

Features

- Radial Leaded Devices
- Maximum 600 VAC interrupt fault rating
- Available in matched resistance "bins"
- Ability to withstand lightning surges
- RoHS compliant*
- Ability to withstand AC power cross conditions

MF-R/600 Series - Telecom PTC Resettable Fuses

Agency recognition: c 🔊 us 📤

Electrical Characteristics

	Max. Operating	Ma Inter Rati	rupt	Hold Current	Trip Current	Initial Re	I Resistance One Hour Resistance Post-Trip Resistance		Max. Time To Trip @ 1 A	Tripped Power Dissipation
Model	Voltage (V _{DC})	Volts	Amps	Amps at 23 °C	Amps at 23 °C	Ohms at 23 °C	Ohms at 23 °C	Ohms at 23 °C	Seconds at 23 °C	Watts at 23 °C
	(100)	Max.	Max.			Min.	Max.	Max.		
MF-R015/600	250	600	3	0.15	0.30	6.0	12.0	22.0	5.0	1.0
MF-R015/600-A	250	600	3	0.15	0.30	7.0	10.0	20.0	5.0	1.0
MF-R015/600-B	250	600	3	0.15	0.30	9.0	12.0	22.0	5.0	1.0
MF-R015/600-F	250	600	3	0.15	0.30	7.0	12.0	22.0	5.0	1.0
MF-R016/600	250	600	3	0.16	0.32	4.0	10.0	18.0	7.0	1.0
MF-R016/600-A	250	600	3	0.16	0.32	4.0	7.0	16.0	7.0	1.0
MF-R016/600-1	250	600	3	0.16	0.32	4.0	8.0	17.0	7.0	1.0

Environmental Characteristics

Operating/Storage Temperature	40 °C to +85 °C	
Maximum Device Surface Temperature		
in Tripped State	125 °C	
Passive Aging	+60 °C, 1000 hours	±15 % typical resistance change
Humidity Aging	+60 °C, 90 % R.H. 1000 hours	±15 % typical resistance change
Solvent Resistance	MIL-STD-202, Method 215B	No change
Lead Solderability	ANSI/J-STD-002	-
Flammability	IEC 695-2-2	No flame for 60 secs.
Vibration	MIL-STD-883C, Method 2007.1, Condition A	No change
		-

Test Procedures And Requirements For Model MF-R/600 Series

Resistance Time to Trip Hold Current Trip Cycle Life	Test Conditions Verify dimensions and materials In still air @ 23 °C 1 A, Vmax, 23 °C 30 min. at Ihold Vmax, Itrip, 100 cycles Vmax, 24 hours	Per MF physical description Rmin ≤ R ≤ Rmax T ≤ max. time to trip (seconds) No trip No arcing or burning
UL File Number		
TÜV File Number	R 50256529	

Thermal Derating Chart - Ihold (Amps)

Madal	Ambient Operating Temperature								
Model	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C
MF-R015/600	0.233	0.206	0.178	0.150	0.124	0.110	0.096	0.083	0.062
MF-R016/600	0.249	0.219	0.190	0.160	0.132	0.117	0.103	0.088	0.066

Itrip is approximately two times Ihold.

*RoHS Directive 2015/863, Mar 31, 2015 and Annex.

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

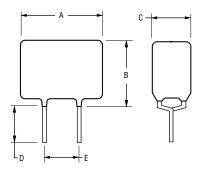
Applications

Customer Premise Equipment (CPE):

- Modems
- Cable modems
- Fax machines
- POS equipment
- Security equipment
- Set top boxes

MF-R/600 Series - Telecom PTC Resettable Fuses

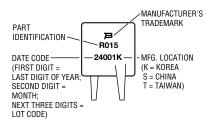
BOURNS


DIMENSIONS:

(INCHES)

Product Dimensions

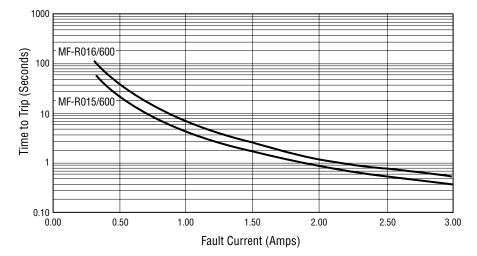
Model	A	В	ВС		E	Physical Characteristics		
woder	Max.	Max.	Max.	Min.	Nom.	Style	Lead Dia.	Material
MF-R015/600	$\frac{13.5}{(0.531)}$	<u>12.6</u> (0.496)	<u>6.0</u> (0.236)	<u>4.7</u> (0.185)	<u>5.0</u> (0.197)	1	0.65 (0.026)	Sn/Cu
MF-R016/600	<u>16.0</u> (0.629)	<u>12.6</u> (0.496)	<u>6.0</u> (0.236)	<u>4.7</u> (0.185)	<u>5.0</u> (0.197)	1	<u>0.65</u> (0.026)	Sn/Cu


Packaging options: BULK: 300 pcs. per bag. Longer lead lengths available upon request.


TAPE & REEL: 600 pcs. per reel.

Typical Part Marking

Represents total content. Layout may vary.



