

VFD2041 Technical Manual

Revision: 2.1

Contents

Contents

1	Getti	etting Started 1				
	1.1	Display Options Available	1			
	1.2	Accessories	2			
	1.3	Features	6			
	1.4	Connecting to a PC	7			
	1.5	Installing the Software	8			
		1.5.1 uProject	8			
2	Hard	dware Information	9			
_	2.1	DB-9 Connector	9			
	2.1	2.1.1 Power Through DB-9 Jumper	10			
	2.2	Power/Data Connector	12			
	2.2	2.2.1 Legacy Data Connector Jumpers	13			
	2.3	Protocol Select Jumpers	13			
	2.3		15			
	2.4	Manual Override	15			
	2.3	Manual Override	13			
3	Trou	bleshooting	17			
	3.1	The display does not turn on when power is applied	17			
	3.2	The display module is not communicating	17			
	3.3		18			
4	Com	nmunications	18			
•	4.1		18			
	4.1	•	18			
		4.1.2 I ² C Transaction Example	19			
			19			
	4.2		20			
	4.3		20			
	4.3		21			
	4.4	Setting a Poli-Standard Daud Rate	41			
5	Text		22			
	5.1	Introduction	22			
		5.1.1 Character Set	23			
		5.1.2 Control Characters	23			
	5.2	Auto Scroll On	23			
	5.3	Auto Scroll Off	24			
	5.4	Clear Screen	24			
	5.5	Changing the Startup Screen	24			
	5.6		25			
	5.7	*	25			
	5.8	*	25			
			_			

ii

	5.9	Go Home	26
	5.10	Move Cursor Back	26
	5.11	Move Cursor Forward	26
	5.12	Blinking Block Cursor On	27
		Blinking Block Cursor Off	
6	Spec	ial Characters	27
	6.1	Introduction	27
	6.2	Creating a Custom Character	27
	6.3	Saving Custom Characters	
	6.4	Loading Custom Characters	
	6.5	Save Startup Screen Custom Characters	
	6.6	Initialize Medium Number	
	6.7		
		Place Medium Numbers	
	6.8	Initialize Large Numbers	31
	6.9	Place Large Number	31
		Initialize Horizontal Bar	
		Place Horizontal Bar Graph	
		Initialize Narrow Vertical Bar	
	6.13	Initialize Wide Vertical Bar	32
	6.14	Place Vertical Bar	33
7	Gene	eral Purpose Output	33
	7.1	Introduction	33
	7.2	General Purpose Output Off	34
	7.3	General Purpose Output On	34
	7.4	Set Startup GPO state	34
8	Disp	lay Functions	35
	8.1	Introduction	35
	8.2	Display On	35
	8.3	Display Off	35
	8.4	Set VFD Brightness	
	8.5	Set and Save VFD Brightness	
9	Data	Security	37
	9.1	Introduction	37
	9.2	Set Remember	
	9.3	Data Lock	38
	9.4	Set and Save Data Lock	39
	9.5	Write Customer Data	39
		Read Customer Data	39
	9.6	Read Customer Data	35
10	Mico	ellaneous	39
10		Introduction	39
	10.2	Dood Vargion Number	10
		Read Version Number	40
		Read Version Number	40

11	Com	mand Summary	42
	11.1	Communications	42
	11.2	Text	42
	11.3	Special Characters	43
	11.4	General Purpose Output	44
	11.5	Display Functions	14
	11.6	Data Security	14
	11.7	Miscellaneous	45
	11.8	Command By Number	45
12		VAL VAL	47
12		VAL VAL	
12		endix Specifications	47
12		Specifications	47 47
12	12.1	Specifications	47 47 47
12	12.1	Specifications	47 47 47 47
12	12.1 12.2 12.3	Specifications	47 47 47 47
12	12.1 12.2 12.3 12.4	Specifications	47 47 47 47 48

1 Getting Started

The VFD2041 is an intelligent VFD display designed to decrease development time by providing an instant solution to any project. With the ability to communicate via serial RS-232/TTL and I²C protocols, the versatile VFD2041 can be used with virtually any controller. The ease of use is further enhanced by an intuitive command structure to allow display settings such as brightness, and baud rate to be software controlled. Additionally, up to thirty-two custom charaters, such as character sets for bar graphs, medium and large numbers, may be stored in the non-volitile memory to be easily recalled and displayed at any time.

1.1 Display Options Available

The VFD2041 is complimented with a wide selection of filters including blue, green, grey and red. If the VFD will be in direct sunlight, the grey filter will prevent the displayed text from 'washing out'. Extended voltage, and temperature options are also available, to allow you to select the display which will best fit your project needs.

Figure 1: VFD2041 Options

1.2 Accessories

NOTE Matrix Orbital provides all the interface accessories needed to get your display up and running. You will find these accessories and others on our e-commerce website at http://www.matrixorbital.com. To contact a sales associate see Section 12.5 on page 49 for contact information.

Figure 2: 5V Power Cable Adapter

Figure 3: 12V Power Cable Adapter (V/VPT Models)

Figure 4: Breadboard Cable

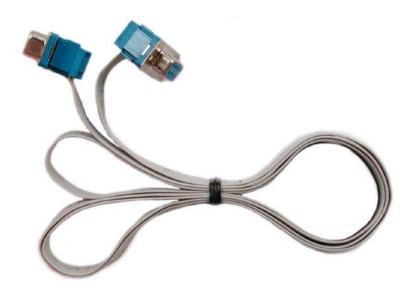


Figure 5: Serial Cable 4FT



Figure 6: Communication and 5V Power Cable

Figure 7: Silver - Aluminum Mounting

Figure 8: Black - Aluminum Mounting

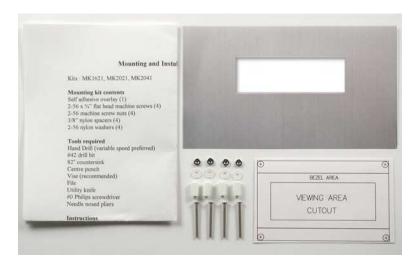
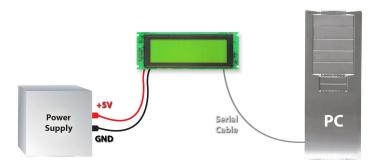


Figure 9: Silver - Aluminum Overlay

Figure 10: Black - Aluminum Overlay

1.3 Features


- 20 column by 2 line text vacuum fluorescent display
- $\bullet\,$ Selectable communication protocol, RS-232 or I^2C
- One-wire interface
- Three, 5V -20mA, general purpose outputs for a variety of applications
- Lightning fast communication speeds, up to 57.6 kbps for RS-232 and 400 kbps for I²C
- Default 19.2 kbps serial communication speed
- Extended temperature available for extreme environments of -40C to 85C
- Extended voltage and efficient power supply available
- Built in font with provision for up to 8 user defined characters
- Use of up to 127 modules addressable on the same I²C bus
- Fully buffered so that no delays in transmission are ever necessary
- Ability to add a customized splash / startup screen
- Software controlled brightness with configurable time-out setting up to 90 minutes and software controlled speed
- Horizontal or vertical bar graphs
- Fits Matrix Orbital's mountings without any modifications

1.4 Connecting to a PC

The VFD2041 connects seamlessly to a PC and it is an excellent means of testing the functionality. To connect your display to a PC, you will require a standard RS-232 9-pin serial cable such as the one pictured in *figure 5 on page 3*, as well as a modified 5V power adapter such as the one pictured in *figure 2 on page 2*.

In order to connect your display to a personal computer follow these easy instructions:

- 1. Plug the serial cable into the com port you wish to use.
- 2. Connect the modified 5V power adapter to a power lead from your PC power supply (you will have to open your computer case).
- 3. Connect the serial cable to the DB-9 connector on the back of the display.
- 4. Connect the 5V power adapter to the 4-pin connector on the back of the display.

WARNING DO NOT use the standard floppy drive power connector, as this will not provide you with the correct voltage and will damage the display module.

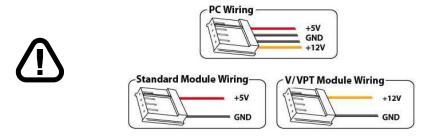
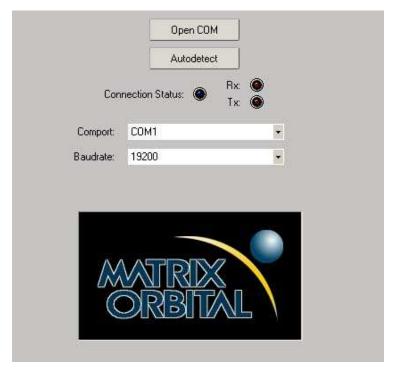


Figure 11: PC vs Matrix Orbital Display Module Wiring

1.5 Installing the Software


1.5.1 uProject

uProject was designed by Matrix Orbital to provide a simple and easy to use interface that will allow you to test all of the features of our alpha numeric displays.

