NCP3712ASN, SZNCP3712ASN

Over Voltage Protected High Side Switch

This switch is primarily intended to protect loads from transients by isolating the load from the transient energy rather than absorbing it.

Features

- Capable of Switching Loads of up to 200 mA without External Rboost
- Switch Shuts Off in Response to an Over Voltage Input Transient
- Features Active Turn Off for Fast Input Transient Protection
- Flexible Over Voltage Protection Threshold Set with External Zener
- Automatic Recovery after Transient Decays Below Threshold
- Withstands Input Transients up to 105 V Peak
- Guaranteed Off State with Enbl Input
- ESD Resistant in Accordance with the 2000 V Human Body Model
- Extremely Low Saturation Voltage
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free Devices

Applications Include:

- High Voltage Transient Isolation
- Power Switching to Electronic Modules
- DC Power Distribution in Line Operated Equipment
- Buffering Sensitive Circuits from Poorly Regulated Power Supplies
- Pre-conditioning of Voltage Regulator Input Voltage

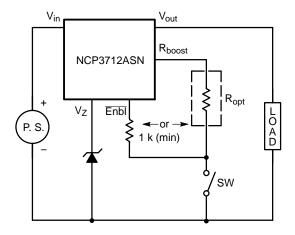
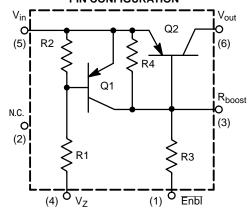


Figure 1. Typical Application Circuit

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM


SC-74 CASE 318F

BAG = Device Code
M = Date Code

= Pb-Free Package(Note: Microdot may be in either location)

INTERNAL CIRCUIT DIAGRAM/ PIN CONFIGURATION

ORDERING INFORMATION

Device	Package	Shipping [†]	
NCP3712ASNT1G	SC-74	3000 / Tape &	
SZNCP3712ASNT1G	(Pb-Free)	Reel	
NCP3712ASNT3G	SC-74	10,000 / Tape &	
SZNCP3712ASNT3G	(Pb-Free)	Reel	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NCP3712ASN, SZNCP3712ASN

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted) (Note 1)

Rating		Symbol	Value	Unit
Input-to-Output Voltage		V _{io}	105	V
Reverse Input-to-Vz. Voltage		V _{in(rev)}	-9.0	V
Reverse Input-to-Rboost Voltage		V _{in(rev)}	-5.0	V
Output Load Current – Continuous		I _{load}	-300	mA
Enbl Input Current – Continuous		I _{enbl}	5.0	mA
Vz Input Current – Continuous		Iz	3.0	mA
Rboost Input Current – Continuous		I _{boost}	10	mA
Junction Temperature		TJ	125	°C
Operating Ambient Temperature Range		T _A	-40 to +85	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Device Power Dissipation (Minimum Footprint)		P _D	300	mW
Derate Above 25°C		_	2.4	mW/°C
Latchup Performance:	Positive Negative	I _{Latchup}	200 200	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

This device contains ESD protection and exceeds the following tests: Human Body Model 1500 V per MIL-STD-883, Method 3015. Machine Model Method 150 V.

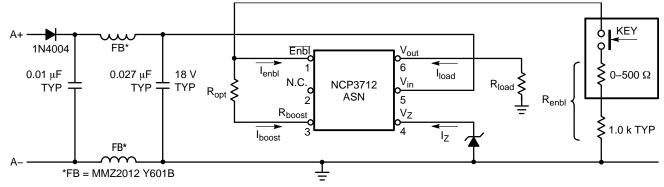


Figure 2. Typical Applications Circuit for Load Dump Transient Protection

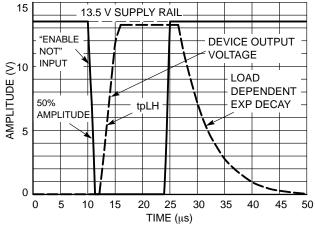


Figure 3. Enable NOT Switching Waveforms

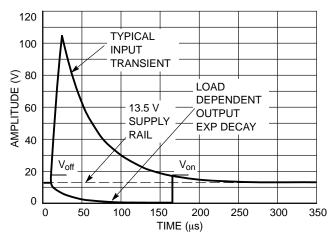


Figure 4. Load Dump Waveforms

NCP3712ASN, SZNCP3712ASN

ELECTRICAL CHARACTERISTICS (V_{in} = 12.5 V_{DC} Ref to Gnd, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u> </u>				
Input-Output Breakdown Voltage (@ I _{out} = 200 μA)	V _(BRio)	105	_	_	Vdc
Output Reverse Breakdown Voltage (@ I _{out} = -1.0 mA Pulse)	V _(-BRout)	_	-0.7	_	Vdc
Output Leakage Current (V _{in} = V _{enbl} = 30 V, T _A = 25°C)	I _{load(off)}	_	_	-100	μAdc
Guaranteed "Off" State "ENBL NOT" Voltage ($I_O \le 100~\mu A$)	V _{enbl(off)}	13	_	_	Vdc
Required "Off" State I_z Current ($R_{load} = 100 \Omega$)	I _{z(off)}	150	-	_	μAdc
$V_{\text{in(off)}}$ (V _z = 16 V, I _{load} = 100 mA, R _{enbl} = 1500 Ω)	V _{off}	15.5	_	18.7	Vdc
ON CHARACTERISTICS					
Input–Output On Voltage (I _o = 100 mA, I _{enbl} = –3.0 mA)	V _{io(on)}	_	0.2	0.5	Vdc
Output Load Current — Continuous $ \begin{aligned} &(I_{enbl} = -3.0 \text{ mA}, V_{io(on)} = 0.5 \text{ Vdc}) \\ &(I_{boost} = -9.0 \text{ mA}, V_{io(on)} = 0.5 \text{ Vdc}) \\ &(I_{boost} = -9.0 \text{ mA}, V_{io(on)} = 0.6 \text{ Vdc}) \end{aligned} $	l _{o(on)}	- - -	- - -	-200 -200 -300	mAdc
$V_{in(on)}$ (V _z = 16 V, I _{load} = 100 mA, R _{enbl} = 1500 Ω)	V _{on}	8.5	_	10.5	Vdc
"ENBL NOT" Input Current (I _o = 100 mA, $V_{io(on)}$ = 0.35 Vdc, R_{enbl} = 1500 Ω)	l _{enbl}	_	_	-1.0	mAdc
SWITCHING CHARACTERISTICS	<u>.</u>				
Propagation Delay Time: Hi to Lo Prop Delay; Fig. 3 (V _{in} = V _{enbl} = 13.5 V) Lo to Hi Prop Delay; Fig. 3 (V _{in} = 13.5 V, V _{enbl} = 0 V)	t _{PHL} t _{PLH}		1.5 1.5	_ _	μS
Transition Times: Fall Time; Fig. 4 ($V_{in} = V_{enbl} = 13.5 \text{ V}$) Rise Time; Fig. 4 ($V_{in} = V_{enbl} = 0 \text{ V}$)	t _f t _r	_ _	75 400	_ _	ηS
INTERNAL RESISTORS	·				·
Input Leakage Resistor	R2	7.0	10	13	kΩ
Input Resistor	R1	3.3	4.7	6.1	kΩ
Output Leakage Resistor	R4	1.4	2.4	3.2	kΩ
Enable Input Resistor	R3	1.4	2.4	3.2	kΩ

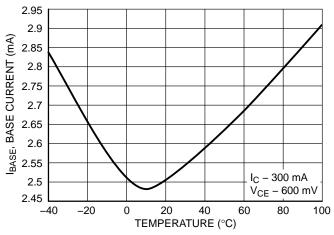
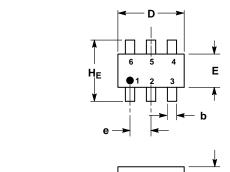
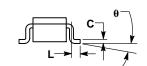



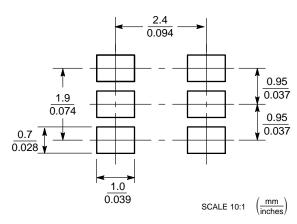
Figure 5. Q2 Base Current vs Temperature with Pin 4 Open


NCP3712ASN, SZNCP3712ASN

PACKAGE DIMENSIONS

SC-74 CASE 318F-05 ISSUE N

0.05 (0.002)



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. 318F-01, -02, -03, -04 OBSOLETE. NEW STANDARD 318F-05.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.37	0.50	0.010	0.015	0.020
С	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	0.85	0.95	1.05	0.034	0.037	0.041
Т	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.75	3.00	0.099	0.108	0.118
θ	0°	-	10°	0°	-	10°

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: SZNCP3712ASNT3G