

LM237, LM337

SLVS047L-NOVEMBER 1981-REVISED JANUARY 2015

LMx37 3-Terminal Adjustable Regulators

1 Features

- Output Voltage Range Adjustable From -1.2 V to -37 V
- Output Current Capability of 1.5 A Max
- Input Regulation Typically 0.01% Per Input-Voltage Change
- Output Regulation Typically 0.3% .
- Peak Output Current Constant Over Temperature • Range of Regulator
- Ripple Rejection Typically 77 dB .
- Direct Replacement for Industry-Standard LM237 • and LM337

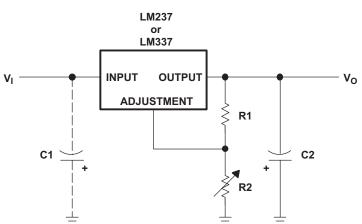
2 Applications

- Applications Requiring Negative Output Voltage or • Precision Current Regulation
- **Consumer Electronics**
- End Equipment
- Portable Applications

4 **Simplified Schematic**

3 Description

Tools &


Software

The LM237 and LM337 are adjustable 3-terminal negative-voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -37 V. They require only two external resistors to set the output voltage and one output capacitor for frequency compensation.

D	evice Informat	ion ⁽¹⁾
_		

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	TO-220 (4)	10.16 mm x 8.82 mm
LMx37	TO-263 (4)	10.16 mm x 9.02 mm
	TO-252 (4)	6.6 mm x 6.10 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

8.4

8.5

12.2

12.3

9

1	Feat	tures 1								
2	Арр	Applications 1								
3	Description1									
4	Simplified Schematic1									
5	Rev	ision History 2								
6	Pin	Configuration and Functions 3								
7	Spe	cifications 4								
	7.1	Absolute Maximum Ratings 4								
	7.2	ESD Ratings 4								
	7.3	Recommended Operating Conditions 4								
	7.4	Thermal Information 4								
	7.5	Electrical Characteristics5								
	7.6	Electrical Characteristics 5								
	7.7	Typical Characteristics 6								
8	Deta	ailed Description7								
	8.1	Overview								
	8.2	Functional Block Diagram7								

Changes from Revision K (November 2007) to Revision L

5 Revision History

•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table,	
	Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation	
	section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section.	1
•	Deleted Ordering Information table.	1

www.ti.com Device Functional Modes......8 10 Power Supply Recommendations 10 11 Layout..... 11 11.1 Layout Guidelines 11 11.2 Layout Example 11 12 Device and Documentation Support 11

12.1 Related Links 11

12.4 Glossary..... 11

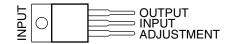
Information 11

13 Mechanical, Packaging, and Orderable

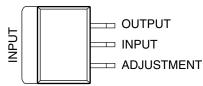
Trademarks 11 Electrostatic Discharge Caution 11

Copyright © 1981–2015, Texas Instruments Incorporated

STRUMENTS

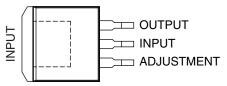

XAS

Page



6 Pin Configuration and Functions

LM237, LM337...KC (TO-220) PACKAGE (TOP VIEW)


LM337...KTE, KTP, OR KVU PACKAGE (TOP VIEW)

LM337...KCS (TO-220) PACKAGE (TOP VIEW)

LM337...KTT (TO-263) PACKAGE (TOP VIEW)

Pin Functions

PIN		TYPE	DESCRIPTION			
NAME	NO.	ITPE	DESCRIPTION			
ADJUSTMENT 1		Ι	Adjustment pin for the output voltage. Connect two external resistors to adjust the output voltage.			
INPUT 2		Ι	Input voltage. The input voltage and current will be designated V_I and I_I respectively.			
OUTPUT	3	0	Output voltage. The output voltage and current will be designated $V_{\rm O}$ and $I_{\rm O}$ respectively.			