To install uProject from the Matrix Orbital CD, follow the following steps:

- 1. Insert the Matrix Orbital CD-ROM into the CD drive
- 2. Locate the file, *uProject.exe*, which should be in the "CD-drive:\Download" directory.
- 3. Copy *uProject.exe* to a directory that you wish to run it from.
- 4. Double click on "uProject.exe"

Be sure to check the information selected in the COM Setup the first time uProject is run. Once this information is entered correctly the program can be used to control all functions of the graphic display.

Comport The serial port the display

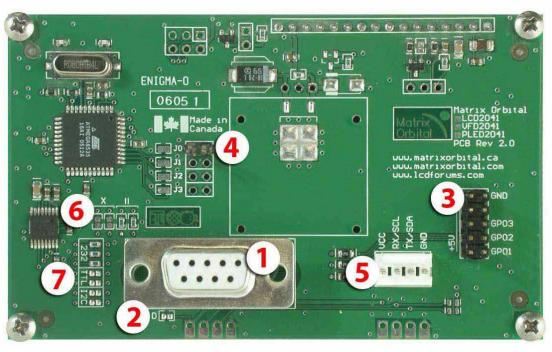
is plugged in to.

Baudrate The communication speed

the display

module is set to. (Default

19,200)

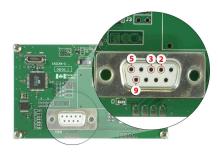

Figure 12: uProject Settings

NOTES

• uProject and other alphanumeric software may also be downloaded from Matrix Orbital's support site at http://www.matrixorbital.ca/software/software_alpha/

2 Hardware Information

Refer to the following diagram for this chapter:



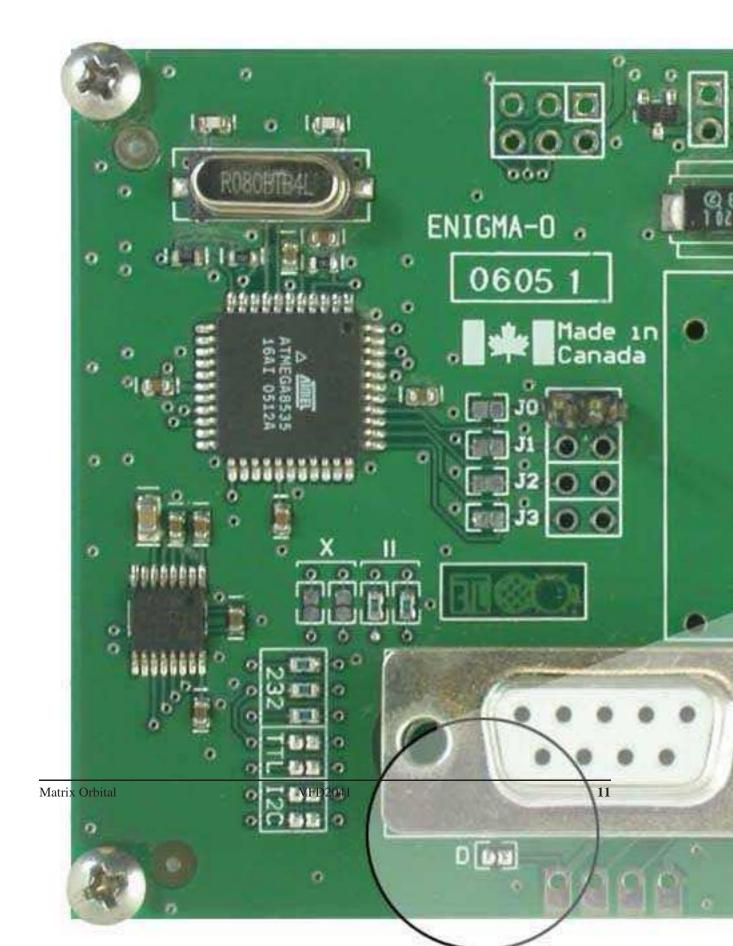
- 1 DB-9 Connector
- 2 Power Through DB9 Jumper
- 3 GPOs
- 4 Manual Override
- **5** Power / Data Connector
- **6** Legacy Connector Jumper
- **7** Protocol Select Jumpers

Figure 13: VFD2041

2.1 DB-9 Connector

The VFD2041 provides a DB-9 Connector to readily interface with serial devices which use the EIA232 standard signal levels of ± 12 V to ± 12 V. It is also possible to communicate at TTL levels of 0 to +5V by setting the Protocol Select Jumpers to TTL. As an added feature it is also possible to apply power through pin 9 of the DB-9 Connector in order to reduce cable clutter. However, in order to accomplish this you must set the Power Through DB-9 Jumper.

Pin 2 Rx \ SCL (I^2 C clock) Pin 3 Tx \ SDA (I^2 C data)

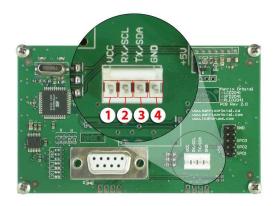

Pin 5 GND

Pin 9 PWR (Must solder Power Through DB-9 Jumper. See table 1 on page 12 for power requirements.)

Figure 14: RS-232 Pin out

2.1.1 Power Through DB-9 Jumper

In order to provide power through pin 9 of the *DB-9 Connector* you must place a solder jumper on the *Power through DB-9 Jumper* pictured in *figure 15* below. The VFD2041 allows all voltage models to use the power through DB-9 option, see table 1 on page 12 for display module voltage requirements.



WARNING Do not apply voltage through pin 9 of the DB-9 connector AND through the Power/Data Connector at the same time.

2.2 Power/Data Connector

The *Power/Data Connector* provides a standard connector for powering the display module. The VFD2041 requires five volts for the standard display module, between nine to fifteen for the wide voltage (V) and between nine to thirty-five volts for the wide voltage with efficient power supply module (VPT). The voltage is applied through pins one and four of the four pin *Power/Data connector*. Pins two and three are reserved for serial transmission, using either the RS-232/TTL or the I²C protocol, depending on what has been selected by the *Protocol Select Jumpers*. Pins two and three may be reversed by changing the *Legacy Connector Jumpers* in order to be compatible with previous PCB revisions.

Pin 1 PWR (See table 1)

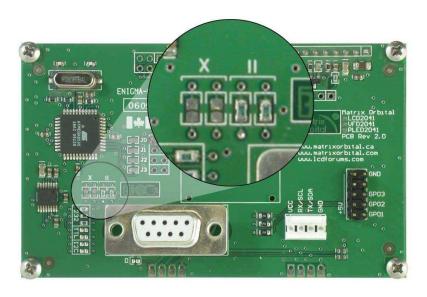
Pin 2 Rx \ SCL (I^2 C clock)

Pin 3 Tx \ SDA (I^2C data)

Pin 4 GND

Figure 16: Power Connector and Pin out

Table 1: Power Requirements


	Standard	-V	-VPT
Supply Voltage	+5Vdc ±0.25V	+9V to +15V	+9V to +35V
Supply Current		10 mA typical	
Supply Backlight Current		57 mA typical	

WARNINGS

- Do not apply any power with reversed polarization.
- Do not apply any voltage other than the specified voltage.

2.2.1 Legacy Data Connector Jumpers

To reverse pins two and three of the *Power/Data Connector* remove the zero ohm resistors from the *Legacy Data Connector Jumpers*, labeled with the \equiv symbol and place them on the jumpers labeled with the \mathbf{X} symbol. This will allow you to transmit on pin two, and receive data on pin three instead of the default of receiving on pin two and transmitting on pin three of the *Power/Data Connector*.

