
v01.0613

Typical Applications

The HMC5445LS6 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT
- Military & Space

Functional Diagram

General Description

High Output IP3: +40 dBm

DC Supply: +6V @ 750 mA No External Matching Required

High Gain: 26 dB

Features

The HMC5445LS6 is a three-stage GaAspHEMT MMIC 1 Watt Power Amplifier which operates between 24 and 27 GHz. The HMC5445LS6 provides 26 dB of gain, and +31 dBm of saturated output power and 18% PAE from a +6V supply. The RF I/Os are DC blocked and matched to 50 Ohms for ease of integration into Multi-Function-Modules (MFMs). The HMC5445LS6 eliminates the need for wire bonding and allows the use of surface mount manufacturing techniques.

HMC5445LS6

GaAs pHEMT MMIC 1 WATT

POWER AMPLIFIER, 24 - 27 GHz

Saturated Output Power: +31.5 dBm @ 23% PAE

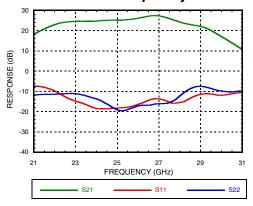
16 Lead Ceramic 6 x 6 mm SMT Package: 36 mm²

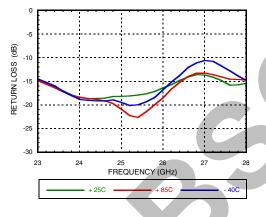
Electrical Specifications, $T_A = +25 \degree C$, Vdd = Vdd1 = Vdd2 = +6V, $Idd = 750 \ mA^{[1]}$

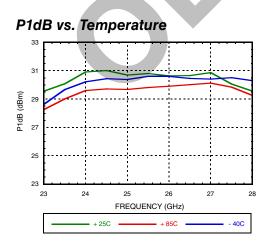
Parameter	Min.	Тур.	Max.	Units
Frequency Range		24 - 27		
Gain	23	26		dB
Gain Variation Over Temperature		0.03		dB/ °C
Input Return Loss		17		dB
Output Return Loss		17		dB
Output Power for 1 dB Compression (P1dB)	27	30.5		dBm
Saturated Output Power (Psat)		31.5		dBm
Output Third Order Intercept (IP3) ^[2]		40		dBm
Total Supply Current (Idd)		750		mA

[1] Adjust Vgg between -2 to 0V to achieve Idd = 750 mA typical.

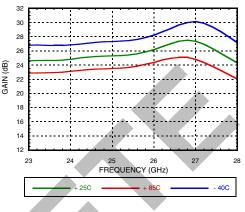
[2] Measurement taken at +6V @ 750 mA, Pout / Tone = +19 dBm

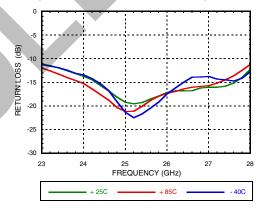

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v01.0613

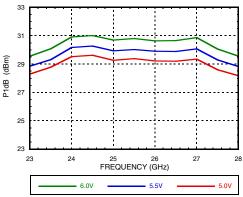


Broadband Gain & Return Loss vs. Frequency


Input Return Loss vs. Temperature

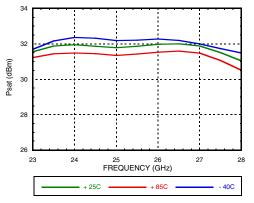


GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 24 - 27 GHz

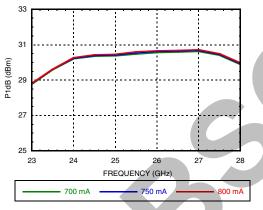

Gain vs. Temperature

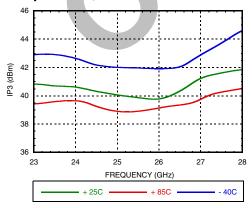
Output Return Loss vs. Temperature

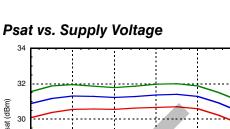
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

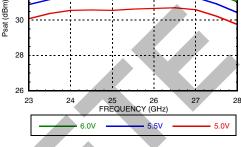

GaAs pHEMT MMIC 1 WATT

POWER AMPLIFIER, 24 - 27 GHz

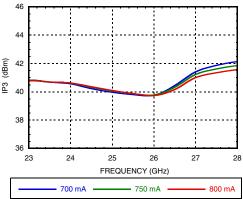

v01.0613


Psat vs. Temperature

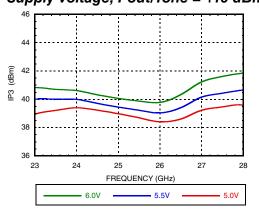



P1dB vs. Supply Current (Idd)

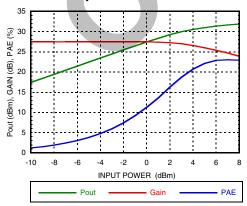
Output IP3 vs. Temperature, Pout/Tone = +19 dBm

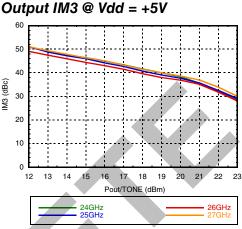


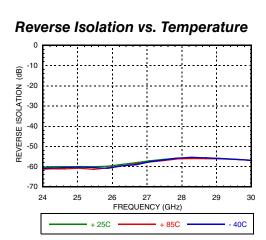
Psat vs. Supply Current (Idd)