7 Specifications

7.1 Absolute Maximum Ratings

over operating temperature ranges (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
$V_I - V_O$	Input-to-output differential voltage			-40	V
TJ	Operating virtual junction temperature			150	°C
	Lead temperature	1.6 mm (1/16 in) from case for 10 s		260	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	1500	
V _{(ES}	D) Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all $\ensuremath{pins}^{(2)}$	1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

			MIN	MAX	UNIT
VI-VO	Input-to-output differential voltage		-2.5	-37	
I _O Output current		$ V_I - V_O \le 40 \text{ V}, \text{ P} \le 15 \text{ W}$	10	1500	س ۸
	Output current	$ V_I - V_O \le 10 \text{ V}, \text{ P} \le 15 \text{ W}$	6	1500	mA
T _J Operating virtual junction temperature	Operating virtual junction temperature	LM237	-25	150	°C
	Operating virtual junction temperature	LM337	0	125	

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		LM237 LMx37		LM337				
		КС	KCS	KTE	KTP	КТТ	KVU	UNIT
		4 PINS	4 PINS	4 PINS	4 PINS	4 PINS	4 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	24.8	24.8	23	28	25.3	30.3	
R _{θJC(top}	Junction-to-case (top) thermal resistance	3	3	3	19	30.3	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics

over recommended ranges of operating virtual junction temperature (unless otherwise noted)

	TEST CONDITIONS ⁽¹⁾			LM237			LM337		
PARAMETER	TEST CONDITI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Input regulation ⁽²⁾	$V_1 - V_0 = -3 V \text{ to } -40 V$	$T_J = 25^{\circ}C$		0.01	0.02		0.01	0.04	%/V
	$v_1 - v_0 = -3 v_1 0 - 40 v_1$	$T_J = MIN$ to MAX		0.02	0.05		0.02	0.07	%)/V
Dinale rejection	V _O = -10 V, f = 120 Hz			60			60		dB
Ripple rejection	$V_{O} = -10 \text{ V}, \text{ f} = 120 \text{ Hz}, \text{ C}_{ADJ} = 100 \text{ Hz}$	10 µF	66	77		66	77		uв
	I _O = 10 mA to 1.5 A,	$ V_0 \le 5 V$			25			50	mV
Output regulation	$T_J = 25^{\circ}C$	V ₀ ≥ 5 V		0.3%	0.5%		0.3%	1%	_
Output regulation		$ V_0 \le 5 V$			50			70	mV
	$I_0 = 10 \text{ mA to } 1.5 \text{ A}$	V ₀ ≥ 5 V			1%			1.5%	_
Output-voltage change with temperature	T _J = MIN to MAX			0.6%			0.6%		_
Output-voltage long-term drift	After 1000 h at T_J = MAX and V_I		0.3%	1%		0.3%	1%	_	
Output noise voltage	f = 10 Hz to 10 kHz, $T_J = 25^{\circ}C$			0.003%			0.003%		_
Minimum output current to	$ V_1 - V_0 \le 40 \text{ V}$		2.5	5		2.5	10	mA	
maintain regulation	$ V_{I} - V_{O} \le 10 \text{ V}$			1.2	3		1.5	6	ma
Peak output current	$\begin{split} V_{I} - V_{O} &\leq 15 \text{ V} \\ V_{I} - V_{O} &\leq 40 \text{ V}, \text{T}_{J} = 25^{\circ}\text{C} \end{split}$		1.5	2.2		1.5	2.2		А
reak ouiput current			0.24	0.4		0.15	0.4		A
ADJUSTMENT current				65	100		65	100	μA
Change in ADJUSTMENT current	$V_{\rm I}-V_{\rm O}$ = –2.5 V to –40 V, $I_{\rm O}$ = 10 mA to MAX, $T_{\rm J}$ = 25°C			2	5		2	5	μA
Reference voltage (OUTPUT	$V_{\rm I} - V_{\rm O} = -3 \text{ V to } -40 \text{ V},$	$T_J = 25^{\circ}C$	-1.225	-1.25	-1.275	-1.213	-1.25	-1.287	V
to ADJUSTMENT)	$I_O = 10 \text{ mA to } 1.5 \text{ A},$ P \leq rated dissipation	$T_J = MIN$ to MAX	-1.2	-1.25	-1.3	-1.2	-1.25	-1.3	
Thermal regulation	Initial $T_J = 25^{\circ}C$, 10-ms pulse			0.002	0.02		0.003	0.04	%/W

(1) Unless otherwise noted, the following test conditions apply: |V₁ - V₀| = 5 V and I₀ = 0.5 A. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. All characteristics are measured with a 0.1-μF capacitor across the input and a 1-μF capacitor across the output. Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

(2) Input regulation is expressed here as the percentage change in output voltage per 1-V change at the input.