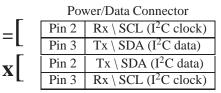
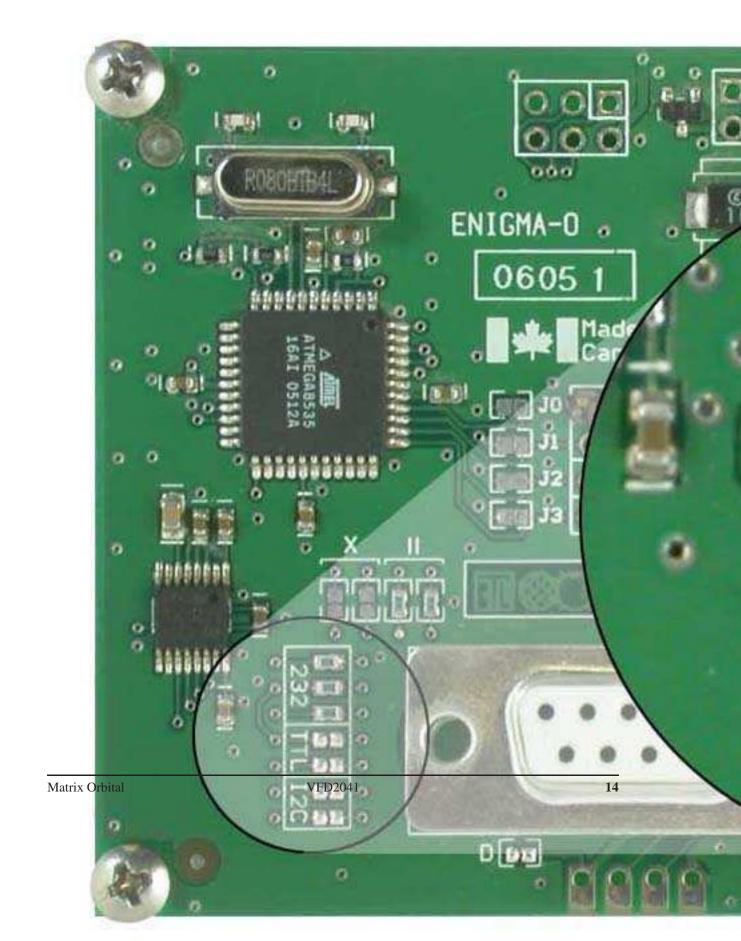
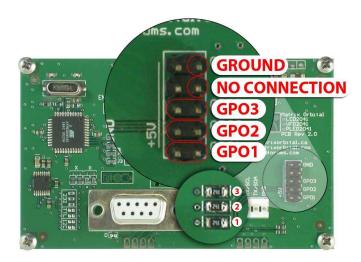



Figure 17: Legacy Data Connector Jumpers


2.3 Protocol Select Jumpers

The *Protocol Select Jumpers*, pictured below in *figure 18*, provide the means necessary to toggle the display module between RS-232, TTL and I^2C protocols. As a default, the jumpers are set to RS-232 mode with zero ohm resistors on the 232 jumpers. In order to place the display module in I^2C mode you must first remove the zero ohm resistors from the 232 jumpers and then solder the resistors on to the I2C jumpers. The display will now be in I^2C mode and have a default slave address of 0x50 unless it has been changed. Similarly, in order to change the display to TTL mode, simply remove the zero ohm resistors from the 232 or I^2C jumpers and solder them to the TTL jumpers.

2.4 General Purpose Outputs

A unique feature of the VFD2041 is the ability to control relays and other external devices using a *General Purpose Output*, which can provide up to 20 mA of current and +5Vdc from the positive side of the GPO. If the device, which is being driven by a GPO, requires a relatively high current (such as a relay) and has an internal resistance of its own greater than 250 ohms, then the 240 ohm resistor, which is associated with the GPO may be removed and replaced with a Jumper.

- GND
- + MAX: 20 mA, +5Vdc

Figure 19: General Purpose Output

WARNING If connecting a relay, be sure that it is fully clamped using a diode and capacitor in order to absorb any electro-motive force (EMF) which will be generated.

2.5 Manual Override

The *Manual Override* is provided to allow the VFD2041 to be reset to factory defaults. This can be particularly helpful if the display module has been set to an unknown baud rate or I²C Slave Address and you are no longer able to communicate with it. If you wish to return the module to its default settings you must:

- 1. Power off the display module.
- 2. Place a Jumper on the Manual Override pins.
- 3. Power up the display module.
- 4. The display module is now set to its default values listed below in table 2.
- 5. Edit and save settings.

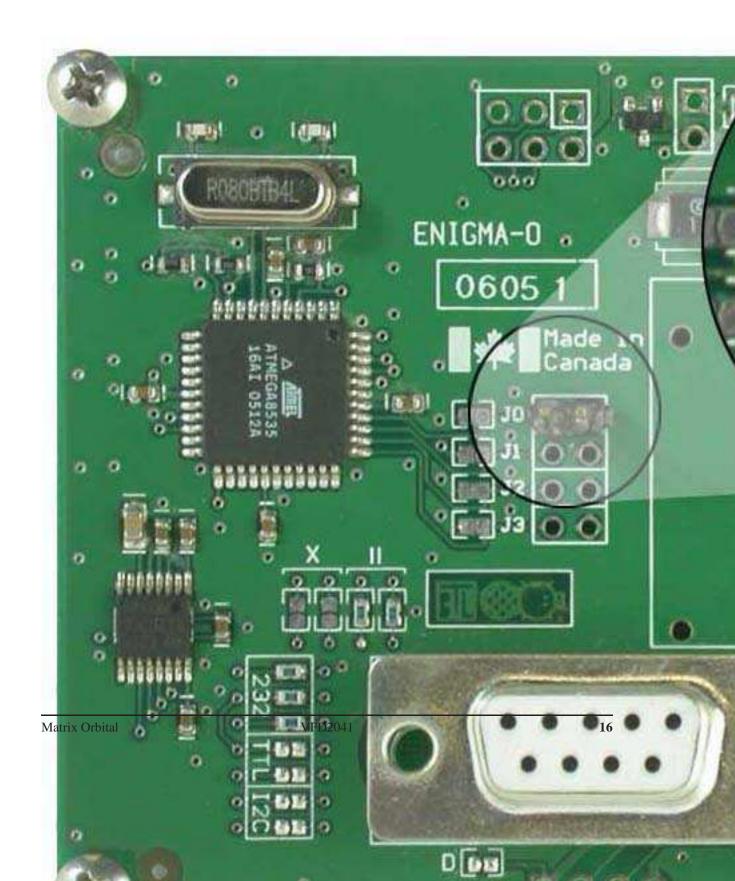


Table 2: Default Values

racie 2. Beraan varaes		
Contrast	128	
Backlight	255	
Baud Rate	19.2 kbps	
I ² C Slave Address	0x50	
Data Lock	False	
RS232AutoTransmitData	True	

NOTE The display module will revert back to the old settings once turned off, unless the settings are saved.

3 Troubleshooting

3.1 The display does not turn on when power is applied.

- First, you will want to make sure that you are using the correct power connector. Standard floppy drive power cables from your PC power supply may fit on the Power/Data Connector however they do not have the correct pin out as can be seen in *figure 11 on page 7*. Matrix Orbital supplies power cable adapters for connecting to a PC, which can be found in the *Accessories Section on page 2*.
- The next step is to check the power cable which you are using for continuity. If you don't have an ohm meter, try using a different power cable, if this does not help try using a different power supply.
- The last step will be to check the *Power / Data Connector* on the VFD2041. If the *Power / Data Connector* has become loose, or you are unable to resolve the issue, please contact Matrix Orbital, see 12.5 on page 49 for contact information.

3.2 The display module is not communicating.

- First, check the communication cable for continuity. If you don't have an ohm meter, try using a different communication cable. If you are using a PC try using a different Com Port.
- Second, please ensure that the display module is set to communicate on the protocol that you are using, by checking the *Protocol Select Jumpers*. To change the protocol used by the display module see *Section 2.3 on page 13*.
- Third, ensure that the host system and display module are both communicating on the same baud rate. The default baud rate for the display module is 19200 bps.
- If you are communicating to the display via I²C please ensure that the data is being sent to the correct address. The default slave address for the display module is 0x50.

NOTE I²C communication will always require pull up resistors.

• Finally, you may reset the display to it's default settings using the *Manual Override Jumper*, see *Section 2.5 on page 15*.

3.3 The display module is communicating, however text cannot be displayed.

• A common cause may be that the contrast settings have been set to low. The solution to this problem is to adjust the contrast settings. The default setting that will work in most environments is 128.

NOTE Optimal contrast settings may vary according to factors such as temperature, viewing angle and lighting conditions.

If you are unable to resolve any issue please contact Matrix Orbital. See 12.5 on page 49 for contact information.

4 Communications

4.1 Introduction

The commands listed in this chapter describe how to configure data flow on the VFD2041.

