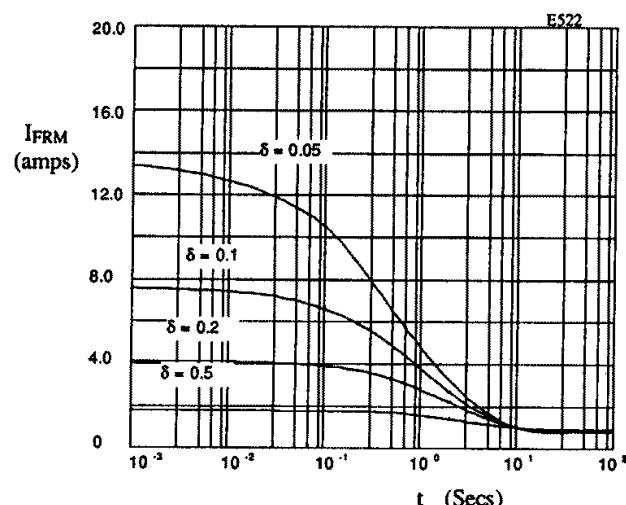


Fig 8. Maximum repetitive forward current as a function of pulse width at 100°C ; $R_{\text{BJL}} = 80 \text{ }^{\circ}\text{C/W}$; V_{RWM} during $1 - \delta$.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Semtech:

[1N6081](#) [1N6080](#) [1N6079](#) [JANTXV1N6080](#) [JAN1N6079](#) [JANTXV1N6079](#) [JANTX1N6079](#) [JANTX1N6081](#)
[JANTXV1N6081](#) [JAN1N6080](#) [JAN1N6081](#) [JANTX1N6080](#)