7.6 Electrical Characteristics

 $T_J = 25^{\circ}C$

DADAMETED	TEST CONDITION	LM237, LM337				
PARAMETER	TEST CONDITION	TEST CONDITIONS ⁽¹⁾			MAX	UNIT
Input regulation ⁽²⁾	$V_{I} - V_{O} = -3 V \text{ to } -40 V$			0.01	0.04	%/V
Dipple rejection	V _O = -10 V, f = 120 Hz			60		dB
Ripple rejection	$V_{O} = -10 V$, f = 120 Hz, $C_{ADJ} =$	10 µF	66	77		uБ
Output regulation		V ₀ ≤ 5 V			50	mV
	$I_0 = 10 \text{ mA to } 1.5 \text{ A}$	V ₀ ≥ 5 V		0.3%	1%	_
Output noise voltage	f = 10 Hz to 10 kHz	f = 10 Hz to 10 kHz				_
Minimum output current to maintain	$ V_I - V_O \le 40 \text{ V}$		2.5	10	~^^	
regulation	$ V_I - V_O \le 10 \text{ V}$		1.5	6	mA	
Deals autout aumont	$ V_I - V_O \le 15 V$	1.5	2.2		•	
Peak output current	$ V_I - V_O \le 40 \text{ V}$	0.15	0.4		A	
ADJUSTMENT current				65	100	μA
Change in ADJUSTMENT current	$V_{I} - V_{O} = -2.5$ V to -40 V, $I_{O} = 1$		2	5	μA	
Reference voltage (OUTPUT to ADJUSTMENT)	$V_I - V_O = -3 V \text{ to } -40 V, I_O = 10$ P ≤ rated dissipation	mA to 1.5 A,	-1.213	-1.25	-1.287	V

Unless otherwise noted, the following test conditions apply: |V_I - V_O| = 5 V and I_O = 0.5 A. All characteristics are measured with a 0.1-μF capacitor across the input and a 1-μF capacitor across the output. Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.
Input regulation is expressed here as the percentage change in output voltage per 1-V change at the input.

Copyright © 1981–2015, Texas Instruments Incorporated

7.7 Typical Characteristics

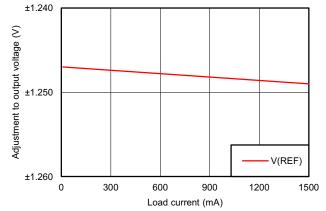
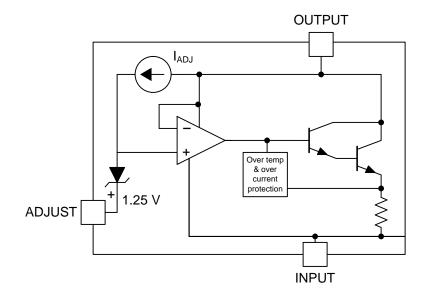
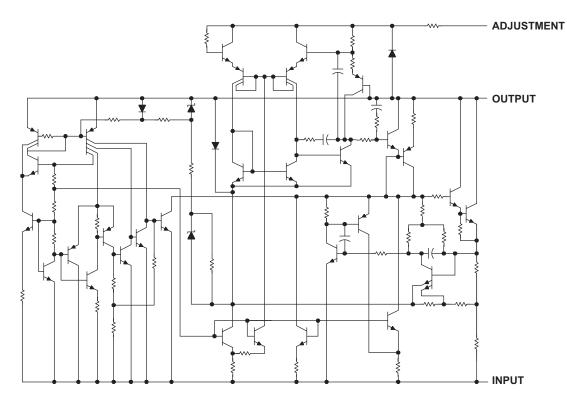