4.1.1 I²C Communication Summary

The VFD2041 is capable of communicating at 100 KHz in $I^2\text{C}$ mode, with 127 units addressable on a single $I^2\text{C}$ communication line. However, in order to communicate via $I^2\text{C}$ you must first ensure that pull up resistors, with a nominal value of 1K to 10K, are placed on the SCL and SDA communication lines coming from pins two and three of the Data / Power Connector respectively. Data responses by the module are automatically output via RS232, in case the host will be querying the module, it is necessary for the host to inform the module that its responses are to be output via $I^2\text{C}$. This can be done by sending command 254 / 160 / 0 to turn off auto transmission of data in RS232. This will keep the data in the buffer until the master clocks a read of the slave. The $I^2\text{C}$ data lines operate at 5V normally or 3.3V for -1U style units. The VFD2041 uses 8-bit addressing, with the 8th or Least Significant Bit (LSB) bit designated as the read/write bit, a 0 designates a write address and a 1 designates a read address. The default read address of the display module will be 0x51, whereas the write address is 0x50 by default. This address may be changed by using cmd 254 / 51 / <address>. The VFD2041 should only be sent addresses that are even (LSB is 0). When the $I^2\text{C}$ master wishes to write to the display, the effective address is \$50 (0101 0000), since the LSB has to be $1 \text{ for an } I^2\text{C}$ master read.

If we take a standard Phillips 7 bit address of \$45 (100 0101), Matrix Orbital's VFD2041 would describe this Phillips I^2C address as \$8A (1000 1010). The read address would be \$8B (1000 1011).

The unit does not respond to general call address (\$00).

When communicating in I²C the VFD2041 will send an ACK on the 9th clock cycle when addressed. When writing to the display module, the display will respond with a ACK when the write has successfully been completed. However if the buffer has been filled, or the module is too busy processing data it will respond with a NAK. When performing a multiple byte read within one I²C transaction, each byte read from the slave should be followed by an ACK to indicate that the master still needs data, and a NAK to indicate

that the transmission is over.

The VFD2041 has some speed limitations, especially when run in I²C mode. Here are some considerations when writing I²C code:

- * to be able to read the replies of query commands (eg. cmds 54, 55) the following command must be sent (only needs to be sent once, so this can be done somewhere in init): 254 / 160 / 0 this command puts the reply data in the I^2C output buffer instead of the RS232 output buffer. Please note that due to a 16 byte output buffer, query commands that reply with more than 16 bytes cannot be read (eg cmd Get FileSystem Directory)
 - * 3ms delay between the read commands
 - * 625us delay in between data bytes within a transaction is necessary
 - * 375us between transactions is necessary

NOTE These delays are consrevative, and may be decreased based on performance

4.1.2 I²C Transaction Example

The typical I²C transaction contains four parts: the start sequence, addressing, information, and stop sequence. To begin a transaction the data line, SDA, must toggle from high to low while the clock line, SCL, is high. Next, the display must be addressed using a one byte hexadecimal value, the default to write to the unit is 0x50, while read is 0x51. Then information can be sent to the unit; even when reading, a command must first be sent to let the unit know what type of information it is required to return. After each bit is sent, the display will issue an ACK or NACK as described above. Finally, when communication is complete, the transaction is ended by toggling the data line from low to high while the clock line is high. An example of the use of this algorithm to write a simple "HELLO" message can be seen in 3.

 START
 Toggle SDA high to low

 Address
 0x50

 Information
 0x48 0x45 0x4C 0x4C 0x4F

 STOP
 Toggle SDA low to high

Table 3: I²C Transaction Algorithm

4.1.3 Serial Communication

In addition to being able to communicate via I²C the VFD2041 communicates natively through the RS-232 protocol at at a default baud rate of 19,200 bps and is capable of standard baud rates from 9600 to 115,200 bps. Furthermore the VFD2041 is also capable of reproducing any non-standard baud rate in between using values entered into our baud rate generation algorithm and set through command 164 (0xA4). The display module communicates at standard voltage levels of -30V to +30V or at TTL levels of 0 to +5V by setting the *Protocol Select Jumpers* to TTL.

4.2 Changing the I²C Slave Address

Syntax Hexadecimal 0xFE 0x33 [adr]
Decimal 254 51 [adr]

ASCII 254 "3" [adr]

Parameters Parameter Length Description

adr 1 The new I^2C write address (0x00 - 0xFF).

Description This command sets the I^2C write address

This command sets the I^2C write address of the module between 0x00 and 0xFF. The I^2C write address must be an even number and the read address is automatically set to one higher. For example if the I^2C write

address is set to 0x50, then the read address is 0x51.

NOTE The change in address is immediate.

Remembered Always Default 0x50

4.3 Changing the Baud Rate

Syntax Hexadecimal 0xFE 0x39 [speed]

Decimal 254 57 [speed] ASCII 254 "9" [speed]

Parameters Parameter Length Description

speed 1 Hex value corresponding to a band

Description

This command sets the RS-232 port to the specified [speed]. The change takes place immediately. [speed] is a single byte specifying the desired port speed. Valid speeds are shown in the table below. The display module can be manually reset to 19,200 baud in the event of an error during transmission, including transmitting a value not listed below, by setting the manual override jumper during power up. However, it should be noted that this command will be ignored until the manual override jumper is removed again.

Hex Value	Baud Rate
53	1200
29	2400
CF	4800
67	9600
33	19200
22	28800
19	38400
10	57600
8	115200

NOTE This command is not available in I²C mode.

Remembered Always
Default 19,200 bps

4.4 Setting a Non-Standard Baud Rate

Syntax Hexadecimal 0xFE 0xA4 [speed]

Decimal 254 164 [speed]

Parameters Parameter Length Description
speed 2 Inputed LSB MSB from baud rate
formula (12-2047).

Description This command sets the RS-232 port to a non-standard baud rate. The

command accepts a two byte parameter that goes directly into the modules baud generator. Use the formula, $speed = \frac{CrystalSpeed}{8 \times DesiredBaud} - 1$ to calculate the [speed] for any baud rate setting. The speed can be anywhere from 12 to 2047 which corresponds to a baud range of 977 to 153,800 baud. Setting the baud rate out of this range could cause the display to stop working properly and require the Manual Override

jumper to be set.

Remembered Always

Crystal Speed 16 Mhz

Desired BAUD 13,500

$$speed = \frac{crystalspeed}{8*DesiredBaud} - 1$$
 $speed = \frac{16,000,000}{8*13,500} - 1$

$$speed = 148.15 - 1$$
 $speed = 147.15$

- LSB = 0x93 (rounded)
- MSB = 0x00
- Intended Baud Rate: 13,500 baud Actual Baud Rate: $\frac{16,000,000}{8(147+1)}$ =13,514 Percent Difference: 0.1%

NOTES

- Results from the formula are rounded down to the nearest whole number (i.e 73.07 = 73).
- This formula becomes less acurate as baud rates increase, due to rounding.
- Place the speed result backwards into the formula to receive the actual baud rate. $(Baud = \frac{CrystalSpeed}{8(speed+1)})$
- The actual baud rate must be within 3% of the intended baud rate for the device to communicate.

NOTES

• This command is not available in I²C mode.

5 Text

5.1 Introduction

The VFD2041 is an intelligent display module, designed to reduce the amount of code necessary to begin displaying data. This means that it is able to display all ASCII formated characters and strings that are sent to it, which are defined in the current character set. The display module will begin displaying text at the top left corner of the display area, known as home, and continue to print to the display as if it was a page on a typewriter. When the text reaches the bottom right row, it is able to automatically scroll all of the lines up and continue to display text, with the auto scroll option set to on.

5.1.1 Character Set

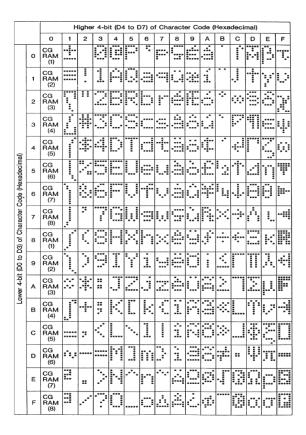


Figure 21: Character Set

5.1.2 Control Characters

In addition to a full text set, the VFD2041 display supports the following ASCII Control characters:

0x08 Backspace

0x0C Clear screen / New page

0x0D Carriage return

0x0A Line feed / New line

5.2 Auto Scroll On

Syntax Hexadecimal 0xFE 0x51

Decimal 254 81 ASCII 254 "O"

Description When auto scrolling is on, it causes the display to shift the entire

display's contents up to make room for a new line of text when the text

reaches the end of the last row.