How to Order

*Packaged per EIA486-B

Typical Time to Trip at 23 °C

Resistance Options

Model	Rmin.	Rmax.	R1Max.	Bin
MF-R015/600	6.0	12.0	22.0	N/A
MF-R015/600-A	7.0	10.0	20.0	0.5
MF-R015/600-B	9.0	12.0	22.0	0.5
MF-R015/600-F	7.0	12.0	22.0	0.5
MF-R016/600	4.0	10.0	18.0	N/A
MF-R016/600-A	4.0	7.0	16.0	0.5
MF-R016/600-1	4.0	8.0	17.0	0.5

MF-R/600, REV. O, 03/19

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

MF-R, MF-R/90, MF-R/600, & MF-RX, & MF-RX/72 Series Tape and Reel Specifications

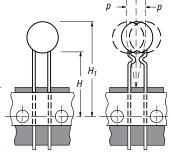
BOURNS

Devices taped using EIA468-B/IEC286-2 standards. See table below and Figures 1 and 2 for details.

Description W W $\frac{18}{(709)}$ $\frac{0.5/t}{(0.02/t.039)}$ cloid down tape width W _Q W ₄ $\frac{11}{(433)}$ min. cloid down tape No protrusion No protrusion No protrusion Op distance between tape edges W ₂ W ₆ $\frac{3}{(116)}$ max. Sprocket hole position W ₁ W ₅ $\frac{9}{(3541)}$ $-0.5/t0.75$ Sprocket hole diameter D ₀ D ₀ $\frac{4}{(157)}$ ± 0.2 bkscissa to plane (straight lead) H H 1105 ± 3.0 bkscissa to plane (kinked lead) H ₁ H ₁ 110 ± 0.2 bkscissa to top (straight lead) H ₁ H ₁ 110 ± 0.2 bkscissa to top (straight lead) H ₁ H ₁ 112 $e0.2$ bkscissa to top (straight lead) H ₁ H ₁ 112 $e0.2$ max. bkscissa to top (straight lead) C ₁ $\frac{25.0}{(2.160)}$ max. $\frac{25.0}{(2.163)}$ max. bcverall width wlead protrusion (kinked lead) C ₁ $\frac{12.7}{(1.673)}$ $\frac{40.3}{(2.163)}$ $\frac{a0.3}{(2.126$	Dimension Description	IEC Mark	EIA Mark	Dime Dimensions	nsions Tolerance
kold down tape width W_0 W_4 $\frac{11}{(433)}$ min. hold down tape No protrusion Op distance between tape edges W_2 W_6 $\frac{3}{(116)}$ max. Sprocket hole position W_1 W_5 $\frac{9}{(354)}$ $\frac{-0.540}{(-0.0240.03)}$ Sprocket hole diameter D_0 $\frac{4}{(157)}$ $\frac{4.02}{(-0.0240.03)}$ $\frac{-0.22}{(-0.078)}$ backcissa to plane (straight lead) H H H 116.5 $\frac{+3.02}{(-0.0240.03)}$ backcissa to plane (straight lead) H_0 H_0 H_0 $\frac{10.22}{(-163)}$ $\frac{10.22}{(-163)}$ backcissa to top (straight lead) H_1 H_1 H_1 $\frac{12.22}{(-165)}$ max. Doverall width w/lead protrusion (straight lead) C_1 $\frac{42.2}{(-165)}$ max. Doverall width w/lead protrusion (straight lead) C_2 $\frac{42.6}{(-1673)}$ max. Voreall width w/lead protrusion (straight lead) C_2 $\frac{42.6}{(-1673)}$ max. vorall width w/lead protrusion (straight lead) C_2 $\frac{42.6}{(-1673)}$ max. rotrusion beyond hold-down tape I_2 I_2 Not spe	Carrier tape width			18	-0.5/+1.0
bild down tape No protrusion Op distance between tape edges W_2 W_6 $\frac{3}{(.118)}$ max. Sprocket hole position W_1 W_5 $\frac{9}{(.354)}$ $(.002740.03)$ Sprocket hole diameter D_0 D_1 $\frac{4}{(.157)}$ $\frac{e.0278}{(.e078)}$ Sprocket hole diameter D_0 D_0 $\frac{4}{(.157)}$ $\frac{e.0278}{(.e078)}$ Sbacissa to plane (straight lead) H H $(.1288)$ max. bbscissa to plane (kinked lead) H_1 H_1 H_1 $(.1.496)$ max. bbscissa to top (kinked lead) H_1 H_1 H_1 $(.1.496)$ max. bbscissa to top (kinked lead) H_1 H_1 $(.1.496)$ max. bbscissa to top (kinked lead) C_1 $(.1.673)$ max. bbscissa to top (kinked lead) C_1 $(.1.673)$ max. bbscissa to top (kinked lead) C_2 $(.2.126)$ max. bbscissa to top (kinked lead) C_2 $(.2.126)$ max. bbscissa to top (kinked lead) C_2 $(.2.126)$ max.	Hold down tape width	WO	W4	<u></u>	\$ F
op distance between tape edges W_2 W_6 (116) max. Sprocket hole position W_1 W_5 $\frac{9}{(354)}$ $(-0.54/0.75)$ Sprocket hole diameter D_0 D_0 $(\frac{4}{(157)})$ $\frac{40.2}{(2.0078)}$ Sprocket hole diameter D_0 D_0 $(\frac{115}{(150)})$ $\frac{40.2}{(161)}$ Sprocket hole diameter D_0 D_0 $(\frac{116}{(150)})$ $\frac{40.2}{(2.0078)}$ Abscissa to plane (straight lead) H H H H $(\frac{116}{(1.496)})$ $\pi ax.$ Abscissa to top (straight lead) H_1 H_1 H_1 H_1 $(\frac{11.6}{(1.268)})$ $\pi ax.$ Overall width whead protrusion (straight lead) C_1 $(\frac{55.0}{(2.165)})$ $\pi ax.$ Overall width whead protrusion (straight lead) C_2 $(\frac{42.5}{(2.1657)})$ $\pi ax.$ Overall width who lead protrusion (straight lead) C_2 $(\frac{42.5}{(1.673)})$ $\pi ax.$ Overall width who lead protrusion (kinked lead) C_2 $(\frac{42.5}{(1.673)})$ $\pi ax.$ Overall width who lead protrusion (kinked lead) C_2 $(\frac{42.5}{(1.673)})$ $\pi ax.$ <tr< td=""><td>Hold down tape</td><td></td><td></td><td></td><td></td></tr<>	Hold down tape				