Figure 1. Adjustment Voltage vs Load current (V_{IN} = -4.3 V)



8 Detailed Description

8.1 Overview


The LMx37 devices are adjustable 3-terminal negative-voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -37 V. They are exceptionally easy to use, requiring only two external resistors to set the output voltage and one output capacitor for frequency compensation. The current design is optimized for excellent regulation and low thermal transients. In addition, LM237 and LM337 feature internal current limiting, thermal shutdown, and safe-area compensation, making them virtually immune to failure by overloads. The LMx37 devices serve a wide variety of applications, including local on-card regulation, programmable output-voltage regulation, and precision current regulation.

8.2 Functional Block Diagram

8.3 Design Schematic

8.4 Feature Description

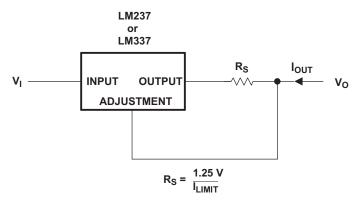
8.4.1 Output Voltage Adjustment

The ADJUSTMENT pin serves as a voltage adjustment reference for the output. The ADJUSTMENT pin can be attached to a resistor divider circuit to adjust its own voltage level. The reference voltage $V_{ADJUSTMENT}$ will typically be 1.25 V higher than V_O .

8.5 Device Functional Modes

8.5.1 Adjustable Output Mode

The device has a single functional mode: Adjustable output voltage mode. A resistor divider circuit on the ADJUSTMENT pin determines the output voltage.


9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 General Configurations

This application uses the LMx37 device's reference voltage, combined with the series resistor R_S , to limit the current to 1.25 V \div R_S

9.2 Typical Application

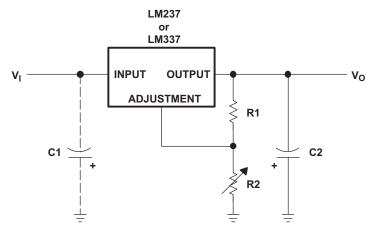


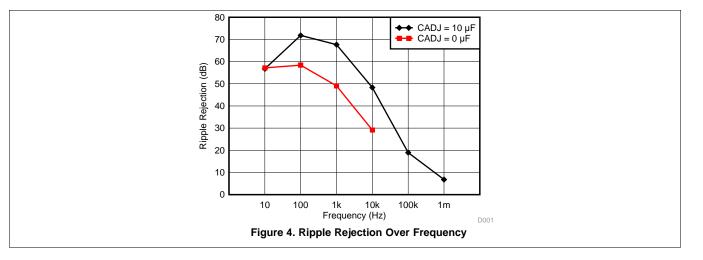
Figure 3. Adjustable Negative-Voltage Regulator

9.2.1 Design Requirements

- 1-µF solid tantalum on the input pin if the regulator is more than 10 cm from the power supply filter capacitor
- 1-µF solid tantalum or 10-µF aluminum electrolytic capacitor is required on the output pin for stability.
- R1, which is usually 120 Ω as part of the resistor divider.
- R2, which can be varied to change the value of V₀.

10

Typical Application (continued)


9.2.2 Detailed Design Procedure

 V_O is determined by the values of R1 and R2. Choosing R1 = 120 Ω means that about 10.42 mA of current will flow through R1. The ~10 mA of current satisfies the minimum operating current and renders I_{REF} negligible. Since the current is coming from ground, the same amount of current will flow through R2. Therefore, the size of R2 will be the dominant factor in adjusting V_O. The relationship between R1, R2, and V_O is as follows:

$$R2=R1\left(\frac{V_{0}}{-1.25}-1\right)$$

where V_O is the output in volts.

9.2.3 Application Curves

10 Power Supply Recommendations

For best performance, the difference in voltage between the output and input must be between -2.5 V and -37 V. A 1- μ F solid tantalum capacitor is required on the input pin if the regulator is more than 10 cm from the power supply filter capacitor. A 1- μ F solid tantalum or 10- μ F aluminum electrolytic capacitor is required on the output pin for stability.