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

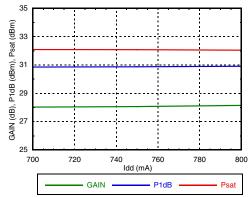
v01.0613


Output IP3 vs. Supply Voltage, Pout/Tone = +19 dBm

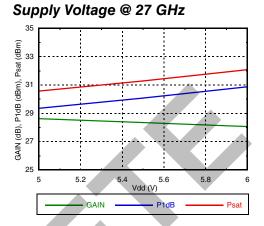

Output IM3 @ Vdd = +5.5V


Power Compression @ 26 GHz

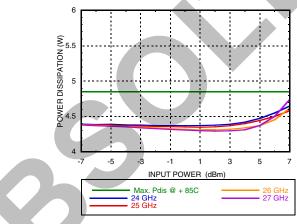
Output IM3 @ Vdd = +6V 60 50 40 (dBc) 30 IM3 20 10 0 17 18 12 13 14 15 16 19 20 21 22 23 Pout/TONE (dBm) 24 GHz 26 GHz 28 GHz 29 GHz


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0613



Gain & Power vs. Supply Current @ 27 GHz



GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 24 - 27 GHz

Gain & Power vs.

Power Dissipation

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

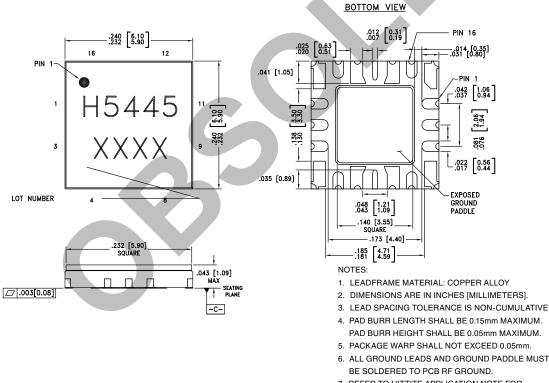
v01.0613

Absolute Maximum Ratings

,		
Drain Bias Voltage (Vd)	+6.3V	
RF Input Power (RFIN)	+23 dBm	
Channel Temperature	+150 °C	
Continuous Pdis (T=85 °C) (derate 72 mW/°C above 85 °C)	4.7 W	
Thermal Resistance (Channel to ground paddle)	13.83 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Rating	Class 0	

Reliability Information

Junction Temperature to Maintain 1 Million Hour MTTF	150 °C	
Nominal Junction Temperature (T = 85 °C and Pin = 10 dBm)	90 °C	
Operating Temperature	-40 to +85 °C	


GaAs pHEMT MMIC 1 WATT

POWER AMPLIFIER, 24 - 27 GHz

HMC5445LS6

Outline Drawing

7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

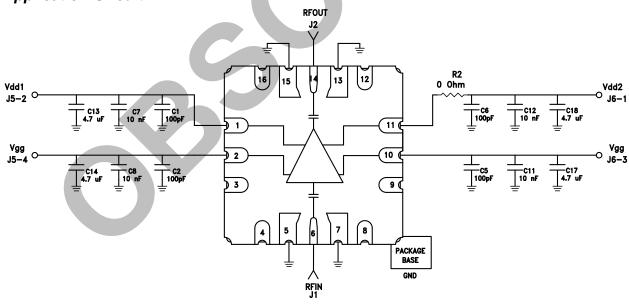
Part Number	Package Body Material	Lead Finish	MSL Rating ^[2]	Package Marking ^[1]
HMC5445LS6	ALUMINA WHITE	Gold over Nickel	N/A	<u>H5445</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 $^\circ\text{C}$

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0613



GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 24 - 27 GHz

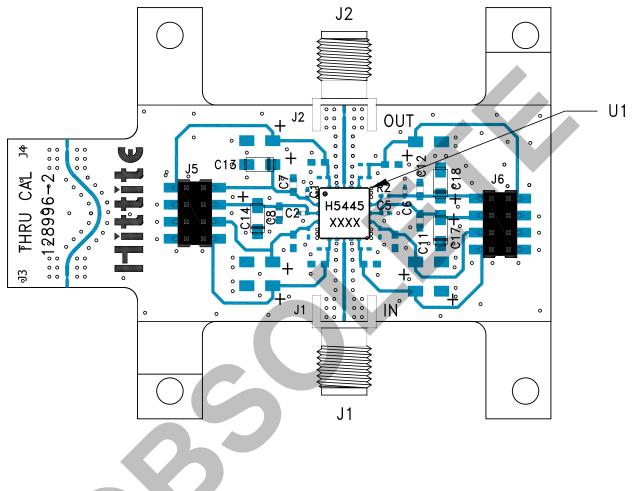
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 11	Vdd1, Vdd2	Drain bias voltage. External bypass capacitors of 100 pF, 0.1 μF and 4.7 μF are required for each pin.	OVdd1,2 ≓
2, 10	Vgg	Gate control for PA. Adjust Vgg to achieve recommended bias current. Only one pin is required. External bypass caps 100 pF, 0.1 μF and 4.7 μF are required.	VggO
3, 4, 8, 9, 12, 16	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
5, 7, 13, 15	GND	These pins and exposed paddle must be connected to RF/DC ground.	
6	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O
14	RFOUT	This pin is AC coupled and matched to 50 Ohms.	

Application Circuit

NOTE: Vgg - only one connection is required

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v01.0613

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 24 - 27 GHz

List of Materials for Evaluation PCB EVAL01-HMC5445LS6^[1]

Item	Description	
J1, J2	"K" Connector, SRI	
J5, J6	DC Pin	
C1, C2, C5, C6	100 pF Capacitor, 0402 Pkg.	
C7, C8, C11, C12	10000 pF Capacitor, 0603 Pkg.	
C13, C14, C17, C18	4.7 µF Capacitor, ? Pkg.	
R2	0 Ohm Resistor, 0402 Pkg.	
U1	HMC5445LS6 Amplifier	
PCB [2]	128996 Eval Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.