Sprocket hole position W_1 W_5 $\frac{9}{(.354)}$ $-0.5/0.75$ (.0024-003)Sprocket hole diameter D_0 D_0 $\frac{4}{(.157)}$ $\frac{4}{(.2007)}$ Sprocket hole diameter D_0 D_0 $\frac{4}{(.157)}$ $\frac{4}{(.2007)}$ Staccissa to plane (straight lead) H H H $(.157)$ $\frac{4}{(.2017)}$ Staccissa to plane (kinked lead) H_0 H_0 16 $\frac{40.5}{(.631)}$ $\frac{40.5}{(.632)}$ Staccissa to top (straight lead) H_1 H_1 H_1 11.496 $\frac{38.0}{(.632)}$ max.Staccissa to top (kinked lead) H_1 H_1 H_1 $\frac{38.0}{(.265)}$ max.Overall width w/ead protrusion (straight lead) C_1 $\frac{45.2}{(.126)}$ max.Overall width w/ead protrusion (straight lead) C_2 $\frac{42.5}{(.167)}$ max.Overall width w/o lead protrusion (kinked lead) C_2 $\frac{42.5}{(.167)}$ max.Overall width w/o lead protrusion (kinked lead) C_2 $\frac{42.5}{(.167)}$ max.Overall width w/o lead protrusion (kinked lead) C_2 $\frac{42.5}{(.167)}$ max.Overall width w/o lead protrusion (kinked lead) L L $\frac{11.2}{(.130)}$ max.Overall width w/o lead protrusion (kinked lead) L L $\frac{11.2}{(.1639)}$ max.Overall width w/o lead protrusion (kinked lead) L L $\frac{11.2}{(.1639)}$ $\frac{12.7}{(.639)}$ $\frac{40.3}{(.6012)}$ Overall width w/o lead protrusion (kinked lead) L L $\frac{11.2}{(.1639)}$ \frac	Top distance between tape edges	W2	W ₆		max.
Sprocket hole diameter D_0 D_0 $\frac{4}{(157)}$ $\frac{102}{(157)}$ Abscissa to plane (straight lead) H H H 18.5 ± 3.0 Abscissa to plane (kinked lead) H_0 H_0 16 ± 0.5 Abscissa to plane (kinked lead) H_0 H_0 16 ± 0.5 Abscissa to top (straight lead) H_1 H_1 H_1 13.90 max.Abscissa to top (kinked lead) H_1 H_1 H_1 13.90 max.Abscissa to top (kinked lead) H_1 H_1 11.286 max.Overall width w/lead protrusion (straight lead) C_1 12.66 max.Overall width w/lead protrusion (straight lead) C_2 12.7 max.Overall width w/lead protrusion (kinked lead) C_2 12.60 max.Overall width w/lead protrusion (kinked lead) C_2 12.60 max.Overall width w/lead protrusion (kinked lead) C_2 12.7 max.Overall width w/lead protrusion (kinked lead) L L 11.7 max.Overall width w/lead protrusion (kinked lead) L L 12.7 10.0 max.Overall width w/lead protrusion (kinked lead) L L 11.7 10.0 max.Overall width w/lead protrusion (kinked lead) L L 11.7 10.0 10.2 Overall width w/lead protrusion (kinked lead) L L 11.7 10.0 10.2 10.2 Overall width w/lead protrusion (kinked lead) L	Sprocket hole position	W ₁	W5	9	
HHH18.5 (728) $a3.0$ ($a.118$)Abscissa to plane (kinked lead) H_0 H_0 H_0 $(\frac{16}{63})$ $(\frac{a0.2}{a.02})$ Abscissa to top (straight lead) H_1 H_1 H_1 $(\frac{16}{63})$ $(\frac{a0.2}{a.02})$ Abscissa to top (straight lead) H_1 H_1 H_1 $(\frac{32.0}{1.4990})$ max.Abscissa to top (kinked lead) H_1 H_1 H_1 $\frac{32.2}{(1.268)}$ max.Overall width w/lead protrusion (straight lead) C_1 $\frac{55.0}{(2.165)}$ max.Overall width w/lead protrusion (kinked lead) C_2 $\frac{42.5}{(1.673)}$ max.Overall width w/lead protrusion (kinked lead) C_2 $\frac{42.5}{(1.673)}$ max.Overall width w/lead protrusion (kinked lead) C_2 $\frac{42.5}{(1.673)}$ max.Overall width w/lead protrusion (kinked lead) L L $\frac{11}{(.433)}$ max.Protrusion of cutout L L $\frac{11}{(.433)}$ max.Protrusion for dutout L L $\frac{12.7}{(0.5)}$ $\frac{40.3}{(a.012)}$ Protrusion beyond hold-down tape I_2 I_2 Not specifiedProtrusion beyond hold-down tape I_2 I_2 I_2 Protrusion F-R160, MF-R160, MF-R190, MF-RX110-MF-RX375 $\frac{12.7}{(0.5)}$ $\frac{40.3}{(a.012)}$ Protrusion MF-R400, MF-R400, MF-R200, MF-RX100-MF-RX375 $\frac{25.4}{(1.00)}$ $\frac{40.6}{(a.039)}$ Pave pitch: MF-R185-MF-R1400, MF-R200, MF-RX375/72 $\frac{12.7}{(0.59)}$ $\frac{40.6}{(a.024)}$ Pave pitch: MF-R185-MF-R400,	Sprocket hole diameter	D ₀	D ₀	4	
basesiss to plane (kinked lead) H_0 H_0 $\frac{16}{(63)}$ $\frac{40.5}{(4.02)}$ Abscissa to top (straight lead) H_1 H_1 H_1 H_1 $\frac{38.0}{(1.466)}$ max.Abscissa to top (kinked lead) H_1 H_1 H_1 $\frac{32.2}{(1.266)}$ max.Diverall width w/lead protrusion (straight lead) C_1 $\frac{25.0}{(2.165)}$ max.Diverall width w/lead protrusion (kinked lead) C_1 $\frac{43.2}{(2.165)}$ max.Diverall width w/lead protrusion (kinked lead) C_2 $\frac{54.0}{(2.126)}$ max.Diverall width w/lead protrusion (kinked lead) C_2 $\frac{42.5}{(2.126)}$ max.Diverall width w/lead protrusion (kinked lead) C_2 $\frac{42.5}{(2.126)}$ max.Diverall width w/lead protrusion (kinked lead) L L 11 max.Diverall width w/lead protrusion (kinked lead) L L 11 max.Diverall width w/lead protrusion (kinked lead) L L 11 max.Diverall width w/lead protrusion (kinked lead) L L 11 max.Diverall width w/lead protrusion (kinked lead) L L 11 max.Diverall width w/lead protrusion (kinked lead) L L 11 max.Diverall width w/lead protrusion (kinked lead) L L 11 10 max.Diverall width w/lead protrusion (kinked lead) L L 11 10 10 11 10 11 10 11 11 11 11 10 <	Abscissa to plane (straight lead)	Н	Н	18.5	<u>±3.0</u>
bbscissa to top (straight lead) H_1	Abscissa to plane (kinked lead)	H ₀	H ₀	16	±0.5
