

High Voltage Rectifiers

 $V_{\text{RRM}} = 4800 V$ $I_{\text{F(AV)M}} = 10.2 A$

V _{RRM} V	Standard Types	Power Designation
4800	UGE 0221 AY4	Si-E 1750 / 775-4

Symbol	Conditions		Ratings	
I _{F(RMS)} I _{F(AV)M}	air self cooling,	$T_{amb} = 45^{\circ}C$	16	A
		 without cooling plate with colling plate 	3.8 5.4	A A
	forced air cooling $v = 3 \text{ m/s},$	g: T _{amb} = 35°C - without cooling plate - with cooling plate	7.0 10.2	A
	oil cooling,	T _{amb} = 35°C - without cooling plate - with cooling plate	10.2 10.2	A
P _{RSM}	T _(vj) = 150°C;	t _p = 10 μs	3.4	kW
I _{FSM}	non repetitive, 50 $T_{(vj)} = 45^{\circ}C;$ $T_{(vj)} = 150^{\circ}C;$	0 c/s (for 60 c/s add 10%) $t_p = 10 \text{ ms}$ $t_p = 10 \text{ ms}$	180	A
T _{amb} T _{stg} T _(vj)	T _(vj) = 150 C,		-40+150 -40+150 150	2° 2° 2°
Weight			120	g

Symbol	Conditions		Characteristic	Values
I _R	T _(vj) = 150°C;	$V_{\rm R} = V_{\rm RRM}$	≤ 2	mA
V _F	$I_{F} = 30 \text{ A}$ $T_{(vj)} = 25^{\circ}\text{C}$		4.8	V
V _{to} r _t	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		2.55 90	V mΩ
а	f = 50Hz		5 x 9,81	m/s²
M _d			8	Nm

Features

- · Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics

Applications

- X-Ray equipment
- · Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- · Cable test equipment

Advantages

- · Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- · Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747-2

IXYS reserve the right to change limits, test conditions and dimensions.

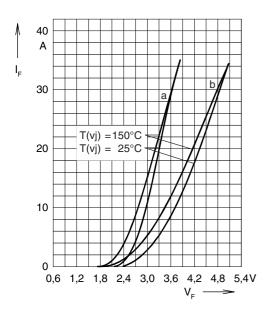
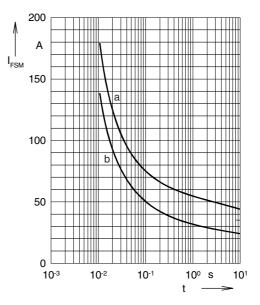
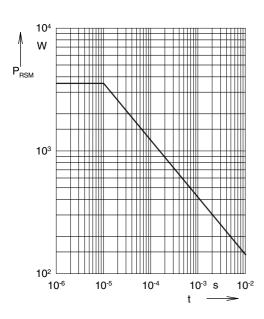
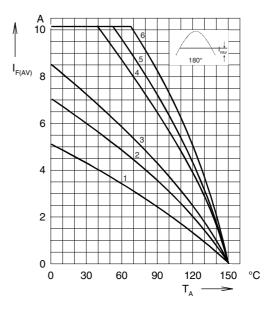


Fig. 1: Forward characteristics

Instantaneous forward current I_F as a function of instantaneous forward voltage drop V_F for junction temperature T_(vj) = 25°C and T_(vj) = 150°C a = Mean value characteristic b = Limit value characteristic


Fig. 2: Characteristics of maximum permissible current The curves show the non repetitive peak one cycle surge forward current I_{FSM} as a function of time *t* and serve for rating protective devices.

 $\begin{array}{ll} a = \mbox{Initial state} & T_{(vj)} = \ 45^{\circ}\mbox{C} \\ b = \mbox{Initial state} & T_{(vj)} = \ 150^{\circ}\mbox{C} \end{array}$

Fig. 3: Power loss

Non repetitive peak reverse power loss P_{RSM} as a function of time *t*, $T_{(v)} = 150^{\circ}C$

Fig. 4: Load diagramm

Mean forward current $I_{F(AV)}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes 1 = air self cooling without cooling plate 2 = air self coolingwith cooling plate 3 = forced air cooling without cooling plate cooling plate 4 = forced air cooling with 5 = oil coolingwithout cooling plate cooling plate 6 = oil cooling with

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS: UGE0221AY4