Remembered Yes Default On

5.3 Auto Scroll Off

Syntax Hexadecimal 0xFE 0x52

Decimal 254 82 ASCII 254 "R"

Description When auto scrolling is disabled the text will wrap to the top left corner

of the display area when the text reaches the end of last row.

Remembered Yes

5.4 Clear Screen

Syntax Hexadecimal 0xFE 0x58

Decimal 254 88 ASCII 254 "X"

Description This command will immediately clear all of the contents of the display.

Remembered No

5.5 Changing the Startup Screen

Syntax Hexadecimal 0xFE 0x40

Decimal 254 64 ASCII 254 "@"

Description In order to change the text that is displayed by the VFD2041 when it

starts up simply send the command bytes 254 64 followed by the characters that you wish to display, starting from the top left. This command will automatically line wrap the characters that are sent to it.

Remembered Yes

5.6 Set Auto Line Wrap On

Hexadecimal 0xFE 0x43 **Syntax**

> Decimal 254 67 254 "C" **ASCII**

Description Enabling Auto Line Wrap will allow the cursor to automatically wrap

over to the next line when the current line is full.

NOTE Line wraps may occur in the middle of a word.

Remembered Yes

Set Auto Line Wrap Off 5.7

Syntax Hexadecimal 0xFE 0x44

> Decimal 254 68 **ASCII** 254 "D"

Disabling Auto Line Wrap will allow you to change the line Description

> configuration. The normally sequentional progression becomes an alternating pattern. Rather than moving from line 1 to 2 to 3, the display will write from line 1 to 3 to 2. For a two line display, this means that a row's worth of characters written between the first and second lines or after the second will not be displayed on the screen or wrapped. The

four line models will see only an alteration in line flow.

Yes Remembered

Set Cursor Position

Hexadecimal 0xFE 0x47 [col] [row] **Syntax**

> Decimal 254 71 [col] [row] **ASCII** 254 "G" [col] [row]

Length Parameters Parameter

Description col Column Row row 1

Description This command will allow you to manually set the cursor position, which

controls the text insertion point, by specifying the [col] and [row] of the

new proposed cursor position.

NOTE If the cursor position is set past the end of a line it will wrap to the beginning of the next line.

Remembered No

5.9 Go Home

Syntax Hexadecimal 0xFE 0x48

Decimal 254 72 ASCII 254 "H"

Description This command will return the cursor to the top left corner of the display

area, identified as row one, column one.

Remembered No

5.10 Move Cursor Back

Syntax Hexadecimal 0xFE 0x4C

Decimal 254 76 ASCII 254 "L"

Description This command will move the cursor back one space. If this command is

sent when the cursor is at the home position the cursor will wrap to the last row / column position if line wrap is on. Sending this command will not effect the text displayed on the module, however any characters that are sent will over write the current characters that are being displayed.

Remembered No

5.11 Move Cursor Forward

Syntax Hexadecimal 0xFE 0x4D

Decimal 254 77 ASCII 254 "M" Description This command will move the cursor forward one space. If this

command is sent when the cursor is at the bottom right position the cursor will wrap back to the home position if line wrap is on. Sending this command will not effect the text displayed on the module, however any characters that are sent will over write the current characters that are

being displayed.

Remembered No

5.12 Blinking Block Cursor On

Syntax Hexadecimal 0xFE 0x53

Decimal 254 83 ASCII 254 "S"

Description This command will cause the VFD2041 to display a block cursor at the

current text insertion point.

Remembered Yes

5.13 Blinking Block Cursor Off

Syntax Hexadecimal 0xFE 0x54

Decimal 254 84 ASCII 254 "T"

Description This command will turn the block cursor off.

Remembered Yes

6 Special Characters

6.1 Introduction

The VFD2041 has the ability to create four different sets of eight custom characters and save them to internal banks of memory. Each set of eight can be recalled from memory at any time, and selected characters can be written to the display screen. Characters and sets can be created at any time, saved for later use, and displayed to the screen through the intuitive command structure described below.

6.2 Creating a Custom Character

Syntax	Hexadecimal	0xFE 0x4E [ref]	ID] [data]
	Decimal	254 78 [refID] [data]
	ASCII	254 "N" [refID]	[data]
Parameters	Parameter	Length	Description
	refID	1	Character reference ID (0-7).
	data	8	Character data.
Description	The VFD2041 a	allows for upta to	eight custom defined characters to be
	11 1 4 4	.1 1	A . 1

The VFD2041 allows for upta to eight custom defined characters to be added onto the character set. A custom character is a five by eight pixel matrix with each row represented by a byte value. For example:

	Custom	Chara	Decimal	Hex		
1	0	0	0	0	16	0x10
1	0	0	0	0	16	0x10
1	0	0	0	0	16	0x10
1	0	0	0	0	16	0x10
1	0	1	1	0	22	0x16
1	1	0	0	1	25	0x19
1	0	0	0	1	17	0x11
1	0	0	0	1	17	0x11

Each bit value of one, in the table, represents an on pixel, whereas a value of zero represents a pixel that is turned off. Therefore in order to define custom character 'h' you would send the command byte prefix 254 followed by the command 78. Next, you will have to select the memory location in which you wish to save the character in. The available memory locations for this command are zero through to seven. After sending the memory location, or [refID], you may then send the eight byte custom character data in sequence from the top to the bottom.

Once you have defined a custom character you may display it by sending the display module the [refID]. For example if a custom character was saved in position one, the command to display the custom character, at the current cursor position, would be simply to send the number one to the display module without quotes.

Remembered No

6.3 Saving Custom Characters

Syntax	Hexadecimal	1 0xFE 0xC1 [Bank] [ID] [Data]	
Decimal		254 193 [Bank]	[ID] [Data]
Parameters	Parameter	Length	Description
	Bank	1	Memory bank to save to (0-4).
	ID	1	Character ID (0-7)
	Data	8	Character Definition

Description

New to the VFD2041 has added five non-volatile memory banks for custom character storage. This is intended to allow you to create your own custom bar graphs, medium/large numbers and startup screen. However, each memory bank may be used to store a set of any eight custom characters; with the only provision being that memory bank zero contains the characters that will be used in the startup screen. By default the memory banks will be loaded as follows:

[Bank]	Description
0	Startup screen characters.
1	Horizontal bars
2	Vertical bars
3	Medium numbers
4	Large numbers

In order to save new custom characters into a memory bank, follow the same process as you would for creating a custom character, see Section 6.2 on page 27, only use 254 193 [Bank Number] before sending the [ID] and character [Data].

Remembered

Yes

6.4 Loading Custom Characters

Syntax	Hexadecimal	0xFE 0xC0 [Ba	nk]
•	Decimal	254 192 [Bank]	
Parameters	Parameter	Length	Description
	Bank	1	Memory bank to save to (0-4).
Description	This command i	is used to load the	custom characters into the volatile
	memory so that	they may be used	l. If custom bar graph or number
characters are stored in the me		ored in the memo	ory banks, this command may be used
	instead of initial	lizing the bar grap	oh / number. To use this command send
	the command by	ytes followed by t	he [Bank] that contains the custom
	character data th	nat you want to re	trieve.

Remembered No

6.5 Save Startup Screen Custom Characters

Syntax	Hexadecimal	0xFE 0xC2 [refID] [data]	
	Decimal	254 194 [refID]	[data]
Parameters	Parameter	Length	Description
	refID	1	Character reference ID (0-7).
	data	8	Character data.

Description

Using this command you may create the custom characters. that will be stored in memory bank zero, which will be used in the startup screen. For more information about creating custom characters see *Section 6.2 on page 27*.

NOTES

- Changes only take place once the power has been cycled.
- This command is the same as sending CMD 254 / 193 / 0 / [ID] / [DATA]

Remembered

Yes

6.6 Initialize Medium Number

Syntax Hexadecimal 0xFE 0x6D

Decimal 254 109 ASCII 254 "m"

Description This command will load the default medium number characters into the

volatile memory. If you have stored your own custom medium numbers, use the 'Load Custom Characters' command to load your custom character data into the volatile memory. This command will allow you

to use the 'Place Medium Numbers' command.

Remembered No

6.7 Place Medium Numbers

Syntax	Hexadecimal	0xFE 0x6F [Row] [Col] [Digit]	
•	Decimal	254 111 [Row] [Col] [Digit]	
	ASCII	254 "o" [Row] [Col] [Digit]	
Parameters	Parameter	Length	Description
	Row	1	The row number.
	Col	1	The column number.
	Digit	1	Medium number to place (0-9).

