feATURES

- 12-Bit 150ksps ADCs in MSOP Package
- Single 3V Supply
- Low Supply Current: 450uA (Typ)
- Auto Shutdown Reduces Supply Current to $10 \mu \mathrm{~A}$ at 1 ksps
- True Differential Inputs
- 1-Channel (LTC1860L) or 2-Channel (LTC1861L) Versions
- SPI/MICROWIRE ${ }^{\text {TM }}$ Compatible Serial I/0
- High Speed Upgrade to LTC1285/LTC1288
- Pin Compatible with 16-Bit LTC1864L/LTC1865L
- No Minimum Data Transfer Rate

APPLICATIONS

- High Speed Data Acquisition
- Portable or Compact Instrumentation
- Low Power Battery-Operated Instrumentation
- Isolated and/or Remote Data Acquisition

DESCRIPTIOn

The LTC ${ }^{\circledR}$ 1860L/LTC1861L are 12-bit A/D converters that are offered in MSOP and SO-8 packages and operate on a single 3 V supply. At 150 ksps , the supply current is only $450 \mu \mathrm{~A}$. The supply current drops at lower speeds because the LTC1860L/LTC1861L automatically power down between conversions. These 12 -bit switched capacitor successive approximation ADCs include sample-and-holds. The LTC1860L has a differential analog input with an external reference pin. The LTC1861L offers a softwareselectable 2-channel MUX and an external reference pin on the MSOP version.

The 3 -wire, serial I/0, MSOP or S0-8 package and extremely high sample rate-to-power ratio make these ADCs ideal choices for compact, low power, high speed systems.
These ADCs can be used in ratiometric applications or with external references. The high impedance analog inputs and the ability to operate with reduced spans down to $1 V$ full scale allow direct connection to signal sources in many applications, eliminating the need for external gain stages.

[^0]
TYPICAL APPLICATION

Single 3V Supply, 150ksps, 12-Bit Sampling ADC

Supply Current vs Sampling Frequency

1860L61L TA02

ABSOLUTE MAXIMUM RATINGS (Notes 1,2$)$

Supply Voltage (V_{CC}) \qquad 7 V Ground Voltage Difference
nalog Input (GND - 0.3V) to (VCC +0.3 V)
Digital Input (GND - 0.3V) to 7V
igital Output (GND - 0.3V) to (VCC +0.3 V)

Power Dissipation .. 400 mW
Operating Temperature Range
LTC1860LC/LTC1861LC $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1860LI/LTC1861LI $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)............. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LTC1860LCMS8 LTC1860LIMS8		LTC1861LCMS LTC1861LIMS
	MS8 PART MARKING		MS PART MARKING
	$\begin{aligned} & \text { LTD2 } \\ & \text { LTD3 } \end{aligned}$		LTD4 LTD5
	ORDER PART NUMBER		ORDER PART NUMBER
	LTC1860LCS8		LTC1861LCS8
	LTC1860LIS8		LTC1861LIS8
	S8 PART MARKING		S8 PART MARKING
	$\begin{aligned} & \text { 1860L } \\ & \text { 1860LI } \end{aligned}$		$\begin{aligned} & \text { 1861L } \\ & \text { 1861LI } \end{aligned}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.

CONVERTER AND MULTIPLEXER CHARACTERISTICS

The - denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$V_{C C}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{SCK}}=\mathrm{f}_{\mathrm{SCK}(\mathrm{MAX})}$ as defined in Recommended Operating Conditions, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Resolution		\bullet	12			Bits
No Missing Codes Resolution		\bullet	12			Bits
INL	(Note 3)	\bullet			± 1	LSB
Transition Noise				0.13		$L_{\text {LSB }}^{\text {RMS }}$
Gain Error		\bullet			± 20	mV
Offset Error		\bullet		± 2	± 5	mV
Input Differential Voltage Range	$\mathrm{V}_{\text {IN }}=\mathrm{IN}^{+}-\mathrm{IN}^{-}$	\bullet	0		$V_{\text {REF }}$	V
Absolute Input Range	IN ${ }^{+}$Input IN- Input		$\begin{aligned} & -0.05 \\ & -0.05 \end{aligned}$		$\begin{gathered} V_{C C}+0.05 \\ V_{C C} / 2 \end{gathered}$	V
$\mathrm{V}_{\text {REF }}$ Input Range	LTC1860L S0-8 and MSOP, LTC1861L MSOP		1		$\mathrm{V}_{\text {C }}$	V
Analog Input Leakage Current	(Note 4)	\bullet			± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$ Input Capacitance	In Sample Mode During Conversion			$\begin{gathered} 12 \\ 5 \end{gathered}$		pF
						18601Lf