Abscissa to top (kinked lead) H_1 H_1 $\frac{32.2}{(1.268)}$ max.Overall width w/lead protrusion (straight lead) C_1 $\frac{55.0}{(2.165)}$ max.Overall width w/lead protrusion (kinked lead) C_1 $\frac{43.2}{(1.7)}$ max.Overall width w/o lead protrusion (straight lead) C_2 $\frac{54.0}{(2.128)}$ max.Overall width w/o lead protrusion (straight lead) C_2 $\frac{44.5}{(1.673)}$ max.Overall width w/o lead protrusion (kinked lead) L_1 L_1 $\frac{10}{(0.399)}$ max.Overall width w/o lead protrusion (kinked lead) L_1 L_1 $\frac{10}{(309)}$ max.Protrusion of cutout L L $\frac{11}{(4.33)}$ max.Protrusion of cutout L L $\frac{11}{(4.33)}$ max.Protrusion boyond hold-down tape I_2 I_2 Not specifiedSprocket hole pitch P_0 P_0 $\frac{12.7}{(0.5)}$ $\frac{40.3}{(\pm 0.12)}$ Protrusion Cherrine20 consecutive $\frac{\pm 1}{(\pm 0.24)}$ $\frac{\pm 0.6}{(1.01)}$ $\frac{\pm 0.6}{(\pm 0.24)}$ Previce pitch: MF-R160, MF-R190, MF-R/90, MF-RX110-MF-RX375 $\frac{25.4}{(1.024)}$ $\frac{\pm 0.6}{(1.00)}$ $\frac{\pm 0.6}{(\pm 0.24)}$ Previce pitch: MF-R185-MF-R400, MF-R160, MF-RX375/72 t_1 $\frac{0.3}{(0.35)}$ $\frac{40.3}{(\pm 0.12)}$ Previce pitch: MF-R375, MF-R400, MF-R250-MF-R1100, MF-RX375/72 t_1 $\frac{0.3}{(0.35)}$ $\frac{40.3}{(\pm 0.12)}$ Pape thickness with splice: MF-R200-MF-RX375/72 t_1 $\frac{0.3}{(0.01)}$ $\frac{40.3}{(\pm 0.12)}$ Splice sprocket hole alignment0 <td>Abscissa to top (straight lead)</td> <td>H₁</td> <td>H₁</td> <td>38.0</td> <td></td>	Abscissa to top (straight lead)	H ₁	H ₁	38.0	
Dyerall width w/lead protrusion (straight lead) C_1 $\frac{55.0}{(2.165)}$ max.Dyerall width w/lead protrusion (kinked lead) C_1 $\frac{43.2}{(1.7)}$ max.Dyerall width w/lead protrusion (kinked lead) C_2 $\frac{54.0}{(2.126)}$ max.Dyerall width w/lead protrusion (kinked lead) C_2 $\frac{42.5}{(1.673)}$ max.Dyerall width w/lead protrusion (kinked lead) C_2 $\frac{42.5}{(1.673)}$ max.Dyerall width w/lead protrusion (kinked lead) L L 11 1.00 Dyerall width w/lead protrusion (kinked lead) L L 11 1.00 Protrusion of cutout L L 11 1.00 max.Protrusion of cutout L L 11 1.03 max.Protrusion beyond hold-down tape I_2 I_2 Not specified I_2 Protrusion beyond hold-down tape I_2 I_2 Not specifiedSprocket hole pitch P_0 P_0 12.7 ± 0.3 Protrusion Score-MF-R160, MF-R/90, MF-RX030/72-MF-RX03072 $\frac{12.7}{(0.5)}$ ± 0.3 Pevice pitch: MF-R05-MF-R160, MF-R/90, MF-RX10-MF-RX375 $\frac{25.4}{(0.59)}$ ± 0.6 Protrusion Score MF-R160, MF-R/90, MF-RX10-MF-RX375/72 t_1 $\frac{2.3}{(0.91)}$ max.Pape thickness with splice: MF-R010-MF-R160, 	Abscissa to top (kinked lead)	H ₁	H ₁	32.2	max.
Dverall width w/lead protrusion (kinked lead) C_1 $\frac{43.2}{(1.7)}$ max.Dverall width w/o lead protrusion (straight lead) C_2 $\frac{54.0}{(2.126)}$ max.Dverall width w/o lead protrusion (straight lead) C_2 $\frac{42.5}{(1.673)}$ max.Dverall width w/o lead protrusion (kinked lead) C_2 $\frac{42.5}{(1.673)}$ max.Dverall width w/o lead protrusion (kinked lead) L_1 L_1 $\frac{10.0}{(0.09)}$ max.Dverall width w/o lead protrusion (kinked lead) L_2 L_1 $\frac{11.0}{(0.09)}$ max.Dverall width w/o lead protrusion (kinked lead) L_1 L_1 $\frac{11.0}{(0.09)}$ max.Dverall width w/o lead protrusion (kinked lead) L_2 L_2 Not specifiedProtrusion of cutout L L $\frac{11.1}{(4.33)}$ max.Protrusion beyond hold-down tape I_2 I_2 Not specifiedProtrusion beyond hold-down tape I_2 I_2 $I_2.7$ ± 0.3 Protrusion beyond hold-down tape I_2 I_2 $I_2.7$ ± 0.3 Protrusion beyond hold-down tape I_2 $I_2.7$ ± 0.3 ± 0.12 Protrusion beyond hold-down tape I_2 $I_2.7$ ± 0.3 ± 0.12 <tr< td=""><td>Overall width w/lead protrusion (straight lead)</td><td></td><td>C₁</td><td>55.0</td><td>max.</td></tr<>	Overall width w/lead protrusion (straight lead)		C ₁	55.0	max.
Cycerall width w/o lead protrusion (straight lead) C_2 $\frac{54.0}{(2.126)}$ max.Dverall width w/o lead protrusion (kinked lead) C_2 $\frac{42.5}{(1.673)}$ maxead protrusion l_1 L_1 $\frac{1.0}{(0.39)}$ maxead protrusion of cutout L L $\frac{1.1}{(433)}$ max.Protrusion of cutout L L $\frac{1.1}{(433)}$ max.Protrusion beyond hold-down tape l_2 l_2 Not specifiedSprocket hole pitch P_0 P_0 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm .012)}$ Pitch tolerance20 consecutive $\frac{\pm 1.1}{(\pm .039)}$ $\frac{\pm 0.3}{(\pm .012)}$ Device pitch: MF-R160-MF-R160, MF-R/90, $MF-RX020/72-MF-RX030/72$ $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm .012)}$ Device pitch: MF-R185-MF-R400, MF-R/90, $MF-RX040/72-MF-RX030/72$ $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm .012)}$ Device pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ arge thicknesstt $\frac{10.9}{(0.35)}$ max.Tape thickness with splice: MF-R100-MF-R160, t_1 $\frac{1.5}{(.059)}$ max.Tape thickness with splice: MF-R250-MF-R1100, $AF-RX10-MF-RX375/72$ t_1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 1.0}{(\pm .039)}$ max.Solv lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.0}{(\pm .039)}$	Overall width w/lead protrusion (kinked lead)		C ₁	43.2	max.
