

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

FDP8870

N-Channel PowerTrench[®] MOSFET 30V, 156A, 4.1m Ω

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\mbox{\scriptsize DS(ON)}}$ and fast switching speed.

Applications

DC/DC converters

Features

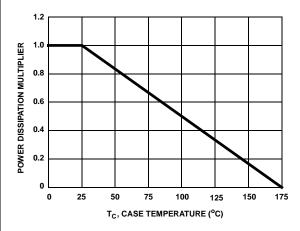
- $r_{DS(ON)} = 4.1 \text{m}\Omega$, $V_{GS} = 10 \text{V}$, $I_D = 35 \text{A}$
- $r_{DS(ON)} = 4.6 m\Omega$, $V_{GS} = 4.5 V$, $I_D = 35 A$
- High performance trench technology for extremely low r_{DS(ON)}
- · Low gate charge
- · High power and current handling capability
- · RoHS Compliant

MOSFET Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Ratings	Units V	
V _{DSS}	Drain to Source Voltage	30		
V _{GS}	Gate to Source Voltage	±20	V	
	Drain Current			
I _D	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$) (Note 1)	156	Α	
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 4.5V$) (Note 1)	147	А	
	Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 62^{\circ}C/W$)	19	А	
	Pulsed	Figure 4	А	
E _{AS}	Single Pulse Avalanche Energy (Note 2)	300	mJ	
	Power dissipation	160	W	
P_{D}	Derate above 25°C	1.07	W/°C	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-220	0.94	°C/W
R _{e,IA}	Thermal Resistance Junction to Ambient TO-220 (Note 3)	62	°C/W


Package Marking and Ordering Information

Device Marking Device		Package	Package Reel Size		Quantity	
FDP8870	FDP8870	TO-220AB	Tube	N/A	50 units	

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Chara	cteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		30	-	-	V
	Zara Cata Vallana Basis Comant	$V_{DS} = 24V$		-	-	1	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nΑ
On Chara	cteristics						
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2$.50μA	1.2	-	2.5	V
		I _D = 35A, V _{GS} = 10V		-	0.0034	0.0041	
-	Drain to Source On Resistance	$I_D = 35A, V_{GS} = 4$		-	0.0040	0.0046	
r _{DS(ON)}	Diam to Source On Resistance	$I_D = 35A, V_{GS} = 10V,$ $T_{LI} = 175^{\circ}C$		-	0.0051	0.0065	Ω
Dynamic	Characteristics						
C _{ISS}	Input Capacitance	1/ 45)/)/	0)/	-	5200	-	pF
C _{OSS}	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$ $f = 1MHz$		-	970	-	pF
C _{RSS}	Reverse Transfer Capacitance			-	570	-	pF
R _G	Gate Resistance	$V_{GS} = 0.5V, f = 1N$	ИHz	-	2.1	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$		-	106	132	nC
Q _{g(5)}	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$		-	56	69	nC
Q _{g(TH)}	Threshold Gate Charge	\/ - 0\/ to 1\/	$V_{DD} = 15V$	-	5.0	6.5	nC
Q _{gs}	Gate to Source Gate Charge	$I_{D} = 35A$ $I_{g} = 1.0 \text{mA}$		-	15	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau			-	10	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	23	-	nC
Switching	Characteristics (V _{GS} = 10V)						
t _{ON}	Turn-On Time			-	-	168	ns
t _{d(ON)}	Turn-On Delay Time			-	11	-	ns
t _r	Rise Time	$V_{DD} = 15V, I_{D} = 35A$ $V_{GS} = 4.5V, R_{GS} = 3.3\Omega$		-	105	-	ns
t _{d(OFF)}	Turn-Off Delay Time			-	70	-	ns
t _f	Fall Time			-	46	-	ns
t _{OFF}	Turn-Off Time			-	-	173	ns
Drain-Soເ	urce Diode Characteristics						
V _{SD}	Source to Drain Diade Velters	I _{SD} = 35A		-	-	1.25	V
	Source to Drain Diode Voltage	I _{SD} = 15A		-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 35A$, dI_{SD}/dt	t = 100A/μs	-	-	37	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 35A$, dI_{SD}/dt		_	T -	21	nC

- Notes:
 1: Package current limitation is 80A.
 2: Starting T_J = 25°C, L = 0.15mH, I_{AS} = 64A, V_{DD} = 27V, V_{GS} = 10V.
 3: Pulse width = 100s.