DYNAMIC ACCURACY

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{C C}=3 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=3 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=150 \mathrm{kHz}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP
SNR	Signal-to-Noise Ratio		72	MAX
UNITS				
$S /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus Distortion Ratio	1 kHz Input Signal	dB	
THD	Total Hamonic Distortion Up to 5th Harmonic	1 kHz Input Signal	72	dB
	Full Power Bandwidth		86	dB
	Full Linear Bandwidth	$\mathrm{S} /(\mathrm{N}+\mathrm{D}) \geq 68 \mathrm{~dB}$	10	MHz

DIGITAL ARD DC ELECTRICAL CHARACTERISTICS The e denotes specifications which apply
over the full operating temperature range, otherwise specifications are $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{C C}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$	\bullet	1.9			V
VIL	Low Level Input Voltage	$V_{\text {CC }}=2.7 \mathrm{~V}$	\bullet			0.45	V
$\underline{\underline{I H}}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	\bullet			2.5	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			-2.5	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=2.7 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=2.7 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 2.3 \\ & 2.1 \end{aligned}$	$\begin{gathered} \hline 2.6 \\ 2.45 \end{gathered}$		V
$\mathrm{V}_{0 \mathrm{~L}}$	Low Level Output Voltage	$V_{C C}=2.7 \mathrm{~V}, \mathrm{I}_{0}=400 \mu \mathrm{~A}$	\bullet			0.3	V
$\underline{10 z}$	Hi-Z Output Leakage	$\mathrm{CONV}=\mathrm{V}_{\text {CC }}$	\bullet			± 3	$\mu \mathrm{A}$
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-6.5		mA
ISINK	Output Sink Current	$V_{\text {OUT }}=V_{\text {CC }}$			6.5		mA
$\mathrm{I}_{\text {REF }}$	Reference Current (LTC1860L SO-8, MSOP and LTC1861L MSOP)	$\begin{aligned} & \text { CONV }=V_{C C} \\ & \mathrm{f}_{\text {SMPL }}=\mathrm{f}_{\text {SMPL(MAX }} \end{aligned}$	\bullet		$\begin{gathered} 0.001 \\ 0.01 \end{gathered}$	$\begin{gathered} 3 \\ 0.1 \end{gathered}$	$\mu \mathrm{A}$ mA
$I_{C C}$	Supply Current	$\begin{aligned} & \text { CONV }=\text { V CC } \text { After Conversion } \\ & \mathrm{f}_{\text {SMPL }}=\mathrm{f}_{\text {SMPL }} \text { (MAX) } \end{aligned}$	\bullet		$\begin{gathered} 0.5 \\ 0.45 \end{gathered}$	$\begin{aligned} & 10 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\underline{P_{D}}$	Power Dissipation	$\mathrm{f}_{\text {SMPL }}=\mathrm{f}_{\text {SMPL }}$ (MAX)			1.22		mW

RECOMMIEПDEP OPERATIAG CODDITODS The • denotes specifications which apply over the
full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {CC }}$	Supply Voltage			2.7		3.6	V
$\mathrm{f}_{\text {SCK }}$	Clock Frequency		\bullet	DC		8	MHz
tCYC	Total Cycle Time			$12 \cdot$ S	$\mathrm{t}_{\mathrm{CONV}}$		$\mu \mathrm{S}$
$t_{\text {SMPL }}$	Analog Input Sampling Time (Note 5)	LTC1860L LTC1861L		$\begin{aligned} & 12 \\ & 10 \end{aligned}$			$\begin{aligned} & \text { SCK } \\ & \text { SCK } \end{aligned}$
$\mathrm{t}_{\text {suCONV }}$	Setup Time CONV \downarrow Before First SCK \uparrow, (See Figure 1)			60			ns
$t^{\text {hDI }}$	Holdtime SDI After SCK \uparrow	LTC1861L		30			ns
$\mathrm{t}_{\text {sudl }}$	Setup Time SDI Stable Before SCK \uparrow	LTC1861L		30			ns
twhCLK	SCK High Time	$\mathrm{f}_{\text {SCK }}=\mathrm{f}_{\text {SCK(MAX }}$		45\%			1/fsck
t WLCLK	SCK Low Time	$\mathrm{f}_{\text {SCK }}=\mathrm{f}_{\text {SCK }}(\mathrm{MAX})$		45\%			1/ffsck
twhCONV	CONV High Time Between Data Transfer Cycles			$\mathrm{t}_{\mathrm{CONV}}$			$\mu \mathrm{S}$
twlconv	CONV Low Time During Data Transfer			12			SCK
thCONV	Hold Time CONV Low After Last SCK \uparrow			26			ns

LTC 1860L/LTC 1861L

 range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{SCK}}=f_{\mathrm{SCK}}(\mathrm{MAX})$ as defined in Recommended Operating Conditions, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MII	TYP	MAX	UNITS
toonv	Conversion Time (See Figure 1)		\bullet		3.7	4.66	$\mu \mathrm{S}$
$\mathrm{f}_{\text {SMPL(MAX) }}$	Maximum Sampling Frequency		\bullet	150			kHz
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, SCK \downarrow to SDO Data Valid	$C_{\text {LOAD }}=20 \mathrm{pF}$	\bullet		45	$\begin{aligned} & 55 \\ & 60 \end{aligned}$	ns ns
$\mathrm{t}_{\text {dis }}$	Delay Time, CONV \uparrow to SDO Hi-Z		\bullet		55	120	ns
$\mathrm{t}_{\text {en }}$	Delay Time, CONV \downarrow to SDO Enabled	$\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$	\bullet		35	120	ns
thDO	Time Output Data Remains Valid After SCK \downarrow	$C_{\text {LOAD }}=20 \mathrm{pF}$	\bullet	5	15		ns
tr_{r}	SDO Rise Time	$\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$			25		ns
t_{f}	SDO Fall Time	$\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$			12		ns

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to GND.
Note 3: Integral nonlinearity is defined as deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.

Note 4: Channel leakage current is measured while the part is in sample mode.
Note 5: Assumes fsck = fsck(max). In the case of the LTC1860L SCK does not have to be clocked during this time if the SDO data word is not desired. In the case of the LTC1861L a minimum of 2 clocks are required on the SCK input after CONV falls to configure the MUX during this time.

TYPICAL PGRFORMANCG CHARACTERISTICS

1860L/61L G01

1860//61L G02

Sleep Current vs Temperature

1860L/61L G03

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn fUnCTIOnS LTC1860L

$V_{\text {REF }}$ (Pin 1): Reference Input. The reference input defines the span of the A / D converter and must be kept free of noise with respect to GND.
$\mathbf{I N}^{+}, \mathbf{I N}^{-}$(Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to GND.
GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.

CONV (Pin 5): Convert Input. A logic high on this input starts the A / D conversion process. If the CONV input is left
high after the A / D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.
SDO (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this pin.
SCK (Pin 7): Shift Clock Input. This clock synchronizes the serial data transfer.
$V_{\text {CC }}$ (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane.

PIn functions

LTC1861L (MSOP Package)

CONV (Pin 1): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A / D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.
CHO, CH1 (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to AGND.

AGND (Pin 4): Analog Ground. AGND should be tied directly to an analog ground plane.
DGND (Pin 5): Digital Ground. DGND should be tied directly to an analog ground plane.

SDI (Pin 6): Digital Data Input. The A/D configuration word is shifted into this input.
SDO (Pin 7): Digital Data Output. The A/D conversion result is shifted out of this output.

SCK (Pin 8): Shift Clock Input. This clock synchronizes the serial data transfer.
$V_{\text {CC }}$ (Pin 9): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane.
$V_{\text {REF }}$ (Pin 10): Reference Input. The reference input defines the span of the A / D converter and must be kept free of noise with respect to AGND.

LTC1861L (S0-8 Package)

CONV (Pin 1): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A / D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.
CHO, CH1 (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to GND.

GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.
SDI (Pin 5): Digital Data Input. The A/D configuration word is shifted into this input.

SDO (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this output.
SCK (Pin 7): Shift Clock Input. This clock synchronizes the serial data transfer.

VCC (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane. $V_{\text {REF }}$ is tied internally to this pin.

fUnCTIONAL BLOCK DIAGRAM

TEST CIRCUITS

Load Circuit for $\mathrm{t}_{\mathrm{dDO}}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\text {dis }}$ and t_{en}

Voltage Waveforms for t_{en}

Voltage Waveforms for SDO Delay Times, $\mathrm{t}_{\mathrm{dDO}}$ and $\mathrm{t}_{\mathrm{hDO}}$

Voltage Waveforms for SDO Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Voltage Waveforms for $\mathrm{t}_{\text {dis }}$

NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL
\qquad

APPLICATIONS InFORMATION

LTC1860L OPERATION

Operating Sequence

The LTC1860L conversion cycle begins with the rising edge of CONV. After a period equal to $\mathrm{t}_{\mathrm{CONV}}$, the conversion is finished. If CONV is left high after this time, the LTC1860L goes into sleep mode drawing only leakage current. On the falling edge of CONV, the LTC1860L goes into sample mode and SDO is enabled. SCK synchronizes the data transfer with each bit being transmitted from SDO on the falling SCK edge. The receiving system should capture the data from SDO on the rising edge of SCK. After completing the data transfer, if further SCK clocks are applied with CONV Iow, SDO will output zeros indefinitely. See Figure 1.

Analog Inputs

The LTC1860L has a unipolar differential analog input. The converter will measure the voltage between the "IN ${ }^{+}$" and "IN"" inputs. A zero code will occur when IN^{+}minus IN^{-} equals zero. Full scale occurs when IN^{+}minus IN^{-}equals $V_{\text {REF }}$ minus 1 LSB . See Figure 2. Both the " $\mathrm{IN}{ }^{+}$" and "I $\mathrm{N}^{-"}$ " inputs are sampled at the same time, so common mode noise on the inputs is rejected by the ADC. If "IN"" is grounded and $V_{\text {REF }}$ is tied to $V_{C C}$, a rail-to-rail input span will result on "IN ${ }^{+}$" as shown in Figure 3.

Reference Input

The voltage on the reference input of the LTC1860L (and the LTC1861L MSOP package) defines the full-scale range of the A/D converter. These ADCs can operate with reference voltages from $V_{\text {CC }}$ to 1 V .

APPLICATIONS INFORMATION

Figure 1. LTC1860L Operating Sequence

Figure 2. LTC1860L Transfer Curve

LTC1861L OPERATION

Operating Sequence

The LTC1861L conversion cycle begins with the rising edge of CONV. After a period equal to $t_{\text {conv, }}$, the conversion is finished. If CONV is left high after this time, the LTC1861L goes into sleep mode. The LTC1861L's 2-bit data word is clocked into the SDI input on the rising edge of SCK after CONV goes low. Additional inputs on the SDI pin are then ignored until the next CONV cycle. The shift clock (SCK) synchronizes the data transfer with each bit being transmitted on the falling SCK edge and captured on the rising SCK edge in both transmitting and receiving systems. The data is transmitted and received simultaneously (full duplex). After completing the data transfer, if further SCK clocks are applied with CONV Iow, SDO will output zeros indefinitely. See Figure 4.

Analog Inputs

The two bits of the input word (SDI) assign the MUX configuration for the next requested conversion. For a

Figure 3. LTC1860L with Rail-to-Rail Input Span
given channel selection, the converter will measure the voltage between the two channels indicated by the " + " and "-" signs in the selected row of Table 1. Insingle-ended mode, all input channels are measured with respect to GND (or AGND). A zero code will occur when the " + " input minus the "-" input equals zero. Full scale occurs when the " + " input minus the "-" input equals $\mathrm{V}_{\text {REF }}$ minus 1LSB. See Figure 5. Both the " + " and " - " inputs are sampled at the same time so common mode noise is rejected. The input span in the SO-8 package is fixed at $V_{\text {REF }}=V_{C C}$. If the "-" input in differential mode is grounded, a rail-to-rail input span will result on the "+" input.

Reference Input

The reference input of the LTC1861L SO-8 package is internally tied to $V_{C C}$. The span of the A / D converter is therefore equal to V_{Cc}. The voltage on the reference input of the LTC1861L MSOP package defines the span of the A/D converter. The LTC1861L MSOP package can operate with reference voltages from 1 V to V_{Cc}.

APPLICATIONS INFORMATION

Figure 4. LTC1861L Operating Sequence

(SELECTED "-" CHANNEL)
REFER TO TABLE 1
Figure 5. LTC1861L Transfer Curve

GENERAL ANALOG CONSIDERATIONS

Grounding

The LTC1860L/LTC1861L should be used with an analog ground plane and single point grounding techniques. Do not use wire wrapping techniques to breadboard and evaluate the device. To achieve the optimum performance, use a printed circuit board. The ground pins (AGND and DGND for the LTC1861L MSOP package and GND for the LTC1860L and LTC1861L S0-8 package) should be tied directly to the analog ground plane with minimum lead length.

Bypassing

For good performance, the $V_{C C}$ and $V_{\text {REF }}$ pins must be free of noise and ripple. Any changes in the $\mathrm{V}_{C C} / V_{\text {REF }}$ voltage with respect to ground during the conversion cycle can
induce errors or noise in the output code. Bypass the $V_{C C}$ and $V_{\text {REF }}$ pins directly to the analog ground plane with a minimum of $1 \mu \mathrm{~F}$ tantalum. Keep the bypass capacitor leads as short as possible.

