

MPLAB® ICE 2000/4000 TRANSITION SOCKET SPECIFICATION

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE. MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper. 11/12/04

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PlCmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

TRANSITION SOCKET SPECIFICATION

Table of Contents

PDIP Transition Socket	
XLT28XP	
28-lead DIP 0.300-inch Male to 0.600-inch Female Adapter Socket	2
SOIC Transition Socket	
XLT08SO	
8-lead DIP to 0.050-inch Adapter Socket	
8-lead SOIC Header	
XLT14SO	
14-lead DIP to 0.050-inch Adapter Socket	
14-lead SOIC Header	4
XLT18SO	
18-lead DIP to 0.050-inch Adapter Socket	
18-lead SOIC Header	4
XLT20SO1 20-lead DIP to 0.050-inch Adapter Socket	F
20-lead SOIC Header	
XLT28SO	
28-lead DIP to 0.050-inch Adapter Socket	
28-lead SOIC Header	
SSOP Transition Socket	
XLT14SS	
14-lead DIP to 0.8 mm Adapter Socket	6
14-lead SSOP Header	
XLT20SS	
18-lead DIP to 0.8 mm Adapter Socket	
20-lead SSOP Header	
XLT20SS1	
20-lead DIP to 0.8 mm Adapter Socket	
20-lead SSOP Header	7
XLT28SS, XLT28SS2 28-lead DIP to 0.8 mm Adapter Socket	c
28-lead SSOP Header	
PLCC Transition Socket	
XLT44L2, XLT68L1, XLT84L1	
44/68/84-lead Transition Socket Top	10
44/68/84-lead Transition Socket Side	
MQFP/TQFP Transition Socket	
XLT44PT 44 load OED to 0.9 mm Adaptor Socket Top	4.0
44-lead QFP to 0.8 mm Adapter Socket Top	
XLT64PT1, XLT64PT2, XLT80PT	12
64/80-lead QFP to 0.5 mm Adapter Socket Top	12
64/80-lead QFP to 0.5 mm Adapter Socket Side	

XLT64PT3	
64-lead QFP to 0.8mm Adapter Socket Top	13
64-lead QFP to 0.8mm Adapter Socket Side	
XLT44PT3, XLT64PT4	
44/64-lead QFP to 0.8 mm Adapter Socket Top	13
44/64-lead QFP to 0.8 mm Adapter Socket Side	13
64/80-lead QFP to 0.5 mm Adapter Socket Top	14
64/80-lead QFP to 0.5 mm Adapter Socket Side	14
80-lead QFP to 0.65 mm Adapter Socket Top	14
80-lead QFP to 0.65 mm Adapter Socket Side	14
SOT/DFN/QFN Transition Sockets	
XLT06SOT	
6-lead SOT-23 to 0.80-inch Adapter Socket	17
XLT08DFN2	
8/14-lead DIP to 0.025-inch Adapter Socket	17
XLT28QFN3, XLT28QFN4, XLT44QFN2, XLT44QFN3	
28/44-lead DIP to 0.025-inch Adapter Socket Top	18
28/44-lead DIP to 0.025-inch Adapter Socket Side and Cables	18
XLT08DFN (Discontinued - see XLT08DFN2)	
8-lead DIP to 0.025-inch Adapter Socket	19
XLT28QFN (Discontinued - see XLT28QFN4)	
28-lead DIP to 0.025-inch Adapter Socket	19
XLT28QFN (Discontinued - see XLT28QFN4)	
28-lead DIP to 0.025-inch Adapter Socket	20
XLT28QFN2 (Discontinued - see XLT28QFN3)	
18-lead DIP to 0.025-inch Adapter Socket	20
XLT44QFN (Discontinued - see XLT44QFN2)	
40-lead DIP to 0.025-inch Adapter Socket	21
44 lead OEN Header	21

Transition Socket Specification

INTRODUCTION

Transition sockets are devices that allow MPLAB[®] ICE 2000 and MPLAB ICE 4000 device adapters to interface to sockets on customer products that differ from the standard emulator adapter connection.

Embedded microcontrollers/microprocessors come in many different types of IC packages, (i.e., DIP, PLCC, SOIC, SSOP, MQFP, etc.). Typically, development cycle components are EPROM based and, as a result, are provided in larger windowed package formats such as DIP or PLCC. Production components are primarily preprogrammed ROM, OTP or Flash-based and are often in very compact SOIC, SSOP, MQFP or PQFP package formats.

The MPLAB ICE solution is transition sockets. A transition socket is specifically designed to provide compatibility between two differing types of IC package formats.

Transition sockets are typically composed of two parts: the DIP adapter socket and the SOIC/SSOP header. The DIP adapter socket is designed to plug into the emulator system's DIP device adapter on one side and the header on the other. The header is then soldered down to the target application.

The QFP Adapter is a single part soldered directly to the target application and fits into the QFP device adapter.

WHY SHOULD I USE TRANSITION SOCKETS IN MY PRODUCT DESIGN?

There are two very significant advantages to using transition sockets:

- 1. Shorter product development cycle.
- Reduced expense in the design, layout and prototype testing.