Dyerall width w/o lead protrusion (kinked lead) C_2 $\frac{42.5}{(1.673)}$ max.Locate protrusion l_1 L_1 1.0 max.Protrusion of cutout L L $\frac{11}{(433)}$ max.Protrusion beyond hold-down tape l_2 l_2 Not specifiedProtrusion beyond hold-down tape l_2 l_2 Not specifiedSprocket hole pitch P_0 P_0 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm 0.12)}$ Pitch tolerance20 consecutive $\frac{\pm 1}{(\pm 0.39)}$ Device pitch: MF-R055-MF-R160, MF-R/90, AF-RX020/72-MF-RX307/2 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm 0.12)}$ Perturbation of the pitch mF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm 0.24)}$ Perturbation of the pitch mF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm 0.24)}$ Perturbation of the pitch mF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm 0.24)}$ Perturbation of the pitch: MF-R185-MF-R400, MF-RX100, MF-RX375/72 t_1 $\frac{2.3}{(.091)}$ max.Pape thickness with splice: MF-R010-MF-R1100, AF-RX110-MF-RX375, MF-R90, MF-RX250/72-MF-RX375/72 t_1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 1.3}{(\pm 0.012)}$ $\frac{\pm 1.3}{(\pm 0.012)}$ Sody lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.3}{(\pm 0.39)}$	Overall width w/o lead protrusion (straight lead)		C2	54.0	max.
Lead protrusion l_1 L_1 $\frac{1.0}{(.039)}$ max.Protrusion of cutoutLL $\frac{11}{(.433)}$ max.Protrusion beyond hold-down tape l_2 l_2 Not specifiedProtrusion beyond hold-down tape l_2 l_2 Not specifiedSprocket hole pitch P_0 P_0 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm 012)}$ Pritch tolerance20 consecutive $\frac{\pm 1}{(\pm .039)}$ Pevice pitch: MF-R005-MF-R160, MF-R/90, AF-RX020/72-MF-RX030/72 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm .012)}$ Pevice pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Pevice pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Pevice pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Pevice pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Pare thickness t t $\frac{0.9}{(.035)}$ max.Pare thickness t t $\frac{0.9}{(.035)}$ max.Pare thickness with splice: MF-R010-MF-R160, AF-RX110/72-MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72 t_1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment 0 $\frac{\pm 1.3}{(.039)}$ max.Sody lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.3}{(\pm .039)}$	Overall width w/o lead protrusion (kinked lead)		C2	42.5	max.
Protrusion of cutoutLL $\frac{11}{(.433)}$ max.Protrusion beyond hold-down tape l_2 l_2 Not specifiedSprocket hole pitch P_0 P_0 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm 012)}$ Pitch tolerance20 consecutive $\frac{\pm 1}{(\pm 039)}$ Device pitch: MF-R005–MF-R160, MF-R/90, AF-RX0207/2–MF-RX030/72 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm 012)}$ Device pitch: MF-R185–MF-R400, MF-R/90, AF-RX020/72–MF-RX375/72 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm 012)}$ Device pitch: MF-R185–MF-R400, MF-R/600, MF-RX110–MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm 024)}$ Device pitch: MF-R185–MF-R400, MF-R/600, MF-RX110–MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm 024)}$ Device pitch: MF-R185–MF-R400, MF-RX100–MF-RX375/72 t t $\frac{0.6}{(\pm 024)}$ Device pitch: MF-R185–MF-R400, MF-RX100–MF-RX375/72 t t $\frac{0.6}{(\pm 024)}$ Device pitch: MF-R185–MF-R400, MF-RX100–MF-RX375/72 t t t Device pitch: MF-R185–MF-R400, MF-RX100–MF-RX375/72 t t t Device pitch: MF-R185/72 t t t 0.6 Tape thickness with splice: MF-R250–MF-R1100, (MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72 t t t Splice sprocket hole alignment 0 $\frac{\pm 0.3}{(\pm 012)}$ max.Splice sprocket hole alignment 0 $\frac{\pm 1.3}{(\pm 012)}$ Body lateral deviation Δ_h Δ 0 $\frac{\pm 1.3}{(\pm 0.0)}$	Lead protrusion	I ₁	L ₁	1.0	max.
Protrusion beyond hold-down tape l_2 l_2 Not specifiedSprocket hole pitch P_0 P_0 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm 012)}$ Pitch tolerance20 consecutive $\frac{\pm 1}{(\pm .039)}$ Device pitch: MF-R005-MF-R160, MF-R/90, MF-RX030/72-MF-RX030/72 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm .012)}$ Device pitch: MF-R185-MF-R400, MF-R/90, MF-RX040/72-MF-RX375/72 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.6}{(\pm .024)}$ Device pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Device pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Device pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Device pitch: MF-R185-MF-R400, MF-R/100, MF-RX10/72-MF-RX375/72 t t t Cape thickness with splice: MF-R010-MF-R160, MF-RX110/72-MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72 t_1 $\frac{2.3}{(.091)}$ max.Cape thickness with splice: MF-R250-MF-R1100, MF-RX100, MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72 t_1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 0.3}{(\pm .012)}$ $t_1.0$ $t \pm 0.3$ Body lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.3}{(\pm .0312)}$	Protrusion of cutout	L	L	<u></u>	max.