(1)

11 Layout

11.1 Layout Guidelines

Traces on the input and output pins should be thick enough to carry 1.5 A of current without violating thermal requirements of the device or the system. In addition, a $1-\mu F$ solid tantalum capacitor is required on the input pin if the regulator is more than 10 cm from the power supply filter capacitor. A $1-\mu F$ solid tantalum or $10-\mu F$ aluminum electrolytic capacitor is required on the output pin for stability.

11.2 Layout Example

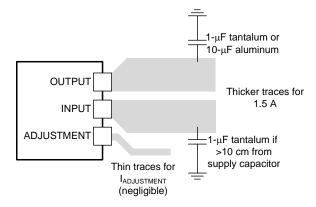


Figure 5. Layout Diagram

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM237	Click here	Click here	Click here	Click here	Click here
LM337	Click here	Click here	Click here	Click here	Click here

12.2 Trademarks

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 1981–2015, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM237KCSE3	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	SN	N / A for Pkg Type	-25 to 150	LM237	Samples
LM337KCSE3	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	SN	N / A for Pkg Type	0 to 125	LM337	Samples
LM337KTTR	ACTIVE	DDPAK/ TO-263	KTT	3	500	Green (RoHS & no Sb/Br)	SN	Level-3-245C-168 HR	0 to 125	LM337	Samples
LM337KTTRG3	ACTIVE	DDPAK/ TO-263	KTT	3	500	Green (RoHS & no Sb/Br)	SN	Level-3-245C-168 HR	0 to 125	LM337	Samples
LM337KVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR	0 to 125	LM337	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

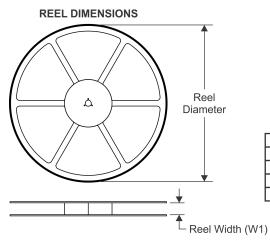
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

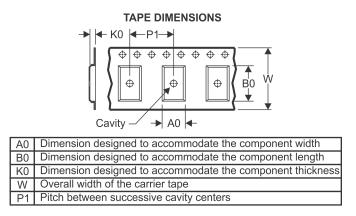
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

6-Feb-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

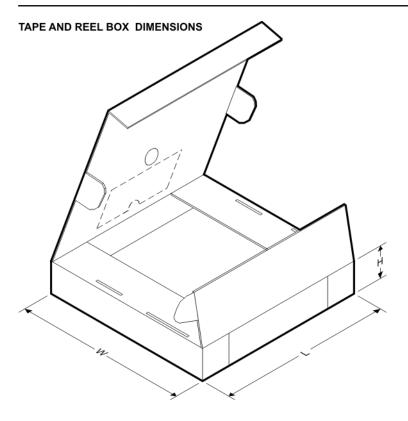

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

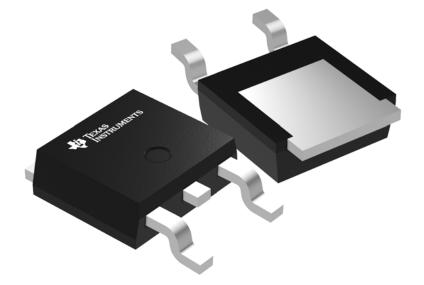

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM337KTTR	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
LM337KVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Apr-2020


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM337KTTR	DDPAK/TO-263	КТТ	3	500	340.0	340.0	38.0
LM337KVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0