A typical product design cycle has two important phases: the prototype design phase and the production design phase. Traditionally, these phases were different simply because the prototype used a microcontroller with a different package type. However, with the availability of the transition sockets, the prototype design can be identical to the production design because a transition socket can be used to bridge the microcontroller package differences.

WHAT TRANSITION SOCKETS ARE CURRENTLY AVAILABLE?

Microchip Technology currently offers the transition sockets listed in the Table of Contents following this introductory section.

The Product Line Card (DS00148) lists the transition sockets available for each device adapter of the MPLAB ICE 2000 or 4000 System. For more on MPLAB ICE 2000 device adapters, see the MPLAB ICE 2000 Processor Module and Device Adapter Specification (DS51140). For more on MPLAB ICE 4000 device adapters, see the MPLAB ICE 4000 Processor Module and Device Adapter Specification (DS51298).

Please check the Microchip web site (www.microchip.com) for the most current version of all documents.

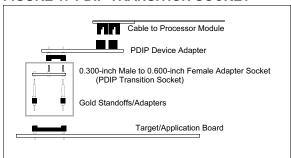
HOW CAN I OBTAIN MAXIMUM BENEFIT FROM THE USE OF TRANSITION SOCKETS?

Attention to component placement should be considered to provide adequate clearance for the transition socket interface to the PCB footprint. This is especially true for any tall components such as connector headers, radial components or voltage regulators. Refer to the transition socket mechanical drawings for dimensions.

TRANSITION SOCKET APPLICATIONS – COMMENTS AND SUGGESTIONS

Attention to component placement should be considered in mating the adapter sockets to the SOIC/SSOP headers. If visual alignment is difficult in your application, C-shaped end brackets have been included to aid in header-to-adapter socket alignment. Clip the brackets onto the SOIC/SSOP header.

The placement of via's around the Surface Mount Technology (SMT) layout area should be examined. Via's immediately adjacent to the end of a SMT pad may inadvertently come into contact with the header leads. Via's should be placed along the centerline of the SMT pad to lessen the chance of pin-to-pin shorts while soldering.


The SOIC header is designed for SOIC body width of 0.300-inch, the adapter leads should be cut to fit the 0.150-inch and 0.208-inch SOIC body widths.

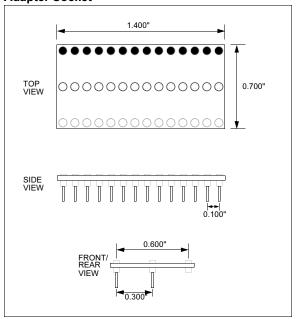
For information on packaging dimensions, please refer to DS00049.

PDIP TRANSITION SOCKET

A PDIP transition socket and associated hardware is shown in Figure 1.

FIGURE 1: PDIP TRANSITION SOCKET

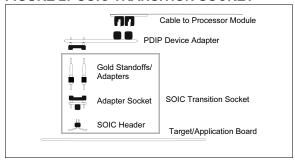
The PDIP transition socket is a 0.300-inch Male to 0.600-inch Female adapter socket.


Microchip offers the following PDIP transition socket:

 XLT28XP: One 28-lead PDIP adapter socket and two 28-lead gold stand-offs

See the drawings in this section for layout dimensions.

XLT28XP


28-lead DIP 0.300-inch Male to 0.600-inch Female Adapter Socket

SOIC TRANSITION SOCKET

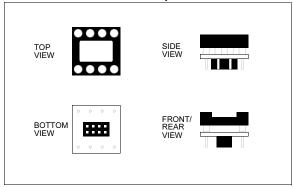
An SOIC transition socket and associated hardware is shown in Figure 2.

FIGURE 2: SOIC TRANSITION SOCKET

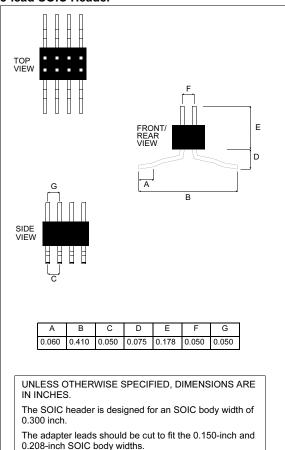
There are two components of the SOIC transition socket.

- Adapter socket that connects to the PDIP device adapter.
- SOIC header that is to be soldered down to the target application.

Microchip offers the following SOIC transition sockets:

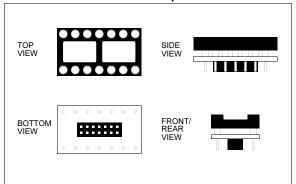

- XLT08SO: One adapter socket and three 8-lead SOIC headers
- XLT14SO: One adapter socket and three 14-lead SOIC headers
- XLT18SO: One adapter socket and three 18-lead SOIC headers
- XLT20SO1: One adapter socket and three 20-lead SOIC headers
- XLT28SO: One adapter socket and three 28-lead SOIC headers

See the drawings in this section for layout dimensions.

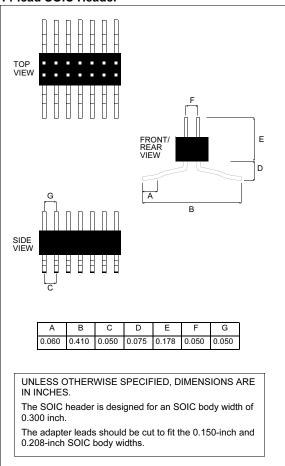

Note: The SOIC header is designed for SOIC body width of 0.300 inch. The adapter leads should be cut to fit the 0.150-inch and 0.208-inch SOIC body widths.

XLT08SO

8-lead DIP to 0.050-inch Adapter Socket

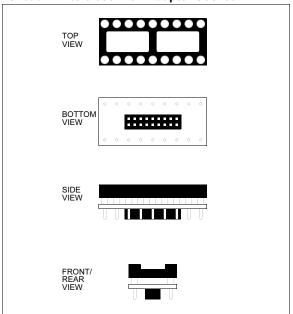


8-lead SOIC Header

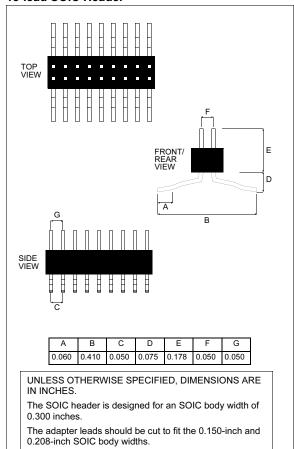


XLT14SO

14-lead DIP to 0.050-inch Adapter Socket

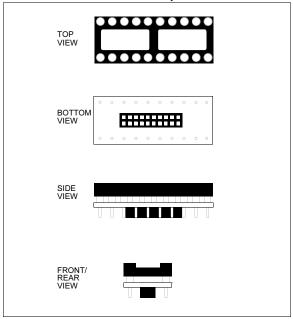


14-lead SOIC Header

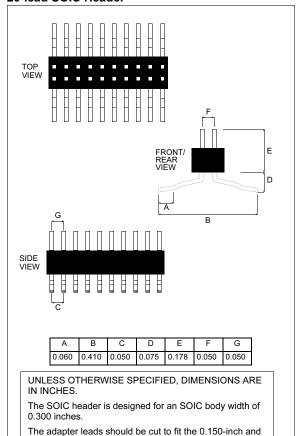


XLT18SO

18-lead DIP to 0.050-inch Adapter Socket

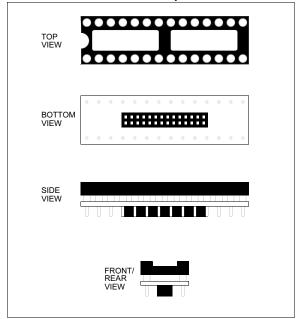


18-lead SOIC Header

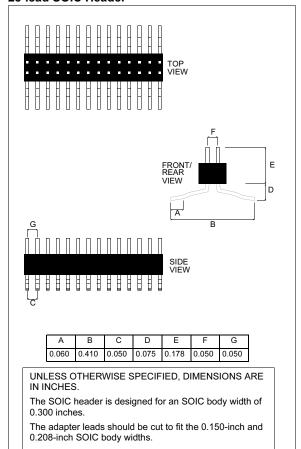


XLT20SO1

20-lead DIP to 0.050-inch Adapter Socket



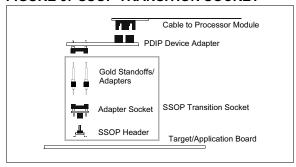
20-lead SOIC Header



XLT28SO

28-lead DIP to 0.050-inch Adapter Socket

28-lead SOIC Header



0.208-inch SOIC body widths.

SSOP TRANSITION SOCKET

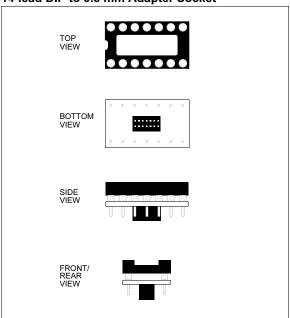
An SSOP transition socket and associated hardware is shown in Figure 3.

FIGURE 3: SSOP TRANSITION SOCKET

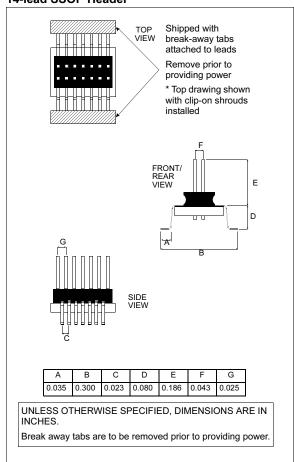
The SSOP transition sockets are similar to the SOIC transition sockets. There are two parts to the SSOP transition socket:

- Adapter socket that connects to the PDIP device adapter.
- 2. SSOP header that gets soldered down to the target application.

Note: To keep the leads straight during assembly and shipping, the SSOP headers are shipped with break-away tabs attached to the leads. Please remove the break-away tabs before applying power to the target system. Be careful not to bend the leads prior to soldering to the target application.

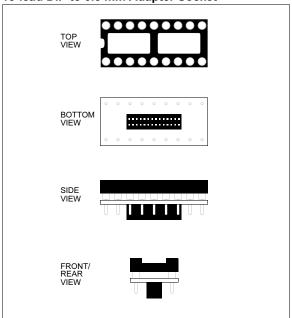

Microchip offers the following SSOP transition sockets:

- XLT14SS: One adapter socket and three 14-lead SSOP headers
- XLT20SS: One adapter socket and three 20-lead SSOP headers
- XLT20SS1: One adapter socket and three 20-lead SSOP headers
- XLT28SS: One adapter socket and three 28-lead SSOP headers
- XLT28SS2: One adapter socket and three 28-lead SSOP headers for PIC16C55/57

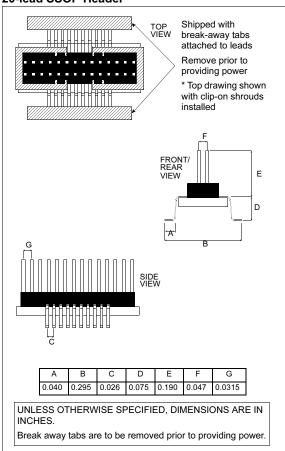

See the drawings in this section for layout dimensions and clearances for tall components.

XLT14SS

14-lead DIP to 0.8 mm Adapter Socket

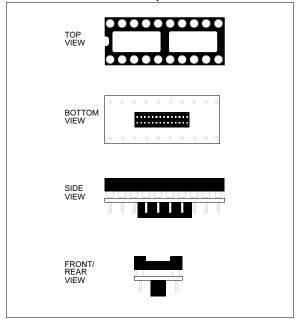


14-lead SSOP Header

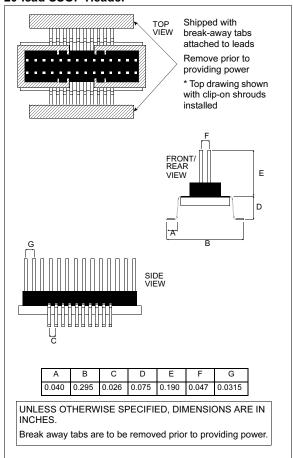


XLT20SS

18-lead DIP to 0.8 mm Adapter Socket

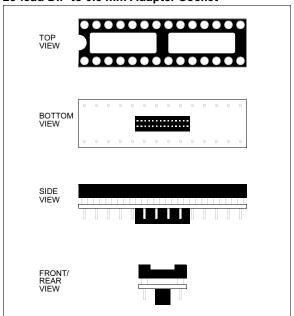


20-lead SSOP Header

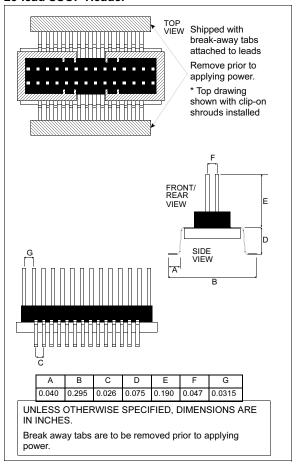


XLT20SS1

20-lead DIP to 0.8 mm Adapter Socket

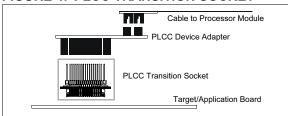


20-lead SSOP Header



XLT28SS, XLT28SS2

28-lead DIP to 0.8 mm Adapter Socket


28-lead SSOP Header

PLCC TRANSITION SOCKET

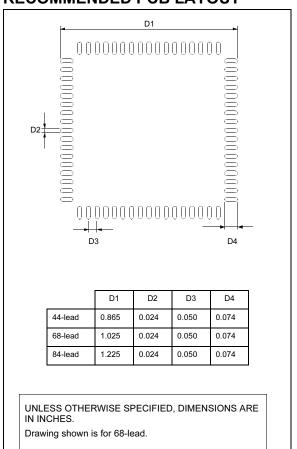
A PLCC transition socket and associated hardware is shown in Figure 4.

FIGURE 4: PLCC TRANSITION SOCKET

The PLCC transition socket is required for use along with the PLCC device adapters. The DAF18-1 device adapter is equipped with eight socket strips that interface with one of two transition sockets. The DAF18-3 device adapter is equipped with four socket strips that interface with one transition socket.

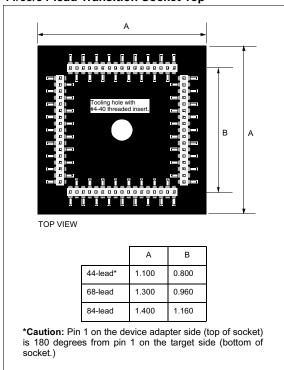
The PLCC transition sockets are designed with a threaded insert in the center of the footprint so that a 4/40 screw can securely fasten the transition socket to the device adapter.

The PLCC transition sockets are designed to be soldered to the target PCB PLCC surface mount pattern or inserted into a PLCC socket on the target PCB.


Note: To avoid solder bridging, do not place via's within 0.025-inch of the PLCC footprint.

Also, any via's near the PLCC should be directly on the centerline of the pad.

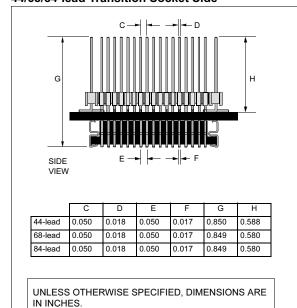
Microchip offers the following PLCC transition sockets:


- · XLT44L2: One 44-lead PLCC transition socket
- XLT68L1: One 68-lead PLCC transition socket
- XLT84L1: One 84-lead PLCC transition socket

RECOMMENDED PCB LAYOUT

XLT44L2, XLT68L1, XLT84L1

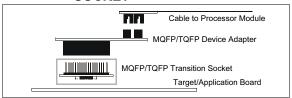
44/68/84-lead Transition Socket Top

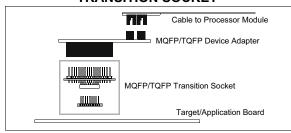


UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

Drawing shown is for 68-lead.

44/68/84-lead Transition Socket Side

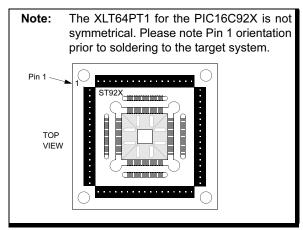

Drawing shown is for 68-lead.


MQFP/TQFP TRANSITION SOCKET

MQFP/TQFP transition sockets and associated hardware is shown below.

FIGURE 5: MQFP/TQFP TRANSITION SOCKET

FIGURE 6: MQFP/TQFP TWO-PART TRANSITION SOCKET



The MQFP/TQFP transition socket is required for use along with the MQFP/TQFP device adapters. The device adapter is equipped with four socket strips that interface with the transition socket.

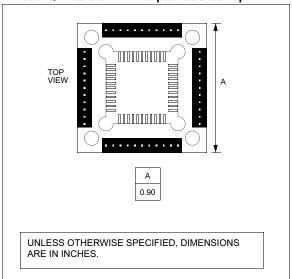
Note: To avoid solder bridging, do not place via's within 0.025-inch of the MQFP/TQFP footprint. Also, any via's near the MQFP/TQFP should be directly on the centerline of the pad.

Microchip offers the following MQFP/TQFP transition sockets:

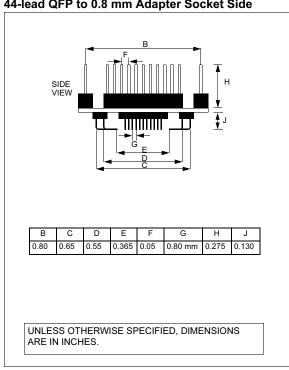
- XLT44PT: One 44-lead MQFP/TQFP transition socket, 0.80 mm
- XLT44PT3: One 44-lead two-part MQFP/TQFP transition socket, 0.80 mm
- XLT64PT1: One 64-lead MQFP/TQFP transition socket, 0.5 mm (PIC16C92X)
- XLT64PT2: One 64-lead MQFP/TQFP transition socket, 0.5 mm (PIC17CXXX)
- XLT64PT3: One 64-lead MQFP/TQFP transition socket, 0.8 mm (dsPIC30F)
- XLT64PT4: One 64-lead MQFP/TQFP two-part transition socket, 0.8 mm
- XLT64PT5: One 64-lead MQFP/TQFP two-part transition socket, 0.5 mm
- XLT80PT: One 80-lead MQFP/TQFP transition socket, 0.5 mm
- XLT80PT2: One 80-lead MQFP/TQFP two-part transition socket, 0.65 mm
- XLT80PT3: One 80-lead MQFP/TQFP two-part transition socket, 0.5 mm

See the drawings in this section for layout dimensions and clearances for tall components.

TQFP TRANSITION SOCKET SOLDERING TIPS

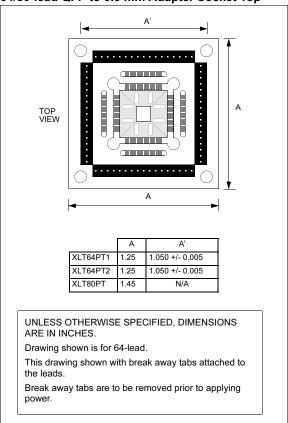

- Before soldering, consider keeping the break away tabs in place during soldering.
- Use controlled soldering iron tip temperatures between 300°C and 325°C (570°F to 615°F)
- If possible, use a PACE mini wave soldering iron tip or an equivalent tip design.
- Plan to solder one (1 of 4) side first, then the opposite side, then remaining two sides.
- Soldering iron tip movement should be in direction of the leads (backward and forward), not across the leads; dragging the tip across the leads may cause lead damage.
- Use generous amounts of soldering flux to aid in the solder flow action.
- If the breakaway tabs are removed after soldering (using a dental pick or equivalent), any solder bridging between leads can be repaired by simply gently touching the soldering tip to the lead tip.

CAUTION

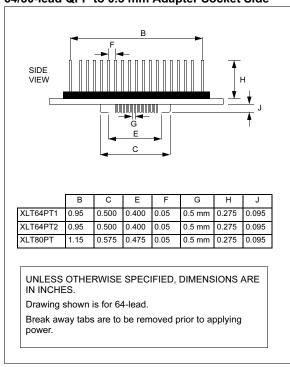

The 64- and 80-pin TQFP headers are very delicate and can be easily damaged!

XLT44PT

44-lead QFP to 0.8 mm Adapter Socket Top

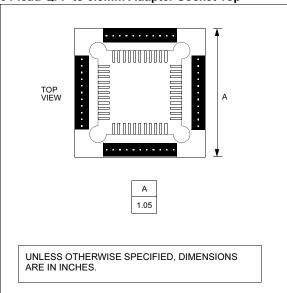


44-lead QFP to 0.8 mm Adapter Socket Side

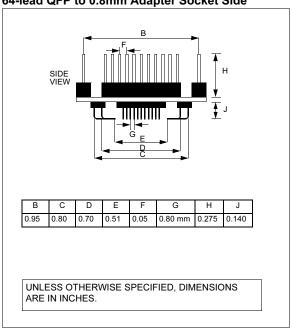


XLT64PT1, XLT64PT2, XLT80PT

64/80-lead QFP to 0.5 mm Adapter Socket Top

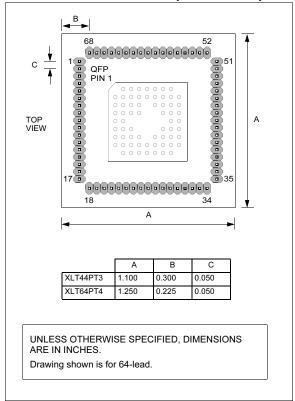


64/80-lead QFP to 0.5 mm Adapter Socket Side

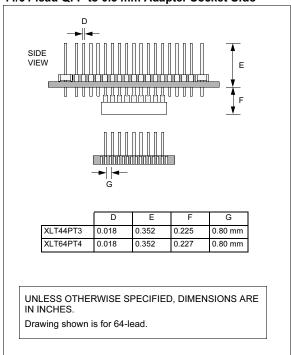


XLT64PT3

64-lead QFP to 0.8mm Adapter Socket Top

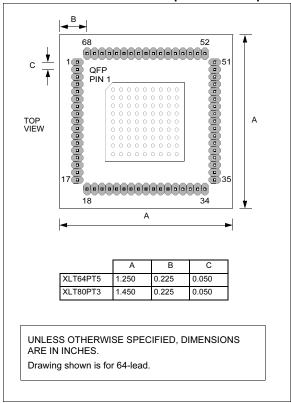


64-lead QFP to 0.8mm Adapter Socket Side

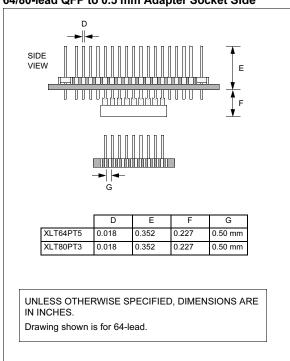


XLT44PT3, XLT64PT4

44/64-lead QFP to 0.8 mm Adapter Socket Top

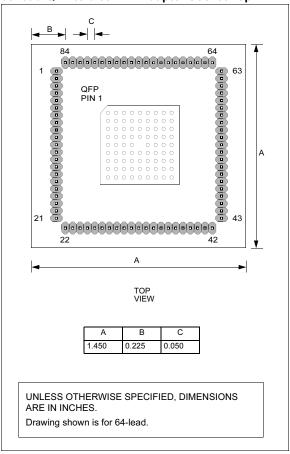


44/64-lead QFP to 0.8 mm Adapter Socket Side

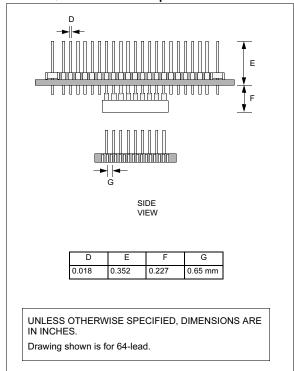


XLT64PT5, XLT80PT3

64/80-lead QFP to 0.5 mm Adapter Socket Top



64/80-lead QFP to 0.5 mm Adapter Socket Side



XLT80PT2

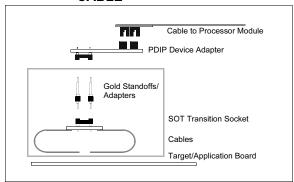
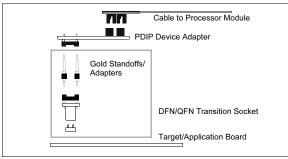
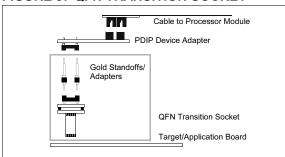
80-lead QFP to 0.65 mm Adapter Socket Top

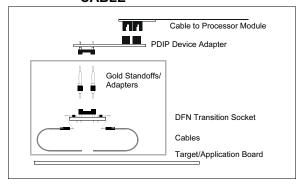
80-lead QFP to 0.65 mm Adapter Socket Side

SOT/DFN/QFN TRANSITION SOCKETS

SOT/DFN/QFN transition sockets and associated hardware are shown below.

FIGURE 7: SOT TRANSITION SOCKET WITH CABLE


FIGURE 8: DFN/QFN TWO-PART TRANSITION SOCKET

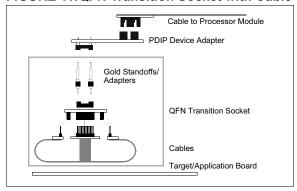

FIGURE 9: QFN TRANSITION SOCKET

FIGURE 10:DFN TRANSITION SOCKET WITH CABLE

FIGURE 11:QFN Transition Socket with Cable

Microchip offers the following SOT/DFN/QFN transition sockets:

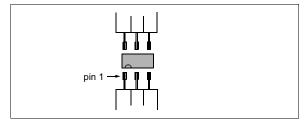
- XLT06SOT: One 6-lead SOT transition socket with cable
- XLT08DFN: One 8-lead DFN two-part transition socket
- XLT08DFN2: One 8-lead DFN transition socket with cable
- XLT28QFN3: One 28-lead QFN transition socket with cable
- XLT28QFN4: One 28-lead QFN transition socket with cable
- XLT44QFN2: One 44-lead QFN transition socket with cable
- XLT44QFN3: One 44-lead QFN transition socket with cable

The following sockets have been discontinued:

- XLT28QFN: One 28-lead QFN transition socket. (Replaced by XLT28QFN4.)
- XLT28QFN2: One 28-lead QFN transition socket. (Replaced by XLT28QFN3.)
- XLT44QFN: One 44-lead QFN two-part transition socket. (Replaced by XLT44QFN2.)

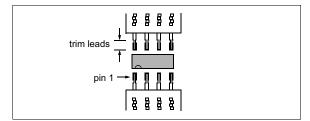
See the drawings in this section for layout dimensions.

RECOMMENDED INSTALLATION OF TRANSITION SOCKETS WITH CABLES


For transition sockets that use a cable, follow these instructions for installing your transition socket on the target board.

PCB Layout Considerations:

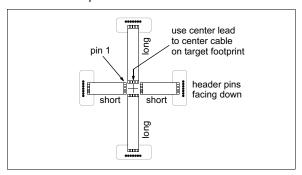
Make sure you leave enough room on the PCB to accomodate the cable, i.e., space your target pads for each device far enough apart so that the cable from one pad group will not interfere with another pad group.


6-Pin SOT Solder Instructions:

- Remove protective cable covering from end of cable.
- Position cables on target board (see below.)Tape down to prevent movement.
- 3. Solder each lead to target pad.
- 4. Remove tape and clean.

8-Pin DFN Solder Instructions:

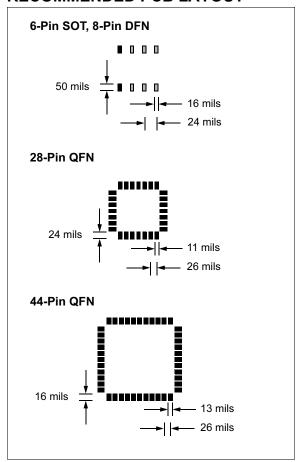
- 1. Prepare leads by trimming narrowest portion to 0.10 inches maximum in length (see below.)
- Position cables on target board (see below.) Tape down to prevent movement.
- 3. Solder each lead to target pad.
- 4. Remove tape and clean.



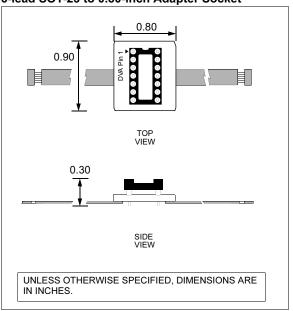
8-Pin DFN Assembly Instructions:

- 1. Start with cable associated with pin 1.
- 2. Fold cable up and over, forming a radius.
- 3. Mate with the header on the side of the transition socket assembly, making sure pin 1 mates with the pin labeled "DFN Pin 1".
- 4. Fold over and mate the other cable.

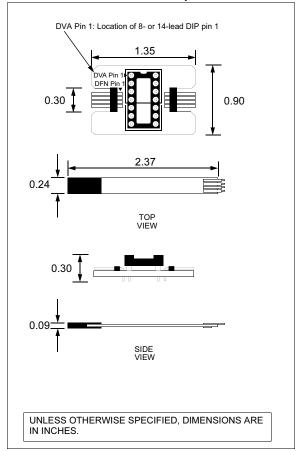
28/44-Pin QFN Solder Instructions:


- Remove protective cable jacket from stripped end of cable.
- Lay out with long cables opposing each other and short cables opposing each other (see below.)
- Place center lead (6th lead for 44-pin, 4th lead for 28-pin) on center target pad to center each cable on the footprint (see below.) Tape down each cable to prevent movement.
- 4. Solder each lead to target pad.
- 5. Remove tape and clean

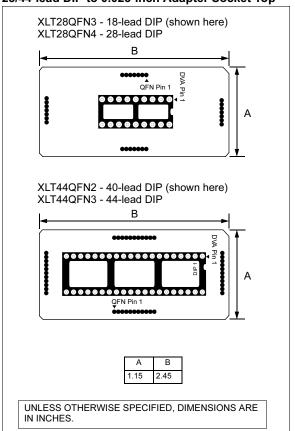
28/44-Pin QFN Assembly Instructions:


- 1. Start with cable associated with pin 1.
- 2. Fold cable up and over, forming a radius. Header pins will now be facing upwards.
- 3. Mate with the socket on the underside of the transition socket assembly, making sure pin 1 mates with the pin labeled "QFN Pin 1".
- 4. Fold over and mate the other cables.