This command will place a medium number (two columns high) at the

[row] and [col] specified.

NOTE Medium Numbers must be initialized before this command is executed.

Remembered No

Description

6.8 Initialize Large Numbers

Syntax Hexadecimal 0xFE 0x6E

Decimal 254 110 ASCII 254 "n"

Description This command will load the default large number characters into the

volatile memory. If you have stored your own custom large numbers, use the 'Load Custom Characters' command instead to load your custom character data into the volatile memory. This command will

allow you to use the 'Place Large Numbers' command.

Remembered No

6.9 Place Large Number

Syntax Hexadecimal 0xFE 0x23 [Col] [Digit]

Decimal 254 35 [Col] [Digit] ASCII 254 "#" [Col] [Digit]

Parameters Parameter Length Description

Col 1 The column number.

Digit 1 Large number to place (0-9).

Description This command will place a large number (four columns high) at the

[row] and [col] specified.

NOTE Large Numbers must be initialized before this command is executed.

Remembered No

6.10 Initialize Horizontal Bar

Syntax Hexadecimal 0xFE 0x68

Decimal 254 104 ASCII 254 "h"

Description This command will load the default horizontal bar characters into the

volatile memory. If you have stored your own custom horizontal bar data, use the 'Load Custom Characters' command instead to load your custom bar data into the volatile memory. This command will allow you

to use the 'Place Horizontal Bar' command.

Remembered No

6.11 Place Horizontal Bar Graph

Syntax	Hexadecimal Decimal ASCII	0xFE 0x7C [Col] [Row] [Dir] [Length] 254 124 [Col] [Row] [Dir] [Length] 254 " " [Col] [Row] [Dir] [Length]		
Parameters	Parameter	Length	Description	
	Col	1	The column number.	
	Row	1	The row number.	
	Dir	1	The direction of the bar data (0 or	
			1).	
	Length	1	The length of the bar data.	
Description	This command will place a bar graph at [row], [column]. A [Dir] value			
	of zero will cause the bar to go right, and one will cause the bar to go			
	left. The [Length] is the size in pixels of the bar graph.			

NOTES

- Horizontal Bars must be initialized before this command is executed.
- Bar graphs may be one directional only.

Remembered

No

6.12 Initialize Narrow Vertical Bar

Decimal 254 115 **ASCII** 254 "s"

Description This command will load the narrow vertical bar characters into the

> volatile memory. If you have stored your own custom vertical bar data, use the 'Load Custom Characters' command instead to load your custom bar data into the volatile memory. This command will allow you

to use the 'Place Vertical Bar' command.

NOTE Narrow bars have a width of two pixels.

Remembered No

6.13 Initialize Wide Vertical Bar

Syntax Hexadecimal 0xFE 0x76

Decimal 254 118 ASCII 254 "v"

Description This command will load the wide vertical bar characters into the volatile

memory. If you have stored your own custom vertical bar data, use the 'Load Custom Characters' command instead to load your custom bar data into the volatile memory. This command will allow you to use the

'Place Vertical Bar' command.

NOTE Wide bars have a width of five pixels.

Remembered No

6.14 Place Vertical Bar

Syntax	Hexadecimal	0xFE 0x3D	[Column]	[Length]
Dyman	Tichaacciiiai	Oni L Onob	Columni	Lengui

Decimal 254 61 [Column] [Length] ASCII 254 "=" [Column] [Length]

Parameters Parameter Length Descript

Parameter Length Description

Column 1 The column number.

Length 1 The length of the bar data.

Description This command will place a bar graph at the specified [Column] with the

specified [Length]. The [Length] is the size in pixels of the bar graph.

NOTES

- A Vertical Bar style must be initialized before this command is executed.
- Bar graphs may be one directional only.

Remembered No

7 General Purpose Output

7.1 Introduction

General purpose outputs allow you to connect devices, such as LEDs, to the VFD2041 and supply them with up to 20mA of current at 5V. The VFD2041 has 3 GPOs which are software controlled, with functions to turn them on/off and set the power state for the next startup.

General Purpose Output Off 7.2

0xFE 0x56 [Num] Hexadecimal **Syntax**

Decimal 254 86 [Num] **ASCII** 254 "V" [Num]

Description **Parameters** Parameter Length

> Num GPO number.

This command turns OFF general purpose output [num]. Description

NOTE OFF means that the output is pulled HIGH.

Remembered Yes

General Purpose Output On 7.3

Hexadecimal 0xFE 0x57 [Num] Syntax

> Decimal 254 87 [Num]

ASCII 254 "W" [Num]

Parameter Description **Parameters** Length Num GPO number.

Description This command turns ON general purpose output [num]. The standard

GPO's on the VFD2041 output 20mA of current at 5V.

NOTE ON means the output is pulled LOW.

Remembered Yes

Set Startup GPO state 7.4

Syntax Hexadecimal 0xFE 0xC3 [Num] [state]

> Decimal 254 195 [Num] [state]

Parameters

Description Parameter Length GPO number. Num 1 1 Startup state (0: Off, 1: On) state

Description This command will set the startup state for the GPO on the next power

up. A value of one will cause the GPO to be off on the next startup

while a value of one will cause the GPO to be on.

NOTE This command does not affect the current state of the GPO.

Remembered Always

Display Functions

Introduction 8.1

The VFD2041 employs software controlled display settings, which allow for control over, clearing the screen, changing the brightness and contrast or setting timers for turning it on or off. The combination of these allow you complete software control over your display's appearance.

Display On 8.2

Crimtori	Hexadecimal	0xFE 0x42 [min]	
Syntax	пехацесина	UXFE UX42 [IIIIII]	

254 66 [min] Decimal 254 "B" [min] **ASCII**

Parameters

Parameter Description Length min Minutes before turning the display

on (0 to 90).

Description This command turns the backlight on after the [minutes] timer has

> expired, with a ninety minute maximum timer. A time of 0 specifies that the backlight should turn on immediately and stay on. When this command is sent while the remember function is on, the timer will reset

and begin after power up.

Remembered Yes Default 0

8.3 **Display Off**

Syntax Hexadecimal 0xFE 0x46

Decimal 254 70 254 "F" **ASCII**

Description This command turns the backlight off immediately. The backlight will

remain off until a 'Display On' command has been received.

Remembered Yes

8.4 Set VFD Brightness

Syntax Hexadecimal 0xFE 0x59 [brightness]

Decimal 254 89 [brightness]

ASCII 254 "Y" [brightness]

Parameters Parameter Length Description

brightness 1 Brightness setting (0 to 3).

This command sets and saves the display's brightness to [brightness],

Description This command sets and saves the display's where [brightness] is a value between 0x00

and 0x03 (between 0 and 3) according to the table below:

Value	Brightness
0x03	25%
0x02	50%
0x01	75%
0x00	100%

If the remember function is on, this command acts the same as 'Set and

Save VFD Brightness'.

Remembered Yes Default 255

8.5 Set and Save VFD Brightness

Syntax Hexadecimal 0xFE 0x91 [brightness]

Decimal 254 145 [brightness]

Parameters Parameter Length Description

brightness 1 Brightness setting (0 to 3).

Description This command sets and saves the display's brightness to [brightness],

where [brightness] is a value between 0x00

and 0x03 (between 0 and 3) according to the table below:

Value	Brightness
0x03	25%
0x02	50%
0x01	75%
0x00	100%

Remembered Always

9 Data Security

9.1 Introduction

Ensuring that your VFD2041 display's exactly what you want it to can be the difference between a projects success and failure. This is why we incorporate features such as Data Lock into the VFD2041 With this new feature you now are in control over of how and when settings will be changed so there is no need to worry about the module acting exactly like you expected it to because all the settings may be locked and remembered for the next power up.

9.2 Set Remember

Syntax	Hexadecimal	0xFE 0x93 [switch]	
	Decimal	254 147 [exviteh]	

Parameters Parameter

Parameter	Length	Description
switch	1	0: Do not remember, 1: Remember

Description

This command allows you to switch the remember function on and off. To use the remember function, set remember to on, then set all of the settings that you wish to save, settings that are listed as 'Remember: Yes' support being saved into the non-volatile memory. After you have set all of the commands that you wish to save, you may then cycle the power and check the display settings to ensure that all the settings have been saved. If you wish to use remember again after cycling the power, you must set it to on again.

NOTES

- Writing to non-volatile memory is time consuming and slows down the operation of the display.
- Non-volatile memory has a 'write limit' and may only be changed approximately 100,000 times.