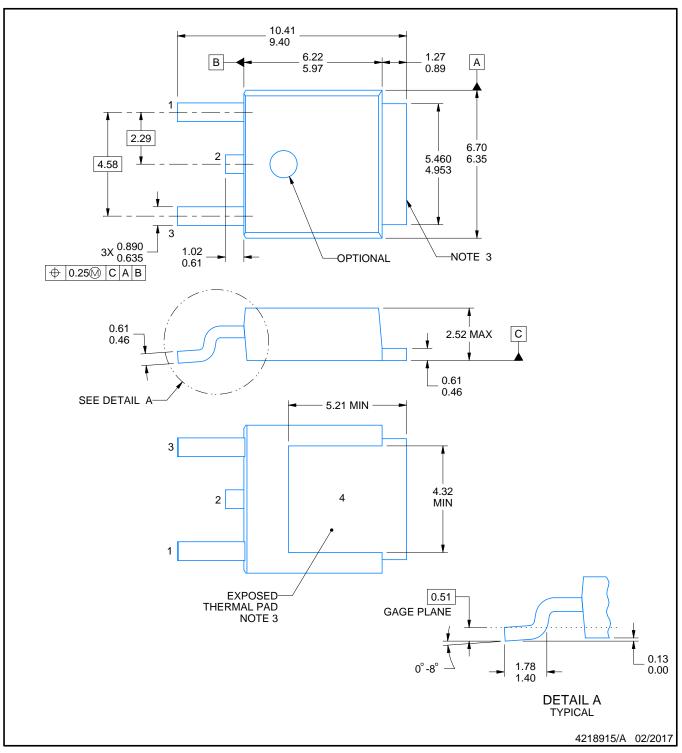
KVU 3

GENERIC PACKAGE VIEW

TO-252 - 2.52 mm max height TRANSISTOR OUTLINE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4205521-2/E


KVU0003A

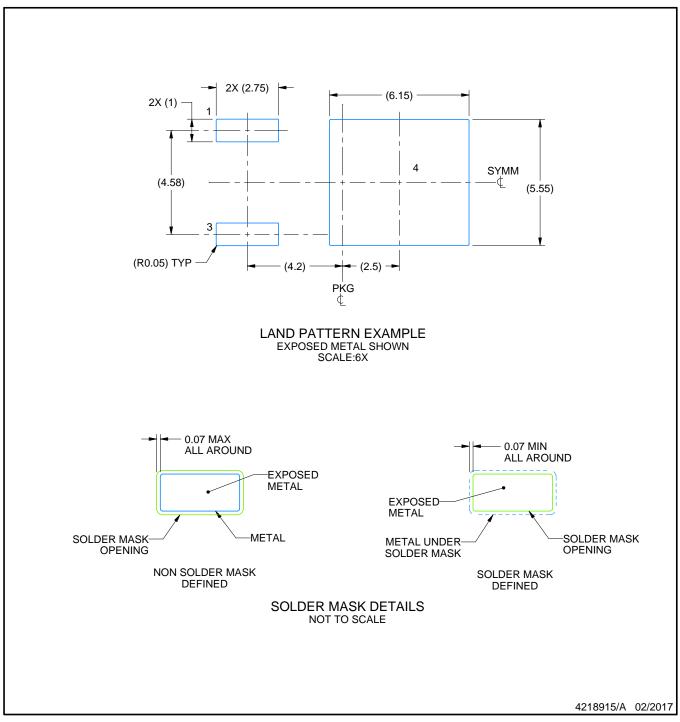
PACKAGE OUTLINE

TO-252 - 2.52 mm max height

TO-252

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Shape may vary per different assembly sites.
 Reference JEDEC registration TO-252.