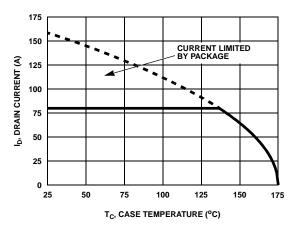


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

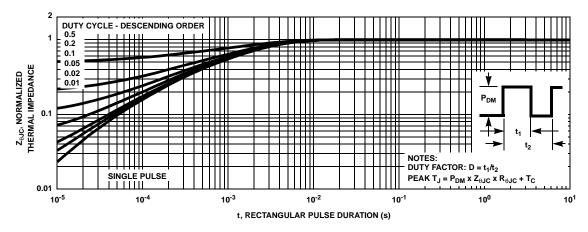


Figure 3. Normalized Maximum Transient Thermal Impedance

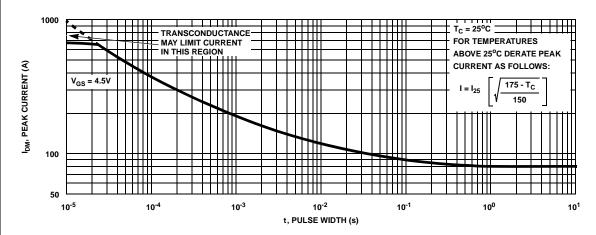
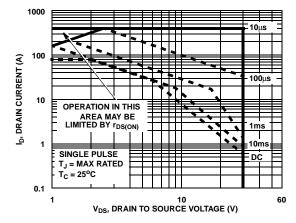



Figure 4. Peak Current Capability

©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3

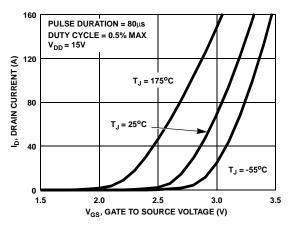

 $\begin{array}{c} 500 \\ \hline \\ 100 \\ \hline$

Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Capability

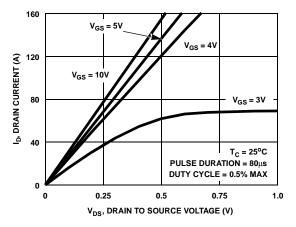
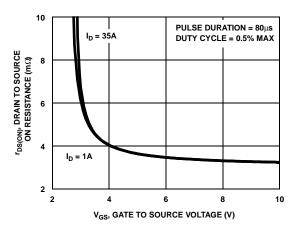