Remembered	No
Default	Do not remember

9.3 Data Lock

Syntax

Hexadecimal 0xFE 0xCA 0xF5 0xA0 [level] Decimal 254 202 245 160 [level]

Parameters

Parameter Length Description
level 1 Sets the data lock level

Description

Paranoia allows you to lock the module from displaying information, as well as enables the protection of the filesystem and module settings.

Each bit corresponds corresponds to a different lock level, while sending a zero will unlock your display as the following tables explains:

Bit	Data Lock Level	Description	
0-2	Reserved	Should be left 0	
3	Communication	When this bit is set (1) the	
	Speed Lock	Baud Rate and I ² C Slave	
		address are locked	
4	Setting Lock	When this bit is set (1)	
		the display settings such	
		as backlight, contrast and	
		GPO settings are locked.	
		(Internal EEPROM)	
5	Reserved	Should be left 0	
6	Command Lock	When this bit is set (1) all	
		commands but commands	
		202/203 are locked. (cmd	
		lock)	
7	Display Lock	When this bit is set (1) the	
		module is locked from dis-	
		playing any new informa-	
		tion. (text lock)	

NOTES

- Sending a new data lock level will override the previous data lock level.
- Data lock levels may be combined.

Remembered Default Examples Always

Hex	Dec	Binary	Description
0x00	0	0	Unlock
0x50	80	01010000	Setting and Command Lock

9.4 Set and Save Data Lock

Syntax Hexadecimal 0xFE 0xCB 0xF5 0xA0 [level]

Decimal 254 203 245 160 [level]

Parameters Parameter Length Description

level 1 Sets the data lock level

Description This command will set and save the data lock level. See the Data Lock

section for more information.

Remembered Always Default 0

9.5 Write Customer Data

Syntax Hexadecimal 0xFE 0x34 [data]

Decimal 254 52 [data] ASCII 254 "4" [data]

Parameters Parameter Length Description

data 16 Writes the customer data

Description Writes the customer Data. 16 Bytes of data can be saved in non-volatile

memory.

Remembered No

9.6 Read Customer Data

Syntax Hexadecimal 0xFE 0x35

Decimal 254 53 ASCII 254 "5"

Description Reads whatever was written by Write Customer Data.

Remembered No

10 Miscellaneous

10.1 Introduction

This chapter covers the 'Report Version Number' and 'Read Module Type' commands. These commands can be particularly useful to find out more information about the display module before contacting technical support.

10.2 Read Version Number

Syntax Hexadecimal 0xFE 0x36

Decimal 254 54 ASCII 254 "6"

Description This command will return a byte representing the version of the module,

see the following table as an example:

Hex Value	Version Number
0x19	Version 1.9
0x57	Version 5.7

Remembered No

10.3 Read Module Type

Syntax Hexadecimal 0xFE 0x37

Decimal 254 55 ASCII 254 "7" Description

This command will return a hex value corresponding to the model number of the module see the following table:

Hex	Product ID	Hex	Product ID
1	LCD0821	2	LCD2021
5	LCD2041	6	LCD4021
7	LCD4041	8	LK202-25
9	LK204-25	A	LK404-55
В	VFD2021	С	VFD2041
D	VFD4021	E	VK202-25
F	VK204-25	10	GLC12232
13	GLC24064	14	Unused
15	GLK24064-25	16	Unused
21	Unused	22	GLK12232-25
23	Unused	24	GLK12232-25-SM
25	GLK24064-16-1U-USB	26	GLK24064-16-1U
27	GLK19264-7T-1U-USB	28	GLK12232-16
29	GLK12232-16-SM	2A	GLK19264-7T-1U
2B	LK204-7T-1U	2C	LK204-7T-1U-USB
31	LK404-AT	32	MOS-AV-162A
33	LK402-12	34	LK162-12
35	LK204-25PC	36	LK202-24-USB
37	VK202-24-USB	38	LK204-24-USB
39	VK204-24-USB	3A	PK162-12
3B	VK162-12	3C	MOS-AP-162A
3D	PK202-25	3E	MOS-AL-162A
3F	MOS-AL-202A	40	MOS-AV-202A
41	MOS-AP-202A	42	PK202-24-USB
43	MOS-AL-082	44	MOS-AL-204
45	MOS-AV-204	46	MOS-AL-402
47	MOS-AV-402	48	LK082-12
49	VK402-12	4A	VK404-55
4B	LK402-25	4C	VK402-25
4D	PK204-25	4 E	Unused
4F	MOS	50	MOI
51	XBoard-S	52	XBoard-I
53	MOU	54	XBoard-U
55	LK202-25-USB	56	VK202-25-USB
57	LK204-25-USB	58	VK204-25-USB
5B	LK162-12-TC	5C	Unused
71	Unused	72	GLK240128-25
73	LK404-25	74	VK404-25
77	Unused	78	GLT320240
79	GLT480282	7A	GLT240128

Remembered

No

11 Command Summary

11.1 Communications

Description	Syntax		Page
Changing the I ² C Slave	Hexadecimal	0xFE 0x33 [adr]	20
Address	Decimal	254 51 [adr]	
	ASCII	254 "3" [adr]	
Changing the Baud Rate	Hexadecimal	0xFE 0x39 [speed]	20
	Decimal	254 57 [speed]	
	ASCII	254 "9" [speed]	
Setting a Non-Standard	Hexadecimal	0xFE 0xA4 [speed]	21
Baud Rate	Decimal	254 164 [speed]	

11.2 Text

Description	Syntax		Page
Auto Scroll On	Hexadecimal	0xFE 0x51	23
	Decimal	254 81	
	ASCII	254 "Q"	
Auto Scroll Off	Hexadecimal	0xFE 0x52	24
	Decimal	254 82	
	ASCII	254 "R"	
Clear Screen	Hexadecimal	0xFE 0x58	24
	Decimal	254 88	
	ASCII	254 "X"	
Changing the Startup	Hexadecimal	0xFE 0x40	24
Screen	Decimal	254 64	
	ASCII	254 "@"	
Set Auto Line Wrap On	Hexadecimal	0xFE 0x43	25
	Decimal	254 67	
	ASCII	254 "C"	
Set Auto Line Wrap Off	Hexadecimal	0xFE 0x44	25
	Decimal	254 68	
	ASCII	254 "D"	
Set Cursor Position	Hexadecimal	0xFE 0x47 [col] [row]	25
	Decimal	254 71 [col] [row]	
	ASCII	254 "G" [col] [row]	
Go Home	Hexadecimal	0xFE 0x48	26
	Decimal	254 72	
	ASCII	254 "H"	

Description	Syntax		Page
Move Cursor Back	Hexadecimal	0xFE 0x4C	26
	Decimal	254 76	
	ASCII	254 "L"	
Move Cursor Forward	Hexadecimal	0xFE 0x4D	26
	Decimal	254 77	
	ASCII	254 "M"	
Blinking Block Cursor	Hexadecimal	0xFE 0x53	27
On	Decimal	254 83	
	ASCII	254 "S"	
Blinking Block Cursor	Hexadecimal	0xFE 0x54	27
Off	Decimal	254 84	
	ASCII	254 "T"	

11.3 Special Characters

Description	Syntax		Page
Creating a Custom	Hexadecimal	0xFE 0x4E [refID] [data]	27
Character	Decimal	254 78 [refID] [data]	
	ASCII	254 "N" [refID] [data]	
Saving Custom	Hexadecimal	0xFE 0xC1 [Bank] [ID] [Data]	28
Characters	Decimal	254 193 [Bank] [ID] [Data]	
Loading Custom	Hexadecimal	0xFE 0xC0 [Bank]	29
Characters	Decimal	254 192 [Bank]	
Save Startup Screen	Hexadecimal	0xFE 0xC2 [refID] [data]	29
Custom Characters	Decimal	254 194 [refID] [data]	
Initialize Medium	Hexadecimal	0xFE 0x6D	30
Number	Decimal	254 109	
	ASCII	254 "m"	
Place Medium Numbers	Hexadecimal	0xFE 0x6F [Row] [Col] [Digit]	30
	Decimal	254 111 [Row] [Col] [Digit]	
	ASCII	254 "o" [Row] [Col] [Digit]	
Initialize Large Numbers	Hexadecimal	0xFE 0x6E	31
	Decimal	254 110	
	ASCII	254 "n"	
Place Large Number	Hexadecimal	0xFE 0x23 [Col] [Digit]	31
	Decimal	254 35 [Col] [Digit]	
	ASCII	254 "#" [Col] [Digit]	
Initialize Horizontal Bar	Hexadecimal	0xFE 0x68	31
	Decimal	254 104	
	ASCII	254 "h"	
Place Horizontal Bar	Hexadecimal	0xFE 0x7C [Col] [Row] [Dir] [Length]	32
Graph	Decimal	254 124 [Col] [Row] [Dir] [Length]	
	ASCII	254 " " [Col] [Row] [Dir] [Length]	