KVU0003A

EXAMPLE BOARD LAYOUT

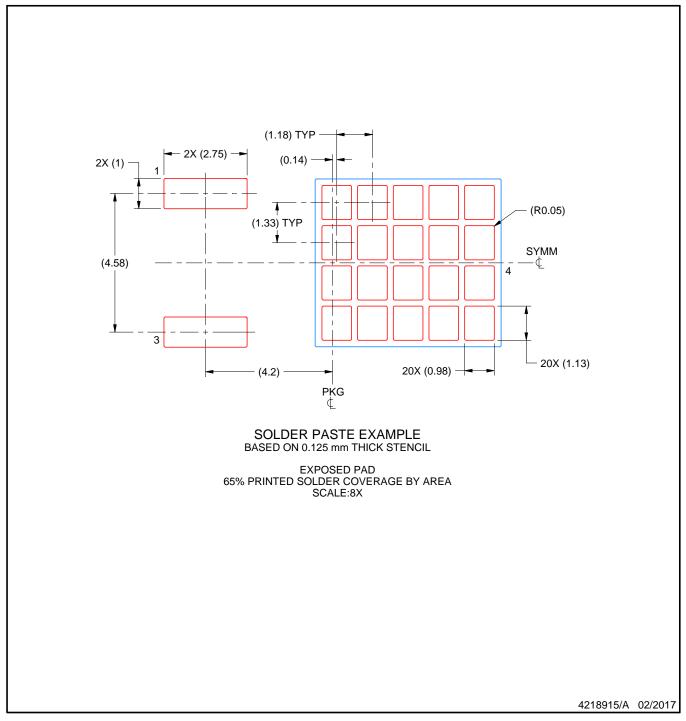
TO-252 - 2.52 mm max height

TO-252

NOTES: (continued)

5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002(www.ti.com/lit/slm002) and SLMA004 (www.ti.com/lit/slma004).

6. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.



KVU0003A

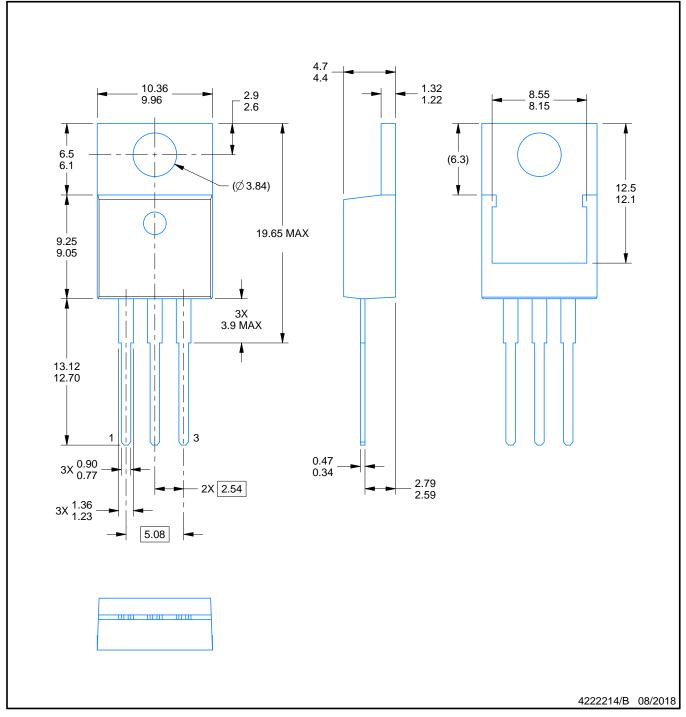
EXAMPLE STENCIL DESIGN

TO-252 - 2.52 mm max height

TO-252

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design.