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

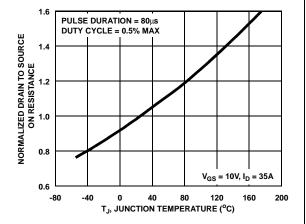


Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

FDP8870 Rev. A3

©2008 Fairchild Semiconductor Corporation

Typical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

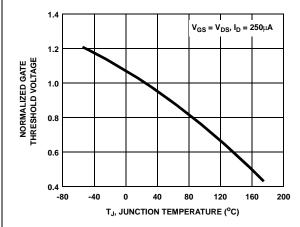


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

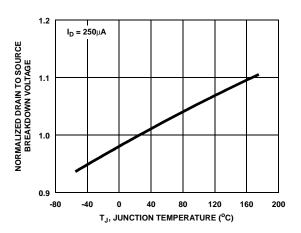


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

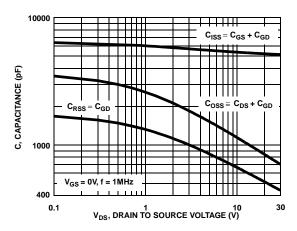


Figure 13. Capacitance vs Drain to Source Voltage

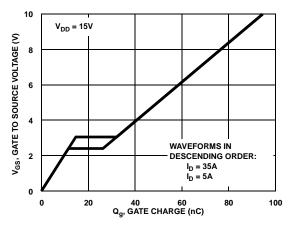


Figure 14. Gate Charge Waveforms for Constant Gate Current

Test Circuits and Waveforms

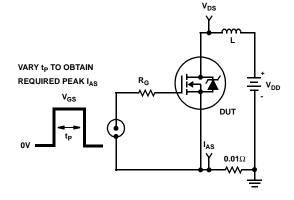


Figure 15. Unclamped Energy Test Circuit

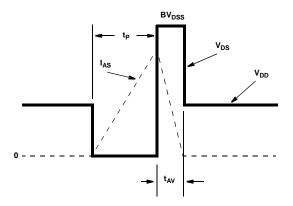


Figure 16. Unclamped Energy Waveforms

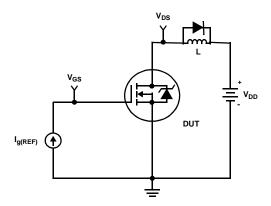


Figure 17. Gate Charge Test Circuit

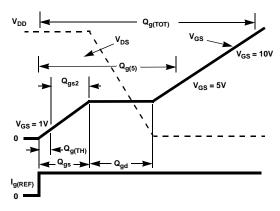


Figure 18. Gate Charge Waveforms

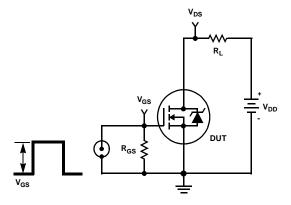


Figure 19. Switching Time Test Circuit

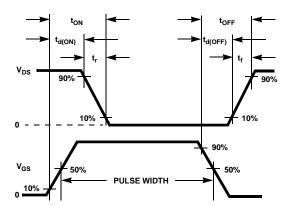


Figure 20. Switching Time Waveforms

PSPICE Electrical Model .SUBCKT FDP8870 2 1 3 ; rev December 2003 Ca 12 8 4.5e-9 Cb 15 14 4.5e-9 LDRAIN DPLCAP DRAIN Cin 6 8 4.7e-9 10 Dbody 7 5 DbodyMOD RLDRAIN RSLC1 Dbreak 5 11 DbreakMOD DBREAK Dplcap 10 5 DplcapMOD RSLC2 ≤ FSI C 11 Ebreak 11 7 17 18 33.45 50 Eds 14 8 5 8 1 Egs 13 8 6 8 1 ■ DBODY RDRAIN **EBREAK ESG** Esa 6 10 6 8 1 **FVTHRES** Evthres 6 21 19 8 1 $\left(\frac{19}{8}\right)$ Evtemp 20 6 18 22 1 MWFAK LGATE **EVTEMP** GATE **RGATE** ____ (18 22 匤 It 8 17 1 MMFD 9 20 MSTRO RIGATE Lgate 1 9 3.6e-9 LSOURCE CIN SOURCE Ldrain 2 5 1.0e-9 Lsource 3 7 3.3e-9 RSOURCE RLSOURCE RLgate 1 9 36 RBREAK RLdrain 2 5 10 14 13 13 8 18 RLsource 3 7 33 RVTEMP S1B Mmed 16 6 8 8 MmedMOD СВ 19 CA Mstro 16 6 8 8 MstroMOD IT 14 Mweak 16 21 8 8 MweakMOD VBAT EGS **EDS** Rbreak 17 18 RbreakMOD 1 8 Rdrain 50 16 RdrainMOD 2.15e-3 **RVTHRES** Rgate 9 20 2.1 RŠLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 9e-4 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))} .MODEL DbodyMOD D (IS=7.5E-12 IKF=17 N=1.01 RS=2.1e-3 TRS1=2e-3 TRS2=2e-7 + CJO=1.9e-9 M=0.57 TT=9e-11 XTI=2.6) MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.75e-9 IS=1e-30 N=10 M=0.4) .MODEL MmedMOD NMOS (VTO=2.1 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T ABS=25) .MODEL MstroMOD NMOS (VTO=2.51 KP=650 IS=1e-30 N=10 TOX=1 L=1u W=1u T ABS=25) .MODEL MweakMOD NMOS (VTO=1.67 KP=0.1 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-9e-7) .MODEL RdrainMOD RES (TC1=2.3e-3 TC2=5e-6) MODEL RSLCMOD RES (TC1=1e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=8e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-2.3e-3 TC2=-9e-6) .MODEL RytempMOD RES (TC1=-3e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-1) **FNDS** Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical Model rev December 2003 template FDP8870 n2,n1,n3 =m temp electrical n2,n1,n3 number m_temp=25 var i iscl $dp..model\ dbodymod = \ (isl=7.5e-12,ikf=17,nl=1.01,rs=2.1e-3,trs1=2e-3,trs2=2e-7,cjo=1.9e-9,m=0.57,tt=9e-11,xti=2.6)$ dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.75e-9,isl=10e-30,nl=10,m=0.4) $m..model mmedmod = (type=_n, vto=2.1, kp=30, is=1e-30, tox=1)$ m..model mstrongmod = (type= n,vto=2.51,kp=650,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.67,kp=0.1,is=1e-30, tox=1,rs=0.1) LDRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-2) **DPLCAP** DRAIN sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=-0.5) RLDRAIN sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-1) RSLC1 c.ca n12 n8 = 4.5e-951 RSLC2 € c.cb n15 n14 = 4.5e-9ISCI c.cin n6 n8 = 4.7e-9DBREAK dp.dbody n7 n5 = model=dbodymod RDRAIN <u>6</u>8 dp.dbreak n5 n11 = model=dbreakmod **FSG** DBODY dp.dplcap n10 n5 = model=dplcapmod **EVTHRES** (<u>19</u>) **MWEAK** LGATE **EVTEMP** spe.ebreak n11 n7 n17 n18 = 33.45 _{GATE} **ММ**ЕД 18 22 EBREAK spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 **←**MSTRC RLGATE spe.esg n6 n10 n6 n8 = 1 LSOURCE spe.evthres n6 n21 n19 n8 = 1 CIN SOURCE spe.evtemp n20 n6 n18 n22 = 1 RSOURCE RLSOURCE i.it n8 n17 = 1 RBREAK I.lgate n1 n9 = 3.6e-9I.Idrain n2 n5 = 1.0e-9**₹**RVTEMP S₁B oS2B I.Isource n3 n7 = 3.3e-919 СА IT (♠ 14 res.rlgate n1 n9 = 36 VBAT res.rldrain n2 n5 = 10 **EGS EDS** res.rlsource n3 n7 = 33 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp **RVTHRES** m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-9e-7 res.rdrain n50 n16 = 2.15e-3, tc1=2.3e-3,tc2=5e-6 res.rgate n9 n20 = 2.1res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3res.rsource n8 n7 = 9e-4, tc1=8e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-2.3e-3,tc2=-9e-6 res.rvtemp n18 n19 = 1. tc1=-3e-3.tc2=2e-7sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))