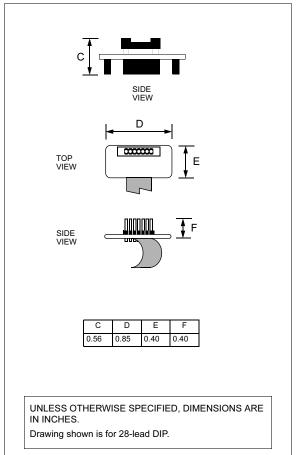
RECOMMENDED PCB LAYOUT


XLT06SOT

6-lead SOT-23 to 0.80-inch Adapter Socket

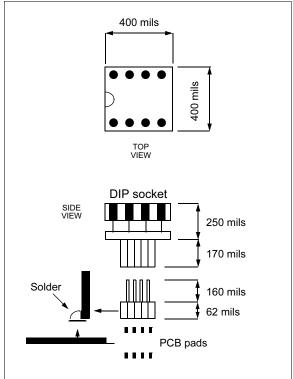

XLT08DFN2

8/14-lead DIP to 0.025-inch Adapter Socket

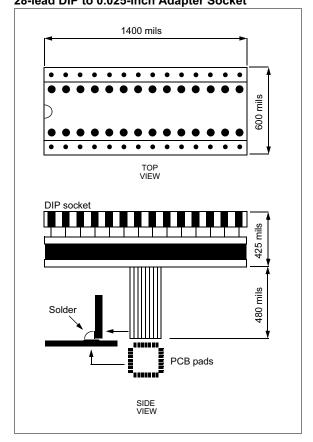


XLT28QFN3, XLT28QFN4, XLT44QFN2, XLT44QFN3

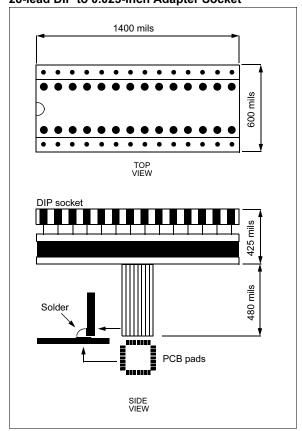
28/44-lead DIP to 0.025-inch Adapter Socket Top

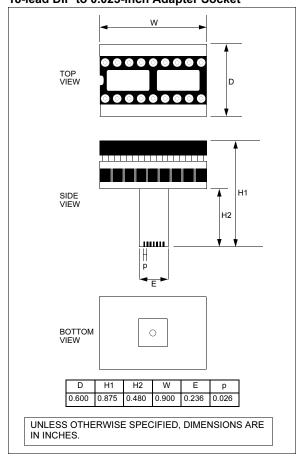


28/44-lead DIP to 0.025-inch Adapter Socket Side and Cables

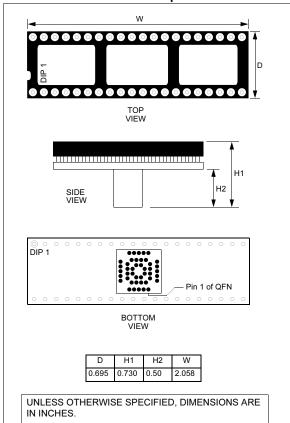


XLT08DFN (Discontinued - see XLT08DFN2)

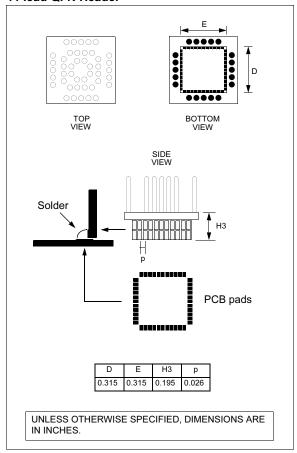

8-lead DIP to 0.025-inch Adapter Socket


XLT28QFN (Discontinued - see XLT28QFN4) 28-lead DIP to 0.025-inch Adapter Socket

XLT28QFN (Discontinued - see XLT28QFN4) 28-lead DIP to 0.025-inch Adapter Socket



XLT28QFN2 (Discontinued - see XLT28QFN3) 18-lead DIP to 0.025-inch Adapter Socket



XLT44QFN (Discontinued - see XLT44QFN2)

40-lead DIP to 0.025-inch Adapter Socket

44-lead QFN Header

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE. MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Roston

Westford, MA Tel: 978-692-3848 Fax: 978-692-3821

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View. CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Tel: 86-21-5407-5533

Fax: 86-21-5407-5066 China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355 Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Ballerup

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Massy

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Ismaning

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340 **England - Berkshire** Tel: 44-118-921-5869

Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

XLT68L1 XLT64PT3 XLT84L1 XLT44QFN XLT28QFN2 XLT08DFN XLT28XP