Description	Syntax		Page
Initialize Narrow Vertical	Hexadecimal	0xFE 0x73	32
Bar	Decimal	254 115	
	ASCII	254 "s"	
Initialize Wide Vertical	Hexadecimal	0xFE 0x76	32
Bar	Decimal	254 118	
	ASCII	254 "v"	
Place Vertical Bar	Hexadecimal	0xFE 0x3D [Column] [Length]	33
	Decimal	254 61 [Column] [Length]	
	ASCII	254 "=" [Column] [Length]	

11.4 General Purpose Output

Description	Syntax		Page
General Purpose Output	Hexadecimal	0xFE 0x56 [Num]	34
Off	Decimal	254 86 [Num]	
	ASCII	254 "V" [Num]	
General Purpose Output	Hexadecimal	0xFE 0x57 [Num]	34
On	Decimal	254 87 [Num]	
	ASCII	254 "W" [Num]	
Set Startup GPO state	Hexadecimal	0xFE 0xC3 [Num] [state]	34
•	Decimal	254 195 [Num] [state]	

11.5 Display Functions

Description	Syntax		Page
Display On	Hexadecimal	0xFE 0x42 [min]	35
	Decimal	254 66 [min]	
	ASCII	254 "B" [min]	
Display Off	Hexadecimal	0xFE 0x46	35
	Decimal	254 70	
	ASCII	254 "F"	
Set VFD Brightness	Hexadecimal	0xFE 0x59 [brightness]	36
	Decimal	254 89 [brightness]	
	ASCII	254 "Y" [brightness]	
Set and Save VFD	Hexadecimal	0xFE 0x91 [brightness]	36
Brightness	Decimal	254 145 [brightness]	

11.6 Data Security

Syntax		Page
Hexadecimal	0xFE 0x93 [switch]	37
Decimal	254 147 [switch]	
Hexadecimal	0xFE 0xCA 0xF5 0xA0 [level]	38
Decimal	254 202 245 160 [level]	
Hexadecimal	0xFE 0xCB 0xF5 0xA0 [level]	39
Decimal	254 203 245 160 [level]	
Hexadecimal	0xFE 0x34 [data]	39
Decimal	254 52 [data]	
ASCII	254 "4" [data]	
Hexadecimal	0xFE 0x35	39
Decimal	254 53	
ASCII	254 "5"	
	Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal ASCII Hexadecimal Decimal	Hexadecimal 0xFE 0x93 [switch] Decimal 254 147 [switch] Hexadecimal 0xFE 0xCA 0xF5 0xA0 [level] Decimal 254 202 245 160 [level] Hexadecimal 0xFE 0xCB 0xF5 0xA0 [level] Decimal 254 203 245 160 [level] Hexadecimal 0xFE 0x34 [data] Decimal 254 52 [data] ASCII 254 "4" [data] Hexadecimal 0xFE 0x35 Decimal 254 53

11.7 Miscellaneous

Description	Syntax		Page
Read Version Number	Hexadecimal	0xFE 0x36	40
	Decimal	254 54	
	ASCII	254 "6"	
Read Module Type	Hexadecimal	0xFE 0x37	40
	Decimal	254 55	
	ASCII	254 "7"	

11.8 Command By Number

00111111111	Descript	ion Page		
Hex	Dec	ASCII		
0x23	35	"#"	Place Large Number	31
0x33	51	"3"	Changing the I ² C Slave Address	20
0x34	52	"4"	Write Customer Data	39
0x35	53	"5"	Read Customer Data	39
0x36	54	"6"	Read Version Number	40
0x37	55	"7"	Read Module Type	40
0x39	57	"9"	Changing the Baud Rate	20
0x3D	61	" = "	Place Vertical Bar	33
0x40	64	"@"	Changing the Startup Screen	24
0x42	66	"B"	Display On	35
0x43	67	"C"	Set Auto Line Wrap On	25
0x44	68	"D"	Set Auto Line Wrap Off	25
0x46	70	"F"	Display Off	35
0x47	71	"G"	Set Cursor Position	25
0x48	72	"H"	Go Home	26

Comman	d Descrip	tion Page		
Hex	Dec	ASCII		
0x4C	76	"L"	Move Cursor Back	26
0x4D	77	"M"	Move Cursor Forward	26
0x4E	78	"N"	Creating a Custom Character	27
0x51	81	"Q"	Auto Scroll On	23
0x52	82	"R"	Auto Scroll Off	24
0x53	83	"S"	Blinking Block Cursor On	27
0x54	84	"T"	Blinking Block Cursor Off	27
0x56	86	"V"	General Purpose Output Off	34
0x57	87	"W"	General Purpose Output On	34
0x58	88	"X"	Clear Screen	24
0x59	89	"Y"	Set VFD Brightness	36
0x68	104	"h"	Initialize Horizontal Bar	31
0x6D	109	"m"	Initialize Medium Number	30
0x6E	110	"n"	Initialize Large Numbers	31
0x6F	111	"o"	Place Medium Numbers	30
0x73	115	"s"	Initialize Narrow Vertical Bar	32
0x76	118	"v"	Initialize Wide Vertical Bar	32
0x7C	124	"["	Place Horizontal Bar Graph	32
0x91	145		Set and Save VFD Brightness	36
0x93	147		Set Remember	37
0xA4	164		Setting a Non-Standard Baud Rate	21
0xC0	192		Loading Custom Characters	29
0xC1	193		Saving Custom Characters	28
0xC2	194		Save Startup Screen Custom	29
			Characters	
0xC3	195		Set Startup GPO state	34

12 Appendix

12.1 Specifications

12.1.1 Environmental

Table 54: Environmental Specifications

	Standard Temperature	Extended Temperature	
Operating Temperature	-20°C to +70°C	-40°C to +85°C	
Operating Relative Humidity	90% max non-condensing		
Vibration (Operating)	4.9 m/s ² XYZ directions		
Vibration (Non-Operating)	19.6 m/s ² XYZ directions		
Shock (Operating)	29.4 m/s ² XYZ directions		
Shock (Non-Operating)	490 m/s ² XYZ directions		

12.1.2 Electrical

Table 55: Electrical Specifications

	Standard	Wide Voltage (V)	Wide Voltage with Efficient Switching Power Supply (VPT)	
Supply Voltage	+5Vdc ±0.25V	+9V to +15V	+9V to +35V	
Supply Power	110 mA typical			
Inrush	275 mA			

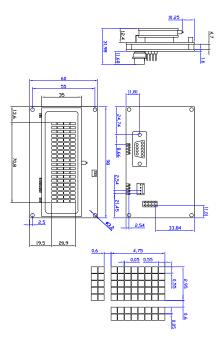

12.2 Optical Characteristics

Table 56: Optical Characteristics

Display Format	20 characters by 4 lines
Matrix Format	5 x 8
Display Area	70.8 x 20.90 mm
Character Size	2.4 x 4.70 mm (XxY)
Character Pitch	3.55 mm
Line Pitch	5.35 mm
Dot Size	0.55 0.55 mm (XxY)
Dot Pitch	0.60 x 0.60 mm (XxY)
Luminance	$350cd/m^2$ (100fL) min
Color of Illumination	Blueish Green

12.3 Physical Layout

Figure 22: Physical Diagram

12.4 Definitions

E Extended Temperature (-20C to 70C)

VPT Wide Voltage with Efficient Switching Power Supply (+9 to +35Vdc)

V Wide Voltage (+9 to +15Vdc)

GW Grey Text / White Background

WB White Text / Blue Background

R Inverse Red

IY Inverse YellowLCD2041

MSB Most Significant Byte

LSB Least Significant Byte

12.5 Contacting Matrix Orbital

Telephone

Sales and Support: 1(403)229-2737

On The Web

Sales: http://www.MatrixOrbital.com Support: http://www.MatrixOrbital.ca Forums: http://www.lcdforums.com

12.6 Revision History

Table 57: Revision History

Revision	Description	Author
2.0	Initial Revision	Matrix Orbital
2.1	Updated Communication Summary	Clark

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Matrix Orbital: VFD2041-VPT-E