©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3

PSPICE Thermal Model JUNCTION REV 23 December 2003 FDP8870T CTHERM1 TH 6 1e-3 CTHERM2 6 5 2e-3 CTHERM3 5 4 3e-3 RTHERM1 CTHERM1 CTHERM4 4 3 9e-3 CTHERM5 3 2 1e-2 CTHERM6 2 TL 2e-2 RTHERM1 TH 6 3e-2 RTHERM2 6 5 8e-2 RTHERM3 5 4 1.1e-1 RTHERM2 CTHERM2 RTHERM4 4 3 1.6e-1 RTHERM5 3 2 1.72e-1 RTHERM6 2 TL 2e-1 5 SABER Thermal Model SABER thermal model FDP8870T RTHERM3 CTHERM3 template thermal_model th tl thermal_c th, tl ctherm.ctherm1 th 6 =1e-3 ctherm.ctherm2 6 5 = 2e-3 ctherm.ctherm3 5 4 =3e-3 ctherm.ctherm4 4 3 =9e-3 ctherm.ctherm5 3 2 =1e-2 RTHERM4 CTHERM4 ctherm.ctherm6 2 tl =2e-2 rtherm.rtherm1 th 6 =3e-2 rtherm.rtherm2 6 5 =8e-2 3 rtherm.rtherm3 5 4 =1.1e-1 rtherm.rtherm4 4 3 =1.6e-1 rtherm.rtherm5 3 2 =1.72e-1 RTHERM5 CTHERM5 rtherm.rtherm6 2 tl =2e-1 2 RTHERM6 CTHERM6 CASE tl

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ **ACEx®** PDP-SPM™ The Power Franchise® F-PFS™ Power-SPM™ Build it Now™ puwer CorePLUS™ FRFET® PowerTrench® franchise CorePOWER™ Global Power ResourceSM Programmable Active Droop™ TinvBoost™ QFET® $CROSSVOLT^{TM}$ Green FPS™ TinyBuck™ $\mathsf{TinyLogic}^{^{\textcircled{\tiny{\$}}}}$ CTL™ QS™ Green FPS™ e-Series™ GTO™ TINYOPTO™ Current Transfer Logic™ Quiet Series™ EcoSPARK[®] IntelliMAX™ RapidConfigure™ TinyPower™ ISOPLANAR™ EfficentMax™ Saving our world 1mW at a time™ TinyPWM™ EZSWITCH™ * MegaBuck™ SmartMax™ TinyWire™ µSerDes™ MICROCOUPLER™ SMART START™ MicroFET™ SPM[®] MicroPak™ STEALTH™ airchild[®] **UHC**® MillerDrive™ SuperFET™ Fairchild Semiconductor® MotionMax™ SuperSOT™-3 Ultra FRFET™ FACT Quiet Series™ Motion-SPM™ SuperSOT™-6 UniFET™ SuperSOT™-8 FACT[®] OPTOLOGIC® VCX™ $\mathsf{FAST}^{\mathbb{R}}$ OPTOPLANAR® SuperMOS™ VisualMax™ FastvCore™ SYSTEM ® FlashWriter® *

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I34

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FDP8870