P0P0P0 $\overline{(0.5)}$ $\overline{(\pm.012)}$ Pitch tolerance20 consecutive $\frac{\pm 1}{(\pm.039)}$ Device pitch: MF-R005-MF-R160, MF-R/90, MF-RX030/72 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm.012)}$ Device pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm.024)}$ Device pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm.024)}$ Tape thicknessttt $\frac{0.9}{(.035)}$ Tape thickness with splice: MF-R010-MF-R160, MF-RX185/72t1 $\frac{1.5}{(.059)}$ max.Tape thickness with splice: MF-R250-MF-R1100, MF-RX110-MF-RX375/72t1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 0.3}{(\pm.012)}$ $\frac{\pm 0.3}{(\pm.012)}$ Body lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.3}{(\pm.039)}$	Protrusion beyond hold-down tape	I2	I2		
Ditch tolerance20 consecutive $\frac{\pm 1}{(\pm.039)}$ Device pitch: MF-R005-MF-R160, MF-R/90, MF-RX020/72-MF-RX030/72 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm.012)}$ Device pitch: MF-R185-MF-R400, MF-R/600, MF-RX110-MF-RX375 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm.024)}$ Tape thickness t t $\frac{0.9}{(0.35)}$ max.Tape thickness with splice: MF-R010-MF-R160, MF-RX110/72-MF-RX185/72 t_1 $\frac{1.5}{(.059)}$ max.Tape thickness with splice: MF-R250-MF-R1100, MF-RX110-MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72 t_1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 0.3}{(\pm.012)}$ $\frac{\pm 0.3}{(\pm.012)}$ Body lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.3}{(\pm.039)}$	Sprocket hole pitch	P ₀	P ₀		
Device pitch: MF-R005–MF-R160, MF-R/90, MF-RX020/72–MF-RX030/72 $\frac{12.7}{(0.5)}$ $\frac{\pm 0.3}{(\pm .012)}$ Device pitch: MF-R185–MF-R400, MF-R/600, MF-RX110–MF-RX375 MF-RX040/72–MF-RX375/72 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Device pitch: MF-R185–MF-R400, MF-R/600, MF-RX110–MF-RX375 MF-RX040/72–MF-RX375/72 $\frac{25.4}{(1.0)}$ $\frac{\pm 0.6}{(\pm .024)}$ Tape thicknesstt $\frac{0.9}{(.035)}$ max.Tape thickness with splice: MF-R010–MF-R160, MF-RX110/72–MF-RX185/72 t_1 $\frac{1.5}{(.059)}$ max.Tape thickness with splice: MF-R250–MF-R1100, MF-RX110–MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72 t_1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 0.3}{(\pm .012)}$ $\frac{\pm 0.3}{(\pm .012)}$ $\frac{\pm 0.3}{(\pm .012)}$ Body lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.3}{(\pm .039)}$	Pitch tolerance				<u>±1</u>
MF-RX040/72-MF-RX375/72 (1.0) $(\pm.024)$ Tape thicknesstt $\frac{0.9}{(.035)}$ max.Tape thickness with splice: MF-R010-MF-R160, MF-RX110/72-MF-RX185/72t1 $\frac{1.5}{(.059)}$ max.Tape thickness with splice: MF-R250-MF-R1100, MF-RX110-MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72t1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 0.3}{(\pm .012)}$ sody lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.0}{(\pm .039)}$	Device pitch: MF-R005–MF-R160, MF-R/90, MF-RX020/72–MF-RX030/72				_±0.3_
ttttttTape thicknessttttttTape thickness with splice: MF-R010–MF-R160, MF-RX110/72–MF-RX185/72t1 $\frac{1.5}{(.059)}$ max.Tape thickness with splice: MF-R250–MF-R1100, MF-RX110–MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72t1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 0.3}{(\pm .012)}$ sector to the splice sprocket hole alignment0 $\frac{\pm 1.0}{(\pm .039)}$ Body lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.3}{(\pm .039)}$	Device pitch: MF-R185–MF-R400, MF-R/600, MF-RX110–MF-RX375 MF-RX040/72–MF-RX375/72				
Tape thickness with splice: MF-R010–MF-R160, MF-RX110/72–MF-RX185/72 t_1 $\frac{1.5}{(.059)}$ max.Tape thickness with splice: MF-R250–MF-R1100, MF-RX110–MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72 t_1 $\frac{2.3}{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 0.3}{(\pm .012)}$ $\frac{\pm 0.3}{(\pm .039)}$ Sody lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.0}{(\pm .039)}$	Tape thickness	t	t		max.
MF-RX110-MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72 $\overline{(.091)}$ max.Splice sprocket hole alignment0 $\frac{\pm 0.3}{(\pm .012)}$ Body lateral deviation Δ_h Δ_h 0Addy table place deviation Δ_h Δ_h 0Addy table place deviation Δ_h Δ_h 0	Tape thickness with splice: MF-R010–MF-R160, MF-RX110/72–MF-RX185/72		t ₁		max.
Sody lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.0}{(\pm .039)}$	Tape thickness with splice: MF-R250–MF-R1100, MF-RX110–MF-RX375, MF-R/90, MF-RX250/72-MF-RX375/72		t ₁		max.
Body lateral deviation Δ_h Δ_h 0 $\frac{\pm 1.0}{(\pm .039)}$	Splice sprocket hole alignment			0	
± 1.3	Body lateral deviation	Δ_h	Δ_h	0	±1.0
	Body tape plane deviation	Δρ	Δ_p	0	_±1.3

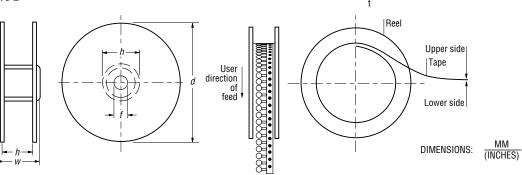
MM (INCHES) DIMENSIONS:

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.


MF-R, MF-R/90, MF-R/600, MF-RX, & MF-RX/72 Series Tape and Reel Specifications

BOURNS

Mark		Dimensions		
iviai n	Mark	Dimensions	Tolerance	
F	F	<u>5.08</u> (0.2)	$\frac{\pm 0.2}{(\pm 0.008)}$	
w	W2	<u>56.0</u> (2.205)	max.	
d	а	<u>370.0</u> (14.57)	max.	
W ₁	h	4.75	<u>±3.25</u> (±.128)	
f	С	<u>26.0</u> (1.024)	<u>±12.0</u> (±.472)	
h	п	<u>80</u> (3.15)	max.	
h	п	<u>91</u> (3.58)	max.	
		$\frac{62}{(2.44)} \frac{355}{(14.0)} \frac{345}{(13.6)}$	nom.	
		$\frac{64}{(2.52)} \frac{372}{(14.6)} \frac{362}{(14.25)}$	max.	
		3	max.	
		none		
		Not specified		
		0.1 %		
	w d W1 f h	w W2 d a W1 h f c h n	r r $\overline{(0.2)}$ w W_2 $\overline{56.0}$ (2.205) d a $\overline{370.0}$ (14.57) W_1 h $\frac{4.75}{(.187)}$ f c $\frac{26.0}{(1.024)}$ h n $\frac{80}{(3.15)}$ h n $\frac{80}{(3.58)}$ $\frac{62}{(2.44)}$ $\frac{372}{(14.6)}$ $\frac{362}{(14.25)}$ 3 none Not specified	