KCS0003B

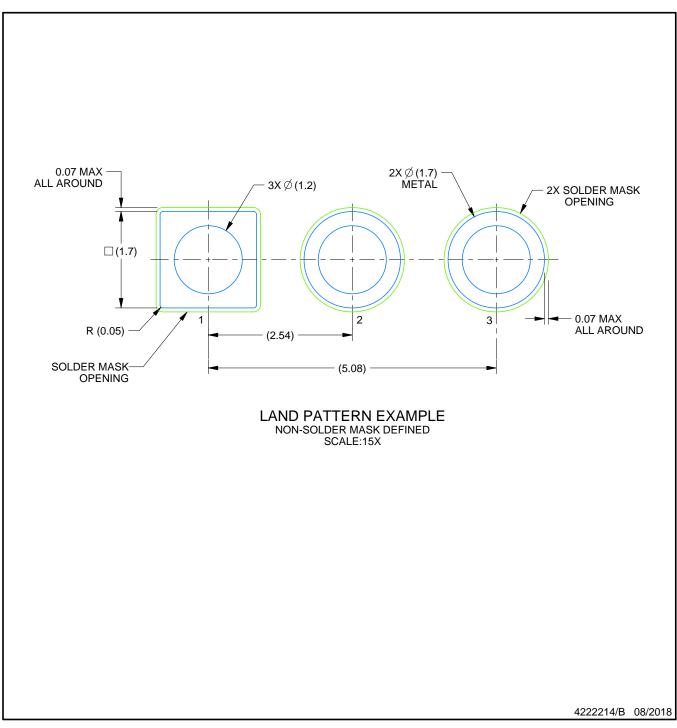
PACKAGE OUTLINE

TO-220 - 19.65 mm max height

TO-220

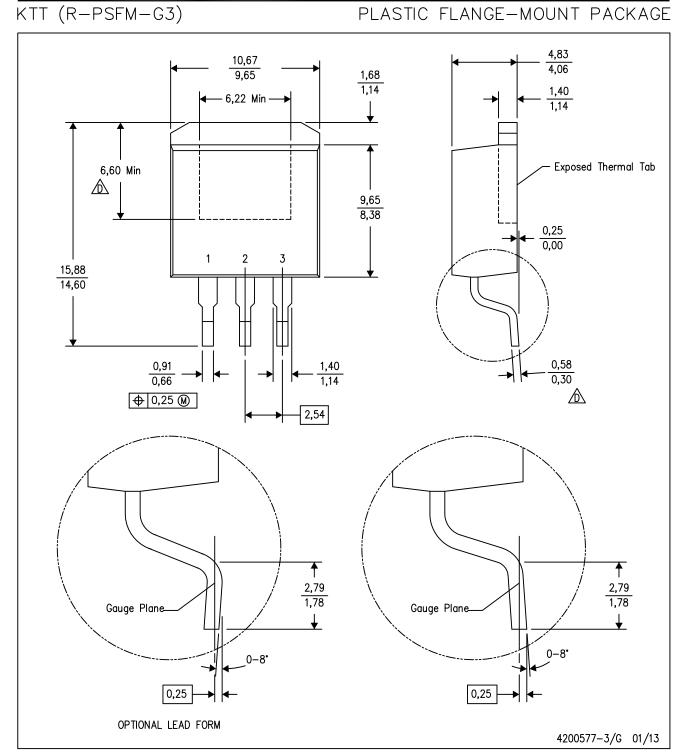
NOTES:

- 1. Dimensions are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration TO-220.



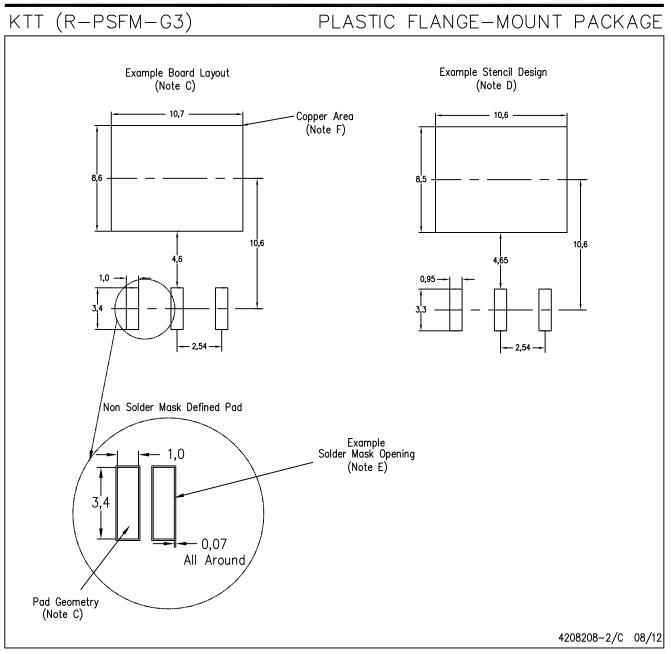
KCS0003B

EXAMPLE BOARD LAYOUT


TO-220 - 19.65 mm max height

TO-220

MECHANICAL DATA


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion not to exceed 0.005 (0,13) per side.

A Falls within JEDEC TO-263 variation AA, except minimum lead thickness and minimum exposed pad length.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
- F. This package is designed to be soldered to a thermal pad on the board. Refer to the Product Datasheet for specific thermal information, via requirements, and recommended thermal pad size. For thermal pad sizes larger than shown a solder mask defined pad is recommended in order to maintain the solderable pad geometry while increasing copper area.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated