Single Inverter with Schmitt-Trigger Input

MC74HC1G14

The MC74HC1G14 is a high speed CMOS inverter with Schmitt– Trigger input fabricated with silicon gate CMOS technology.

The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output.

The MC74HC1G14 output drive current is 1/2 compared to MC74HC series.

Features

- High Speed: $t_{PD} = 7 \text{ ns} (Typ)$ at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity
- Balanced Propagation Delays (t_{pLH} = t_{pHL})
- Symmetrical Output Impedance $(I_{OH} = I_{OL} = 2 \text{ mA})$
- Chip Complexity: < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

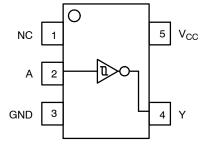
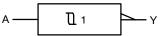
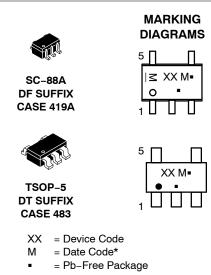
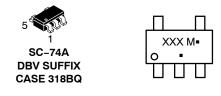


Figure 1. Pinout




Figure 2. Logic Symbol

	PIN ASSIGNMENT				
1	N/C				
2	A				
3	GND				
4	Y				
5	V _{CC}				



ON Semiconductor®

www.onsemi.com

(Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location.

(Note: Microdot may be in either location)

FUNCTION TABLE

Input	Output
А	Y
L	Н
Н	L

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS

Symbol	Paramete	er	Value	Unit
V _{CC}	DC Supply Voltage	SC-88A (NLV), TSOP-5 SC-88A, SC-74A	-0.5 to +7.0 -0.5 to +6.5	V
V _{IN}	DC Input Voltage		–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage		–0.5 to V _{CC} +0.5	V
I _{IK}	DC Input Diode Current		±20	mA
Ι _{ΟΚ}	DC Output Diode Current		±20	mA
I _{OUT}	DC Output Source/Sink Current	±12.5	mA	
I_{CC} or I_{GND}	DC Supply Current per Supply Pin or Ground	±25	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
ΤL	Lead Temperature, 1 mm from Case for 10 S	Seconds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 1)	SC70-5/SC-88A/SOT-353 SOT23-5/TSOP-5/SC59-5 SC-74A	659 555 555	°C/W
P _D	Power Dissipation in Still Air at 85°C	SC70-5/SC-88A/SOT-353 SOT23-5/TSOP-5/SC59-5 SC-74A	190 225 225	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	2000 1000	V
ILATCHUP	Latchup Performance (Note 3)	SC-88A (NLV), TSOP-5 SC-88A, SC-74A	±500 ±100	mA

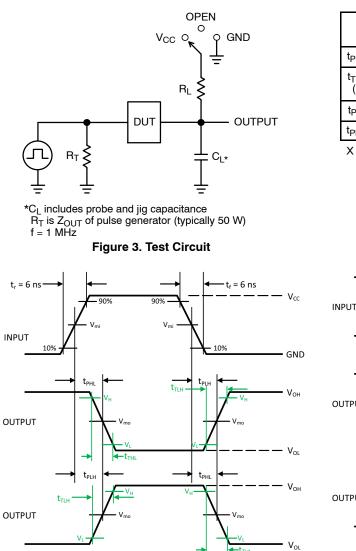
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 20 ounce copper trace with no air flow.
HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to JESD22-C101-F. JEDEC recommends that ESD qualification to

EIA/JESD22–A115A (Machine Model) be discontinued per JEDEC/JEP172A. 3. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

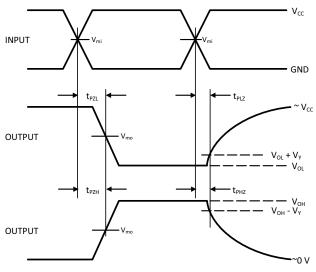
Symbol	Parameter	Min	Мах	Unit
V _{CC}	DC Supply Voltage	2.0	6.0	V
V _{IN}	DC Input Voltage	0.0	V _{CC}	V
V _{OUT}	DC Output Voltage	0.0	V _{CC}	V
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f		SOP-5 = 2.0 V = 3.0 V = 4.5 V = 6.0 V	No Limit No Limit No Limit No Limit	ns/V
	Input Rise and Fall Time SC-88A, S V_{CC} $V_{CC} = 2.3 V$ $V_{CC} = 3.0 V$ $V_{CC} = 4.5 V$	= 2.0 V – to 2.7 V – to 3.6 V –	No Limit No Limit No Limit No Limit No Limit	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.


DC ELECTRICAL CHARACTERISTICS

		Test	v _{cc}	Т	A = 25°	C	-40°C ≤ 1	Γ _A ≤ 85°C	–55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		3.0 4.5 5.5	- - -	2.0 3.0 3.6	2.20 3.15 3.85	- - -	2.20 3.15 3.85		2.20 3.15 3.85	V
V _{T-}	Negative Threshold Voltage		3.0 4.5 5.5	0.9 1.35 1.65	1.5 2.3 2.9		0.9 1.35 1.65	- - -	0.9 1.35 1.65	- -	V
V _H	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50	0.57 0.67 0.74	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	V
V _{OH}	High-Level Output Voltage		2.0 3.0 4.5 6.0	1.9 2.9 4.4 5.9	2.0 3.0 4.5 6.0		1.9 2.9 4.4 5.9		1.9 2.9 4.4 5.9	- - -	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -2 \text{ mA}$ $I_{OH} = -2.6 \text{ mA}$	4.5 6.0	4.18 5.68	4.31 5.80		4.13 5.63		4.08 5.58	-	
V _{OL}	Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 20 \ \mu A$	2.0 3.0 4.5 6.0	- - -	0.0 0.0 0.0 0.0	0.1 0.1 0.1 0.1		0.1 0.1 0.1 0.1		0.1 0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 2 \text{ mA}$ $I_{OL} = 2.6 \text{ mA}$	4.5 6.0		0.17 0.18	0.26 0.26		0.33 0.33		0.40 0.40	
I _{IN}	Input Leakage Current	V _{IN} = 6.0 V or GND	6.0	-	1	±0.1	-	±1.0	-	±1.0	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC} or GND	6.0	-	-	1.0	-	10	-	40	μΑ

AC ELECTRICAL CHARACTERISTICS	(Input t _r = t _f = 6.0 ns)
-------------------------------	--


			Т	A = 25°	C	-40°C ≤ 1	Γ _A ≤ 85°C	-55°C ≤ T	_A ≤ 125°C	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	$V_{CC} = 5.0 \text{ V}$ $C_L = 15 \text{ pF}$	-	3.5	15	-	20	-	25	ns
t _{PHL}	Input A or B to Y	$\begin{array}{c} V_{CC} = 2.0 \ V \ C_L = 50 \ p\text{F} \\ V_{CC} = 3.0 \ V \\ V_{CC} = 4.5 \ V \\ V_{CC} = 6.0 \ V \end{array}$		19 10.5 7.5 6.5	100 27 20 17		125 35 25 21	- - - -	155 90 35 26	
t _{TLH} ,	Output Transition	$V_{CC} = 5.0 \text{ V}$ $C_{L} = 15 \text{ pF}$	-	3	10	-	15	-	20	ns
t _{THL}	Time	$\begin{array}{l} V_{CC} = 2.0 \ V \ C_L = 50 \ p\text{F} \\ V_{CC} = 3.0 \ V \\ V_{CC} = 4.5 \ V \\ V_{CC} = 6.0 \ V \end{array}$	- - -	25 16 11 9	125 35 25 21	- - -	155 45 31 26	- - - -	200 60 38 32	
C _{IN}	Input Capacitance		-	5	10	-	10	-	10	pF
	Typical @ 25°C, V _{CC} = 5.0 V									
C _{PD}	Power Dissipation Ca	pacitance (Note 4)					10			pF

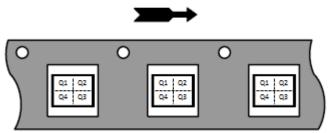
4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Test	Switch Position	C _L , pF	R_L, Ω
t_{PLH} / t_{PHL}	Open		Х
t _{TLH} / t _{THL} (Note 5)	Open	See AC Characteristics Table	х
t _{PLZ} / t _{PZL}	V _{CC}	Table	1 k
t_{PHZ} / t_{PZH}	GND		1 k

X - Don't Care

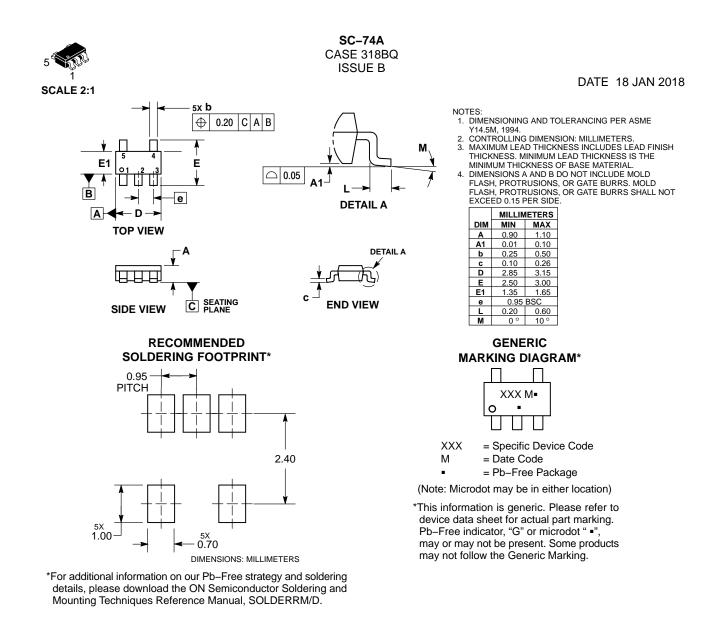
		V _{mo} , V				
V_{CC}, V	V _{mi} , V	t _{PLH} , t _{PHL}	$t_{\text{PZL}}, t_{\text{PLZ}}, t_{\text{PZH}}, t_{\text{PHZ}}$	V _L , V	V _H , V	V _Y , V
3.0 to 3.6	V _{CC} /2	(V _{OH} – V _{OL})/2	V _{CC} /2	V _{OL} + 0.1 (V _{OH} – V _{OL})	V _{OL} + 0.9 (V _{OH} – V _{OL})	0.3
4.5 to 5.5	V _{CC} /2	(V _{OH} – V _{OL})/2	V _{CC} /2	V _{OL} + 0.1 (V _{OH} – V _{OL})	V _{OL} + 0.9 (V _{OH} – V _{OL})	0.3

5. t_{TLH} and t_{THL} are measured from 10% to 90% of (V_{OH} – V_{OL}), and 90% to 10% of (V_{OH} – V_{OL}), respectively.


ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
MC74HC1G14DFT1G	SC-88A	HA	Q2	3000 / Tape & Reel
NLVHC1G14DFT1G*	SC-88A	HA	Q2	3000 / Tape & Reel
MC74HC1G14DFT2G	SC-88A	HA	Q4	3000 / Tape & Reel
NLVHC1G14DFT2G*	SC-88A	HA	Q4	3000 / Tape & Reel
MC74HC1G14DTT1G	TSOP-5	HA	Q4	3000 / Tape & Reel
NLV74HC1G14DTT1G*	TSOP-5	HAR	Q4	3000 / Tape & Reel
MC74HC1G14DBVT1G	SC-74A	HA	Q4	3000 / Tape & Reel

+For complete information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP


Capable.

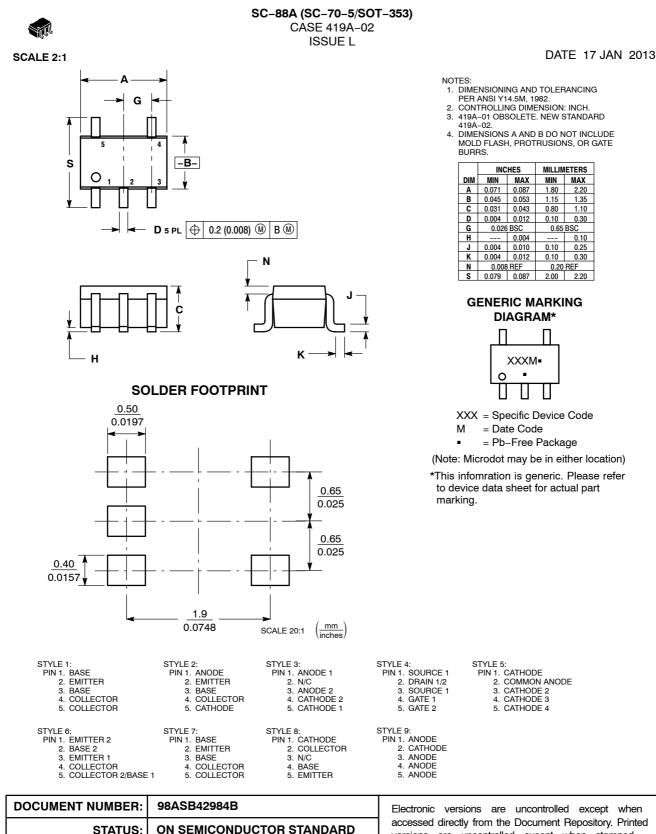
Pin 1 Orientation in Tape and Reel

Direction of Feed

DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except v	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. F versions are uncontrolled except when stamp	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SC-74A	PAGE 1 0	OF 2