Taped Component Dimensions -Figure 1

h **⊢**h Reference plane H_1 H₁ Н H₀ W_1 -Н-В || ||_/-쁥 Ŵ₀ ₩€ • ĺ2 P₀ -D0 İ1 User direction of feed -----

Cross section A - B $\langle 0 \rangle$

Reel Dimensions - Figure 2

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.

Legal Disclaimer Notice

This legal disclaimer applies to purchasers and users of Bourns[®] products manufactured by or on behalf of Bourns, Inc. and its affiliates (collectively, "Bourns").

Unless otherwise expressly indicated in writing, Bourns[®] products and data sheets relating thereto are subject to change without notice. Users should check for and obtain the latest relevant information and verify that such information is current and complete before placing orders for Bourns[®] products.

The characteristics and parameters of a Bourns[®] product set forth in its data sheet are based on laboratory conditions, and statements regarding the suitability of products for certain types of applications are based on Bourns' knowledge of typical requirements in generic applications. The characteristics and parameters of a Bourns[®] product in a user application may vary from the data sheet characteristics and parameters due to (i) the combination of the Bourns[®] product with other components in the user's application, or (ii) the environment of the user application itself. The characteristics and parameters of a Bourns[®] product with other components of a Bourns[®] product also can and do vary in different applications and actual performance may vary over time. Users should always verify the actual performance of the Bourns[®] product in their specific devices and applications, and make their own independent judgments regarding the amount of additional test margin to design into their device or application to compensate for differences between laboratory and real world conditions.

Unless Bourns has explicitly designated an individual Bourns[®] product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949) or a particular qualification (e.g., UL listed or recognized), Bourns is not responsible for any failure of an individual Bourns[®] product to meet the requirements of such industry standard or particular qualification. Users of Bourns[®] products are responsible for ensuring compliance with safety-related requirements and standards applicable to their devices or applications.

Bourns[®] products are not recommended, authorized or intended for use in nuclear, lifesaving, life-critical or life-sustaining applications, nor in any other applications where failure or malfunction may result in personal injury, death, or severe property or environmental damage. Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any Bourns[®] products in such unauthorized applications might not be safe and thus is at the user's sole risk. Life-critical applications include devices identified by the U.S. Food and Drug Administration as Class III devices and generally equivalent classifications outside of the United States.

Bourns expressly identifies those Bourns[®] standard products that are suitable for use in automotive applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns[®] standard products in an automotive application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk. If Bourns expressly identifies a sub-category of automotive application in the data sheet for its standard products (such as infotainment or lighting), such identification means that Bourns has reviewed its standard product and has determined that if such Bourns[®] standard product is considered for potential use in automotive applications, it should only be used in such sub-category of automotive applications. Any reference to Bourns[®] standard product in the data sheet as compliant with the AEC-Q standard or "automotive grade" does not by itself mean that Bourns has approved such product for use in an automotive application.

Bourns[®] standard products are not tested to comply with United States Federal Aviation Administration standards generally or any other generally equivalent governmental organization standard applicable to products designed or manufactured for use in aircraft or space applications. Bourns expressly identifies Bourns[®] standard products that are suitable for use in aircraft or space applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns[®] standard product in an aircraft or space application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk.

The use and level of testing applicable to Bourns[®] custom products shall be negotiated on a case-by-case basis by Bourns and the user for which such Bourns[®] custom products are specially designed. Absent a written agreement between Bourns and the user regarding the use and level of such testing, the above provisions applicable to Bourns[®] standard products shall also apply to such Bourns[®] custom products.

Users shall not sell, transfer, export or re-export any Bourns[®] products or technology for use in activities which involve the design, development, production, use or stockpiling of nuclear, chemical or biological weapons or missiles, nor shall they use Bourns[®] products or technology in any facility which engages in activities relating to such devices. The foregoing restrictions apply to all uses and applications that violate national or international prohibitions, including embargos or international regulations. Further, Bourns[®] products and Bourns technology and technical data may not under any circumstance be exported or re-exported to countries subject to international sanctions or embargoes. Bourns[®] products may not, without prior authorization from Bourns and/or the U.S. Government, be resold, transferred, or re-exported to any party not eligible to receive U.S. commodities, software, and technical data.

To the maximum extent permitted by applicable law, Bourns disclaims (i) any and all liability for special, punitive, consequential, incidental or indirect damages or lost revenues or lost profits, and (ii) any and all implied warranties, including implied warranties of fitness for particular purpose, non-infringement and merchantability.

For your convenience, copies of this Legal Disclaimer Notice with German, Spanish, Japanese, Traditional Chinese and Simplified Chinese bilingual versions are available at:

Web Page: <u>http://www.bourns.com/legal/disclaimers-terms-and-policies</u> PDF: <u>http://www.bourns.com/docs/Legal/disclaimer.pdf</u>