Analog Inputs

Because of the capacitive redistribution A/D conversion techniques used, the analog inputs of the LTC1860L/ LTC1861L have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem if source resistances are less than 200Ω or high speed op amps are used (e.g., the LT ${ }^{\circledR} 1211$, LT1469, LT1807, LT1810, LT1630, LT1226 or LT1215). But if large source resistances are used, or if slow settling op amps drive the inputs, take care to ensure the transients caused by the current spikes settle completely before the conversion begins. ,

Table 1. Multiplexer Channel Selection

	MUX ADDRESS		CHANNEL \#		GND
	SGL/DIFF	ODD/SIGN	0	1	
SINGLE-ENDED	1	0	+		-
MUX MODE	1	1		+	-
DIFFERENTIAL	0	0	+	-	
MUX MODE	0	1	-	+	

MS8 Package 8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660)

1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE

DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

MS Package
10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1661)

RECOMMENDED SOLDER PAD LAYOUT

NOTE:

1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

LTC 1860L/LTC1861L

TYPICAL APPLICATION

Tiny 2-Chip Data-Acquistion System

LTC6910-1 (IN TSOT-23 PACKAGE) COMPACTLY ADDS 40dB OF INPUT GAIN
RANGE TO THE LTC1860L (IN MSOP 8-PIN PACKAGE). SINGLE 3V SUPPLY
1860L61L TA03

RELATED PARTS

PART NUMBER	SAMPLE RATE	POWER DISSIPATION	DESCRIPTION
12-Bit Serial I/O ADCs			
LTC1286/LTC1298	$12.5 \mathrm{ksps} / 11.1 \mathrm{ksps}$	$1.3 \mathrm{~mW} / 1.7 \mathrm{~mW}$	1-Channel with Ref. Input (LTC1286), 2-Channel (LTC1298), 5V
LTC1400	400 ksps	75 mW	1-Channel, Bipolar or Unipolar Operation, Internal Reference, 5V
LTC1401	200 ksps	15 mW	S0-8 with Internal Reference, 3V
LTC1402	2.2 Msps	90 mW	Serial I/0, Bipolar or Unipolar, Internal Reference
LTC1404	600 ksps	25 mW	S0-8 with Internal Reference, Bipolar or Unipolar, 5V
LTC1860/LTC1861	250 ksps	4.25 mW	S0-8, MS8, 1-Channel, 5V/S0-8, MS, 2-Channel, 5V

14-Bit Serial I/O ADCs

LTC1417	400ksps	20 mW	16 -Pin SSOP, Unipolar or Bipolar, Reference, 5V
LTC1418	200 ksps	15 mW	Serial/Parallel I/O, Internal Reference, 5V

16-Bit Serial I/O ADCs			
LTC1609	200ksps	65 mW	Configurable Bipolar or Unipolar Input Ranges, 5V
LTC1864/LTC1865	250ksps	4.25 mW	S0-8, MS8, 1-Channel, 5V/S0-8, MS, 2-Channel, 5V
LTC1864L/LTC1865L	150ksps	1.22 mW	S0-8, MS8, 1-Channel, 3V/S0-8, MS, 2-Channel, 3V

References

LT1460	Micropower Precision Series Reference	Bandgap, $130 \mu \mathrm{~A}$ Supply Current, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, Available in SOT-23
LT1790	Micropower Low Dropout Reference	$60 \mu \mathrm{~A}$ Supply Current, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, \mathrm{SOT}-23$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
LTC1861LIMS\#TR LTC1860LIS8\#TR LTC1860LCMS8\#PBF LTC1861LCMS LTC1861LIS8\#PBF
LTC1860LCS8\#TRPBF LTC1861LCMS\#TRPBF LTC1860LCS8\#PBF LTC1860LIS8\#TRPBF LTC1861LIS8\#TR
LTC1861LCMS\#PBF LTC1861LCS8 LTC1860LIMS8 LTC1861LCS8\#TRPBF LTC1860LIMS8\#PBF
LTC1861LCS8\#PBF LTC1861LIS8\#TRPBF LTC1860LCMS8\#TR LTC1861LCS8\#TR LTC1860LCMS8
LTC1860LIS8\#PBF LTC1861LIMS\#TRPBF LTC1861LIMS LTC1860LIMS8\#TR LTC1861LCMS\#TR LTC1860LCS8
LTC1860LIS8 LTC1861LIS8 LTC1860LIMS8\#TRPBF LTC1861LIMS\#PBF LTC1860LCMS8\#TRPBF LTC1860LCS8\#TR

[^0]: $\boldsymbol{\mathcal { Z }}$, LTC and LT are registered trademarks of Linear Technology Corporation MICROWIRE is a trademark of National Semiconductor Corporation.