DOCUMENT NUMBER: 98AON66279G

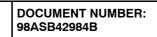
PAGE 2 OF 2


ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ BY I. HYLAND.	27 JUN 2017
А	CORRECTED MARKING DIAGRAM FROM 6 TO 5-LEAD. REQ BY I. HYLAND.	20 SEP 2017
В	CORRECTED SOLDERING FOOTPRINT PITCH FROM 3.40MM TO 2.40MM. REQ. BY I. HYLAND.	18 JAN 2018

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product call create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

NEW STANDARD: DESCRIPTION:

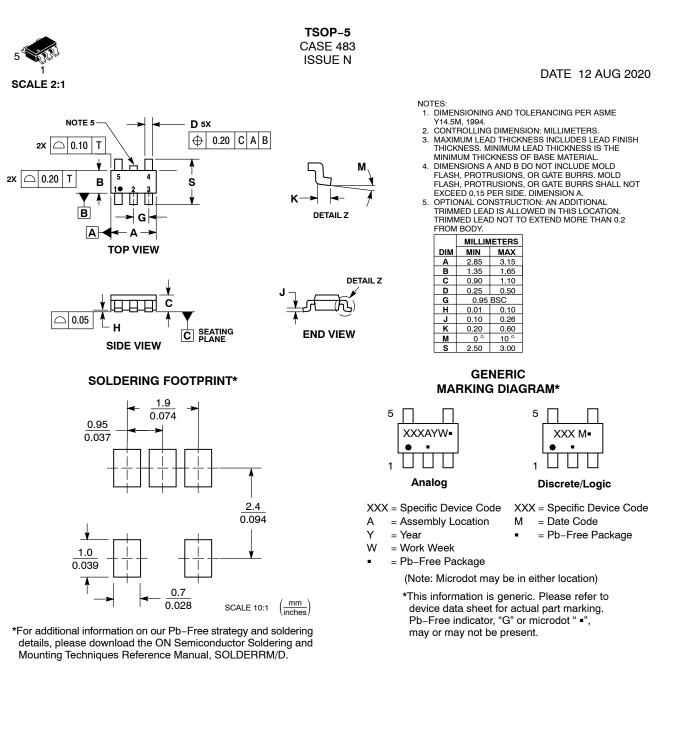
SC-88A (SC-70-5/SOT-353)



PAGE 1 OF 2

"CONTROLLED COPY" in red.

versions are uncontrolled except when stamped



PAGE 2 OF 2

ISSUE	REVISION	DATE			
С	CONVERTED FROM PAPER DOCUMENT TO ELECTRONIC. REQ. BY N LAFEB- RE.	20 JUN 1998			
D	CONVERTED FROM MOTOROLA TO ON SEMICONDUCTOR. ADDED STYLE 5. REQ. BY E. KIM.	24 JUL 2000			
Е	ADDED STYLES 6 & 7. REQ. BY S. BACHMAN.	03 AUG 2000			
F	DELETED DIMENSION V, WAS 0.3-0.44MM/0.012-0.016IN. REQ. BY G. KWONG.				
G	ADDED STYLE 8, REQ. BY S. CHANG; ADDED STYLE 9, REQ. BY S. BACHMAN; 25 JUN 20 ADDED NOTE 4, REQ. BY S. RIGGS				
Н	CHANGED STYLE 6. REQ. BY C. LIM	28 APR 2005			
J	CHANGED TITLE DESCRIPTION. REQ. BY B. LOFTS.	31 AUG 2005			
K	CORRECTED TITLE AND DESCRIPTION TO SC-88A (SC-70-5/SOT-353). COR- RECTED MARKING DIAGRAM. REQ. BY D. TRUHITTE.	13 JUL 2010			
L	ADDED SOLDER FOOTPRINT. REQ. BY I. MARIANO.	17 JAN 2013			

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSOP-5		PAGE 1 OF 1		
ON Semiconductor and () are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative